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Abstract: This paper presents the results of tests obtained for the transformation of geraniol in the
presence of garnet as a catalyst by the response surface method (RSM). The method analyzed the
influence of the following parameters: a temperature of 50–150 ◦C, a catalyst concentration (garnet) of
1.0–10.0 wt% and a reaction time of 0.25–24 h. Response functions included the conversion of geraniol
(GA), selectivity for conversion to neral (NE) and selectivity for conversion to citronellol (CL). In
addition, the influence of all control parameters on each of the response parameters is presented
in the form of second-order polynomials. The optimal parameters of the geraniol transformation
process were a temperature of 55 ◦C, a catalyst concentration of 5 wt% and a reaction time of 2 h, for
which high values of the GA conversion function and the selectivity of conversion to NE and CL
were obtained. For the GA conversion, the optimum was obtained at 94 mol% at 60 ◦C, a catalyst
concentration of 5.0 wt% and a reaction time of 2 h. For NE selectivity, the optimum value was
reached at 49 mol% at 60 ◦C, a catalyst concentration equal to 2.5 (5.0) wt% mole and a reaction time
of almost 2 h. For CL selectivity, the optimum value of 49 mol% was obtained for control factors: a
temperature equal to 20 ◦C, a catalyst concentration equal to 5.0 wt% and a response time equal to
2 h. The optimal set of control factors for all power factors is characterized by a temperature of 55 ◦C,
a catalyst concentration of 5 wt% and a reaction time of 2 h.
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1. Introduction
Garnet and Its Properties

Garnets are a group of minerals included in the silicate cluster and are of various
elements, mainly magnesium, aluminum, calcium, iron, and manganese. They are divided
into several groups based on their chemical composition. Their isometric crystals usually
take the form of rhombic icosahedrons and deltoid icosahedrons (Figure 1). They can be
transparent, translucent or opaque. They can have different colors such as white, pink, red,
yellow, green or black. They are characterized by a vitreous or sometimes burr-like break [1].
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Garnet is not a single mineral, but a group of minerals that share the common char-
acteristic of having a crystalline structure and similar chemical composition. The most
common varieties available commercially are almandine garnet and andradite garnet. Al-
though almandine garnet is the heaviest and hardest of the garnet group, and andradite
garnet is the lightest and softest in the garnet family, both are relatively hard and heavy. In
addition to the chemical composition, the process of formation of the mineral also has an
impact on the properties of garnet. For example, a large number of crystals in the grain
results in greater brittleness, which can be disadvantageous [3]. This tendency results in
a higher level of finer particles in the resulting dust and a slightly lower yield at a single
use and reduced recyclability. Typically, the lower yield is partially offset by the lower price
of andradite garnet compared to almandine.

Asphaltene precipitation in the oil reservoir, production equipment and treatment
systems complicate well operations and reduce production. The degree and rate of organic
deposition depend on the temperature distribution along the wellbore, the viscosity of
the viscous oil, flow velocity, pressure variations and the oil-to-water ratio. Reservoir
temperature plays an extremely important role in asphaltene precipitation. In addition, the
presence of other organic deposits (such as paraffin and resin) in the oil affects the amount
of asphaltene precipitation. Typically, primary asphaltene molecules are considered to have
relatively small molecular weights in the range of 500–1000 g/mol with an average of about
750 g/mol, depending on the characteristics of the oil. Analysis of the composition of the
asphaltene fraction shows that the amount of carbon and hydrogen usually varies within a
small range. However, significant differences occur in the proportions of hetero elements,
particularly in the proportions of oxygen and sulfur [4].

The different garnets do not yield the same profile and the same cutting speed and
recyclability. Harder, fully crystalline garnets are used in many countries. Almandine
garnets achieve faster cutting speeds and lower dust levels than the more brittle, fractured
andradite garnets [5,6].

Garnet is also used in the production of bulk products (such as sandpaper and abrasive
belts), polishing pastes and aqueous garnet suspensions for precision polishing [7,8].

