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Abstract: Complex immune contexture leads to resistance to immunotherapy in hepatocellular car-
cinoma (HCC), and the need for new potential biomarkers of immunotherapy in HCC is urgent.
Histone chaperones are vital determinants of gene expression and genome stability that regulate
tumor development. This study aimed to investigate the effect of histone chaperones on tumor immu-
nity in HCC. Bioinformatics analyses were initially performed using The Cancer Genome Atlas (TCGA)
database, and were validated using the Gene Expression Omnibus (GEO) database and the Inter-
national Cancer Genome Consortium (ICGC) database. Immune-related histone chaperones were
screened with the Spearman rank coefficient. Consensus clustering was utilized to divide the HCC
samples into two clusters. ESTIMATE, CIBERSORT and ssGSEA analyses were performed to assess
immune infiltration. The expression of immunomodulatory genes, chemokines and chemokine
receptors was analyzed to evaluate sensitivity to immunotherapy. The differentially expressed
genes (DEGs) were included in weighted gene coexpression network analysis (WGCNA) to identify
the hub genes. Enrichment analyses were used to investigate the functions of the hub genes. The
Kaplan-Meier method and log-rank test were conducted to draw survival curves. A Cox regression
analysis was utilized to identify independent risk factors affecting prognosis. HSPA8 and DEK were
screened out from 36 known histone chaperones based on their strongest correlation with the ESTI-
MATE score. Cluster 2, with high HSPA8 expression and low DEK expression, tended to have stronger
immune infiltration and better sensitivity to immunotherapy than Cluster 1, with low HSPA8 expression
and high DEK expression. Furthermore, WGCNA identified 12 hub genes closely correlated with immune
infiltration from the DEGs of the two clusters, of which FBLN2 was proven to be an independent protective
factor of HCC patients. HSPA8 and DEK are expected to be biomarkers for precisely predicting the effect
of immunotherapy, and FBLN2 is expected to be a therapeutic target of HCC.

Keywords: hepatocellular carcinoma; histone chaperone; HSPA8; DEK; tumor immunity

1. Introduction

Worldwide, liver cancer is the fifth and seventh leading cause of cancer-related death
in men and women, respectively, with an increasing incidence rate [1]. Because the early
diagnosis of liver cancer is difficult, most patients are diagnosed in the advanced stage [2].
By that time, the treatment is difficult and has a poor curative effect, resulting in a five-year
survival rate of only 20% [1].

Liver cancer includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocar-
cinoma, and the former is the main pathological type of liver cancer [3]. With regard to
treatment, chemotherapy, targeted therapy and immunotherapy are the therapeutic options

Int. J. Mol. Sci. 2023, 24, 2653. https://doi.org/10.3390/ijms24032653 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032653
https://doi.org/10.3390/ijms24032653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3829-2961
https://doi.org/10.3390/ijms24032653
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032653?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 2653 2 of 16

for patients with advanced stage HCC because radical surgery is limited to HCC patients
with early stage HCC [4]. In recent years, immune checkpoint inhibitors (ICIs), includ-
ing pembrolizumab, nivolumab, durvalumab and atezolizumab have been used in HCC
patients, but single-agent ICIs have shown disappointing results [5]. Conversely, immune-
based combination therapy has become the first-line therapy for HCC [6,7]. For instance, the
phase III IMbrave150 trial showed that the combination of ICI atezolizumab and antiangiogenic
agent bevacizumab enabled unresectable HCC patients to acquire better clinical outcomes than
single-agent sorafenib [8]. Although ICIs have shown promise for the treatment of HCC, several
questions remain unanswered. Among these, the lack of validated biomarkers of response
represents a major challenge since only some HCC patients benefit from immunotherapy [9].
Therefore, a greater understanding of the role of potential biomarkers is fundamental. In ad-
dition, the molecular mechanisms regulating immune responses and evasion remain unclear
due to the complexity of the immune system [10]. Therefore, biomarkers to precisely predict the
effect of immunotherapy in HCC need to be identified and validated.

Histone chaperones are vital determinants of histone fate which regulate the disas-
sembly, reassembly and repositioning of nucleosomes to spatially and temporally control
histone accessibility for transcription factors and RNA polymerases [11]. Histone chaper-
ones play a major role in gene expression and genome stability; however, dysfunctions
of histone chaperones are associated with a higher risk of various diseases including
cancers [12]. For example, the facilitates chromatin transcription complex, which consists
of the histone chaperones SUPT16H and SSRP1, has been proven to promote oxidative
stress adaptation and to be a potential target for the treatment of HCC [13].

The histone chaperone HSPA8/HSC70 is a member of the heat shock protein family
that is vital to biological processes, including autophagy and immunity [14]. Additionally,
HSPA8 has been reported to be highly immunogenic and overexpressed in several tumor
cells, which indicates its close relationship with tumors [15]. Specifically, previous studies
have demonstrated that HSPA8 is associated with tumor metastasis and recurrence in
HCC [16,17]. Another histone chaperone, DEK, a tumor-promoting factor, has been reported
to potentially create an immune-suppressed tumor microenvironment [18]. Specifically, this
finding was confirmed because DEK loss induced an inflammatory or immune response
by activating the NF-κB pathway [19]. Furthermore, a recent study showed that DEK
influences tumor cell migration and invasion in HCC [20]. However, the relationship
between the two histone chaperones and tumor immunity in HCC remains unclear.