Almandine garnet is a mineral widely used for sandblasting and is usually derived
from sediments (river or beach). There are many advantages to using garnet over other
minerals: it can be used for both dry and wet sandblasting [9] and cutting materials [10,11]
in a high-pressure water jet (AWJ). Garnets form distinct roughness profiles and virtually
do not deposit on the workpiece surface, and for this reason they are used prior to the
coating of protective coatings. They are used as an abrasive for cleaning tanks and other
confined spaces where a low-dust abrasive is necessary and where water contamination
is an issue [12]. They are also widely used to treat aluminum, galvanized and glass
surfaces, hangars and in industrial paint shops. These abrasives are also used before
powder coating and for demineralizing surfaces [13–15].

Garnet is preferred worldwide for its purity of up to 99% in terms of mineralogical
content. No chemicals are used during the processing of garnet. The inert nature of this
natural mineral ensures that even non-ferrous metal surfaces are not contaminated [16].

Garnet is chemically inert, non-toxic and contains less than 0.2% free silica. It poses
no risk of silica or leaching of heavy metal salts such as iron, copper, etc., or radioactive
contaminants. Lower consumption and recyclability result in a significantly reduced waste
of a non-toxic product [17].

Garnet is an environmentally friendly mineral abrasive. It does not contain any water-
soluble components that could contaminate water resources. Used at sea, it does not
contaminate the water or seabed, nor does it disturb marine life. It does not pollute the
environment due to its inert nature and low dust emissions. It has high recyclability and its
lack of toxicity results in better management of its waste. Garnet is a natural mineral that
we return to the earth, unlike waste slag abrasives from industrial metal refining, which
often contain unacceptable levels of toxic heavy metals such as lead, copper, nickel, zinc,
arsenic, cadmium, etc. [18].
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As a natural heavy mineral, garnet is effective in softening water. Coarser grains of
black garnet are used as filter beds in industrial wastewater treatment and commercial
water filtration. Pomegranate is probably the most cost-effective alternative to lodging
for water filtration, as the filter bed regenerates faster. In addition, it is also effective in
eliminating heavy minerals. It also has the advantage of being chemically inert and being
returned to recirculation leads to a longer life in water treatment [19].

In order to optimize the transformation process, response surface methodology (RSM)
was applied, which uses methods of mathematical and statistical analysis to determine the
interaction between the variables under study allowing the determination of the correct
response with a minimum number of experiments.

The transformation of geraniol in the presence of garnet produces two compounds: neral
(trans-citral, C10H16O—the product of an oxidation reaction) and citronellol (3,7-Dimethyl-6-
Octen-1-Ol, C10H20O—the product of a hydrogenation reaction) (Figure 2).
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Figure 2. (a,b) Diagram of the main chemical reactions occurring during the transformation of
geraniol in the presence of garnet.

Neral (NE) has a distinctive, intense, lemony, sweet fruity odor, perceptible for about
24 h with a sensing threshold of 40 ppb. It is widely used in the cosmetic, pharmaceutical
and food industries. In the food industry, it is a flavor and aroma ingredient in the pro-
duction of alcoholic and non-alcoholic beverages, bakery products, meat products, cheese,
ice cream, chewing gum, candy, gelatin and spices in amounts ranging from 1–40 ppm (in
the case of chewing gum 200 ppm). Additionally, in the cosmetic and household chemi-
cal industry, it is as an aroma (fragrance) in the production of soaps, detergents, creams
and lotions and perfumery products. At present, it is produced on an industrial scale by
synthetic methods, and only small amounts are obtained by distillation of lemongrass oil
or exotic verbena (up to a few tons per year). Among the producers of this compound,
both synthetic and natural, we should mention first of all BASF (Germany), Givaudan
(Switzerland), Mane (France), Kuraray (Japan), DSM (Netherlands). On the other hand, the
technologies for obtaining synthetic citral of the greatest importance include those carried
out by BASF and DSM [20–22].

Citronellol (CL) is an organic chemical compound characterized by a floral scent. It
can be added to cosmetic products to make them fragrant. Depending on the concentration,
it can smell of roses or geranium. Citronellol is colorless, insoluble in water, but is well
soluble in alcohols. In cosmetics, it is a fragrance substance that is often combined with
other compositions. In addition, it masks unpleasant odors, such as sweat. It is a compound
found in plants, such as lemongrass, lemon balm and rose. Its origin can also be synthetic.
Due to its easy production, it is often an ingredient in many cosmetic products. Citronellol
is used in cosmetics to give them fragrance. It is a cheap substance with a pleasant scent, so
it is often used in the cosmetic industry. Mainly, it is added to face creams, body lotions,
lotions, lotions, bath salts and lozenges, perfumes and eau de toilette, hair shampoos and
conditioners, deodorants and antiperspirants, facial cleansers, body massage products,
tonics and hydrolats and shaving foams and gels. The use of citronellol in cosmetic
products imparts fragrance and also masks unpleasant aromas. It is a popular substance
in perfumes, especially those designed for women. Thanks to its sweat odor-masking
properties, citronellol is also used in antiperspirants. When various technologies are
used to obtain citronellol as a reaction product, either a mixture of (R)-citronellol and
(S)-citronellol isomers is obtained (use of traditional hydrogenation catalysts) or both of the
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aforementioned compounds in the form of pure R and S varieties (use of chiral catalysts,
which selectively produce only one of the forms) [23,24].

The response surface methodology (RSM) presented in this paper is innovative for the
transformation of geraniol using garnet as a catalyst. To date, the transformation process of
geraniol in the presence of pomegranate has not been optimized. The presented method
allows the selection of optimal parameters, such as temperature (50–150 ◦C), amount of
catalyst (1–10 wt%) and reaction time (0.25–24 h), considering the high values of conversion
of geraniol rates and selectivity of synthesis products (neral and citronellol). The choice of
such variation ranges was made on the basis of previous experience, analysis of the state of
the issue, as well as the possibility of achieving the technological parameters of conducting
research.

2. Results and Discussion

A central composite design grounded on RSM was used to design experiments, mod-
eling and process optimization [25]. In addition, for each output parameter, ANOVA was
used to assess the significance of the developed models, as well as control parameters. Two
values that were analyzed in the ANOVA are the F-value and the corresponding p-value.
The F-value is the ratio of the mean squares to the mean squares error. The larger the
F-value, the greater the variation between sample means relative to the variation within
the samples. The p-value is the probability of obtaining an F-ratio as large or larger than
the one observed, assuming that is no difference between the group averages.

2.1. Impact of Control Factors on GA Conversion

A detailed GA analysis of variance (ANOVA) was performed for a 95% confidence
level (α = 0.05) (Tables 1 and 2). The model factor is significant when it achieves a p-Value
<0.05 (Figure 2).

Table 1. Model summary of GA conversion.

S R2 R2(adj) R2(pred)

1.96809 97.64% 96.39% 93.37%

Table 2. ANOVA results for geraniol conversion.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 2722.82 302.535 78.11 0.000

Linear 3 1662.14 554.047 143.04 0.000
Temperature [◦C] 1 776.45 776.449 200.46 0.000

Catalyst concentration [wt%] 1 432.38 432.376 111.63 0.000
Time [h] 1 517.47 517.470 133.60 0.000

Square 3 665.65 221.882 57.28 0.000
Temperature [◦C]*Temperature [◦C] 1 605.61 605.615 156.35 0.000

Catalyst concentr. [wt%]*Catalyst concentr. [wt%] 1 0.71 0.714 0.18 0.673
Time [h]*Time [h] 1 59.32 59.317 15.31 0.001

Two-Way Interaction 3 165.49 55.162 14.24 0.000
Temperature [◦C]*Catalyst concentration [wt%] 1 45.44 45.439 11.73 0.003

Temperature [◦C]*Time [h] 1 69.46 69.465 17.93 0.001
Catalyst concentration [wt%]*Time [h] 1 50.58 50.582 13.06 0.002

Error 17 65.85 3.873
Total 26 2788.67

Regression equation in uncoded units:

CG = 30.07 + 0.8542 T + 6.85 C + 17.18 τ − 0.0039 T2 − 0.0286 T·C − 0.078 T·τ − 1.287 C·τ (1)
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where:

CG is conversion of geraniol [wt%];
T is temperature [◦C];
C is concentration [wt%];
τ is time [h].

To approximate the multicollinearity level, the variance inflation factor (VIF) was
determined. It quantifies the multicollinearity intensity. No significant multicollinearity
was observed for all factors tested, as the VIF belongs to the interval {1, 1.03} (Figure 3).
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The increase of the temperature function to the value of 100 ◦C causes an increase in
the value of geraniol conversion (Figure 4) in the entire range of the tested concentration of
the catalyst (garnet). The increase in the concentration of the catalyst causes a proportional
increase in the geraniol conversion value in the entire range of the tested temperature and
reaction time. In the case of changing the reaction time, the maximum value was reached
in the middle of the interval (approx. 12–13 h) for all other parameters.

For all cases, the lowest geraniol conversion values were obtained with the lowest
values of control parameters.

2.2. Impact of Control Factors on NE Selectivity

A detailed NE selectivity analysis was performed by ANOVA for 95% confidence at
α = 0.05 (Tables 3 and 4). Each factor of the model is considerable when its p-Value exceeds
0.05 level as presented in Figure 5.
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Table 4. Analysis of variance of NE selectivity.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 3657.94 406.44 29.02 0.000

Linear 3 2825.31 941.77 67.25 0.000
Temperature [◦C] 1 518.48 518.48 37.02 0.000

Catalyst concentration [wt%] 1 419.92 419.92 29.99 0.000
Time [h] 1 1986.79 1986.79 141.88 0.000

Square 3 618.42 206.14 14.72 0.000
Temperature [◦C]*Temperature [◦C] 1 358.51 358.51 25.60 0.000

Catalyst concentr. [wt%]*Catalyst concentr. [wt%] 1 82.51 82.51 5.89 0.027
Time [h]*Time [h] 1 177.40 177.40 12.67 0.002

Two-Way Interaction 3 95.49 31.83 2.27 0.117
Temperature [◦C]*Catalyst concentration [wt%] 1 11.97 11.97 0.85 0.368

Temperature [◦C]*Time [h] 1 3.61 3.61 0.26 0.618
Catalyst concentration [wt%]*Time [h] 1 79.91 79.91 5.71 0.029

Error 17 238.06 14.00
Total 26 3896.00

The VIF discloses how the assessed coefficient variance is inflated, as entailed by the
multicollinearity occurring in the model. No significant multicollinearity was observed for
all factors tested, as the VIF held into the interval {1, 1.03}.

Regression Equation in Uncoded Units

DS = −7.41 + 0.514 T − 1.08 C + 15.55 τ − 0.003148 T2 − 1.603 C·τ (2)

where:

DS is NE selectivity [wt%];
T is temperature [◦C];
C is concentration [wt%];
τ is time [h].

Along with the increase in the value of the temperature function, catalyst concentration
and reaction time, an increase in the selectivity of the transformation to neral can be
observed (Figure 6) until reaching a maximum in the middle of the range, followed by a
decrease.

As the reaction time increases, the neral selectivity values increase rapidly to reach
the highest values in the range of 45 to 65 mol%. Minimal values of neral selectivity were
observed for low values of all control parameters.

2.3. Impact of Control Factors on CL selectivity

A detailed CL selectivity analysis was performed by ANOVA for 95% confidence
at α = 0.05 (Tables 5 and 6). Each factor of the model is considerable when its p-Value
exceeds 0.05 level, as presented in Figure 7. The VIF discloses how the assessed coefficient
variance is inflated, as entailed by the multicollinearity occurring in the model. No significant
multicollinearity was observed for all factors tested, as the VIF held into the interval {1, 1.03}.
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Table 5. Model summary of CL selectivity.

S R2 R2(adj) R2(pred)

2.09472 96.54% 94.71% 91.22%

Table 6. Analysis of variance of CL selectivity.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 2083.41 231.49 52.76 0.000

Linear 3 1616.44 538.81 122.80 0.000
Temperature [◦C] 1 2.48 2.48 0.57 0.462

Catalyst concentration [wt%] 1 0.00 0.00 0.00 0.990
Time [h] 1 1616.21 1616.21 368.34 0.000

Square 3 465.68 155.23 35.38 0.000
Temperature [◦C]*Temperature [◦C] 1 7.75 7.75 1.77 0.201

Catalyst concentr. [wt%]*Catalyst concentr. [wt%] 1 199.48 199.48 45.46 0.000
Time [h]*Time [h] 1 258.45 258.45 58.90 0.000

Two-Way Interaction 3 136.52 45.51 10.37 0.000
Temperature [◦C]*Catalyst concentration [wt%] 1 106.70 106.70 24.32 0.000

Temperature [◦C]*Time [h] 1 26.64 26.64 6.07 0.025
Catalyst concentration [wt%]*Time [h] 1 3.18 3.18 0.72 0.406

Error 17 74.59 4.39
Total 26 2158.00
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Regression Equation in Uncoded Units

TS = 13.75 + 0.0691 T + 18.65 τ + 1.148 C2 − 0.01701 T·C − 0.0659 T·τ − 1.204 C·τ (3)

where:

TS is thumbergol selectivity wt%;
T is temperature ◦C;
C is concentration wt%;
τ is time h.

Figure 8a–i demonstrates the impact of the control factors into the value of the CL
selectivity level.
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In the whole range of the examined control parameters, an upward trend in the value
of selectivity of conversion to CL is visible. In terms of response time, this function reaches
its maximum at approx. 15 h. In the case of temperature, the selectivity function increases
linearly over the entire tested range.

2.4. Composite Desirability Coefficient

Figure 9 presents the results regarding the impact of each of the examined control
factors on all output factors. In addition, individual and complex purposefulness was
assessed, which shows to what extent the variable meets the set reaction goals. In the
model, the purposefulness is close to 1, which indicates that the geraniol transformation
process under the suggested conditions achieves appropriate results for each answer. In
addition, the optimum for all input parameters was determined: a temperature equal to
55 ◦C, a catalyst concentration equal to 5 wt% and a reaction time equal to 2 h.
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3. Materials and Methods

Figure 10 shows a microscopic view KEYENCE VHX6000 Digital Microscope, Z100T
Lens) of pomegranate grains, whose grains are isometric in shape, with rounded edges and
similar dimensions.
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Figure 10. Details of garnet grains: (a) SEM view, (b) optical microscope view.

Mapping of elements—scanning electron microscopy (SEM) and EDX surface spec-
traSEM apparatus (Axia ChemiSEM, ThermoFisher, Waltham, MA, USA) with a secondary
electron detector. Figure 11 shows maps of the elements contained in the pomegranate
sample. Five major elements (magnesium, aluminum, silicon, calcium, iron) were identified
in the sample. The element maps made show an even distribution of each of the elements
present in the sample.

The following reaction equations were used to evaluate the conversion value of
geraniol and the selectivity of conversion to products:

1. GA conversion Cgeraniol:

Cgeraniol =
amount of moles of geraniol consumed

amount of moles of geraniol intrduced into reactor
·100% (4)

2. Selectivity to the key products (NE and CL) Sproduct/geraniol:

Sproduct/geraniol =
amount of moles of product

amount of moles of geraniol consumed
·100% (5)

The control parameters and their ranges are as follows: temperature (50–150 ◦C),
amount of catalyst (1–10 wt%) and reaction time (0.25–24 h).

In order to shorten the number of experiments performed, the design of experiment
(DOE) methodology was used [26]. The experiments were conducted using a factorial
design—response surface methodology (RSM), which consists of 27 tests (Table 7). Each of
the tests conducted was repeated three times. The individual variables and the examined
response of the process analysis were performed by ANOVA for 95% confidence at α = 0.05.
The RSM method is a statistical and mathematical method for modeling combinations,
which considers the relationships between the relevant variables and the studied process
response [27–29].
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Table 7. Details of the conducted tests.

Test
nr. Temp Catalysts

Concentration Time GA
Conversion

NE
Selectivity

CL
Selectivity

- [◦C] [wt%] [h] [mol%] [mol%] [mol%]

1 20 1.0 0.25 40 7 13
2 20 1.0 1.00 51 20 31
3 20 1.0 2.00 73 38 41
4 20 2.5 0.25 60 12 13
5 20 2.5 1.00 68 19 29
6 20 2.5 2.00 80 28 37
7 20 5.0 0.25 73 19 27
8 20 5.0 1.00 78 26 36
9 20 5.0 2.00 85 39 49

10 60 1.0 0.25 73 14 23
11 60 1.0 1.00 80 29 33
12 60 1.0 2.00 87 41 46
13 60 2.5 0.25 79 20 20
14 60 2.5 1.00 84 28 30
15 60 2.5 2.00 85 49 40
16 60 5.0 0.25 86 37 27
17 60 5.0 1.00 91 43 33
18 60 5.0 2.00 94 49 40
19 110 1.0 0.25 78 22 31
20 110 1.0 1.00 79 28 32
21 110 1.0 2.00 88 40 45
22 110 2.5 0.25 80 19 19
23 110 2.5 1.00 85 27 29
24 110 2.5 2.00 86 48 39
25 110 5.0 0.25 87 36 26
26 110 5.0 1.00 91 42 32
27 110 5.0 2.00 92 48 39

Statistica software was used to develop the model equations. The effects of the
independent variables on the GA conversion function and the selectivity of NE and CL
(dependent variables) are shown in Table 7.

Columns (2–4) show the values of the control parameters (inputs) for the research
process, while columns (5–7) present the values of the results (output parameters).

The second-degree equation for determining the regression model value is:

y = β0 +
k

∑
i = 1

βixi +
k

∑
i = 1

βiix2
i ± ε (6)

where:

y is the dependent variable (response);
xi shows values of the i-th cutting parameter;
β0, βi, βii are the factors of regressions;
ε is the error acquiring in the cutting.

4. Conclusions

The use of the surface response method (RSM) in the process of geraniol transformation
in the presence of garnet as a process catalyst made it possible to determine which of the
tested process parameters actually affect the course of the reaction, while allowing the
omission of those factors that have a marginal impact on the effects. Optimization of the
control factors (temperature, catalyst concentration and reaction time) made it possible
to determine their values to obtain the maximum values of the tested functions (GA
conversion, NE and CL selectivity) and to determine the interactions between the factors of
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the tested functions. The conducted optimization studies allowed the following conclusions
to be drawn:

• For the GA conversion, the optimum was obtained at 94 mol% at 60 ◦C, a catalyst
concentration of 5.0 wt% and a reaction time of 2 h.

• For NE selectivity, the optimum value was reached at 49 mol% at 60 ◦C, a catalyst
concentration equal to 2.5 (5.0) wt% mole and a reaction time of almost 2 h.

• For CL selectivity, the optimum value of 49 mol% was obtained for control factors: a
temperature equal to 20 ◦C, a catalyst concentration equal to 5.0 wt% and a response
time equal to 2 h.

• The optimal set of control factors for all power factors is characterized by a temperature
of 55 ◦C, a catalyst concentration of 5 wt% and a reaction time of 2 h.

It turned out that the application of the RSM method allowed for the minimization
of research procedures, shortening the time needed to obtain appropriate results, and
reducing the cost of research by reducing the necessary number of tests.
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