To investigate the effect of histone chaperones on tumor immunity in depth, we per-
formed an integrated bioinformatics analysis of gene expression data of HCC. Surprisingly,
we screened HSPA8 and DEK from 36 known histone chaperones [11,13] and divided HCC
samples into two clusters based on the expression matrix of HSPA8 and DEK. We then
found that Cluster 2, with high HSPA8 expression and low DEK expression, tended to have
stronger immune infiltration and better sensitivity to immunotherapy than Cluster 1, with
low HSPA8 expression and high DEK expression. We also identified 12 hub genes from
the differentially expressed genes (DEGs) of the two clusters related to immune infiltration. In
particular, FBLN2, one of the hub genes, is an independent protective factor in HCC patients
and is associated with tumor immunity. In conclusion, HSPA8 and DEK greatly affect the tumor
immunity of HCC and could potentially be regarded as biomarkers for precisely predicting
the effect of immunotherapy in HCC. Furthermore, FBLN2 could be a therapeutic target of
HCC. Importantly, fibulin-2, which is encoded by FBLN2, is a secreted protein that has been
commercially prepared. Therefore, immunotherapy combined with recombinant fibulin-2 or
activators of FBLN2 may bring new hope for patients with advanced HCC.

2. Results
2.1. Screening of Immune-Related Histone Chaperones and Consensus Clustering of the Cancer
Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-HCC) Samples

To investigate the potential impact of histone chaperones on tumor immunity in HCC,
we investigated the correlation between 36 known histone chaperones [11,13] and the
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ESTIMATE score in 369 TCGA-HCC samples (Figure 1A). In view of the highest absolute
value of the correlation with the ESTIMATE score, HSPA8 and DEK were screened out
for subsequent analyses. Next, we analyzed the expression of HSPA8 and DEK between
369 TCGA-HCC samples and 50 normal samples. The results showed that the expression
of both genes was higher in tumor tissues than in normal tissues (Figure 1B,C). We also
investigated the protein level of HSPA8 and DEK in human HCC samples via the Human
Protein Atlas (HPA) database, and found that the protein level of both HSPA8 and DEK
was higher in HCC tissues than in normal liver tissues (Figure 1D,E). We then explored
the correlation between the expression of the above two genes and the abundance of
tumor-infiltrating lymphocytes (TILs) in TISIDB and found that the expression of HSPA8
was positively correlated with the abundance of TILs in HCC, whereas the expression
of DEK showed the opposite trend (Figure 1F,G). Afterward, consensus clustering was
conducted on TCGA-HCC samples based on the expression matrix of HSPA8 and DEK,
and the samples were ultimately divided into two clusters (Figure 1H). As shown in the
heatmap, Cluster 1 (n = 206) had low HSPA8 expression and high DEK expression, whereas
Cluster 2 (n = 163) had high HSPA8 expression and low DEK expression. Considering
the opposite expression profiles of HSPA8 and DEK in the two clusters, a Spearman rank
correlation analysis between the expression of HSPA8 and DEK was performed in TCGA-
HCC samples. However, an extremely weak, positive correlation (R = 0.19, p = 0.00024)
was found (Figure 1I).
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tumor and normal tissues from the HPA database. Scale bar, 100 µm. (F,G) Correlation analysis 
between HSPA8 or DEK and the abundance of tumor-infiltrating lymphocytes by TISIDB. (H) 
TCGA-HCC samples are divided into two clusters according to HSPA8 and DEK via consensus clus-
tering. (I) Spearman rank correlation analysis between the expression of HSPA8 and DEK. *** p < 
0.001. 
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Figure 1. Screening of immune-related histone chaperones and clustering of 369 TCGA-HCC samples
based on HSPA8 and DEK. (A) Correlation analysis between 36 known histone chaperones and the
four ESTIMATE indices, including stromal score, immune score, ESTIMATE score and tumor purity.
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(B,C) Comparison of the mRNA expression of HSPA8 or DEK between tumor and normal tissues
from the TCGA database. (D,E) Comparison of the protein level of HSPA8 or DEK between tumor
and normal tissues from the HPA database. Scale bar, 100 µm. (F,G) Correlation analysis between
HSPA8 or DEK and the abundance of tumor-infiltrating lymphocytes by TISIDB. (H) TCGA-HCC
samples are divided into two clusters according to HSPA8 and DEK via consensus clustering.
(I) Spearman rank correlation analysis between the expression of HSPA8 and DEK. *** p < 0.001.

2.2. Comparison of Immune Infiltration between the Two Clusters

To obtain a comprehensive understanding of tumor immunity in the two clusters,
the four ESTIMATE indices were calculated and Cluster 2 was found to have a higher
stromal score, immune score and ESTIMATE score, but lower tumor purity than Cluster 1
(Figure 2A–D). In addition, a CIBERSORT analysis showed differences in the proportion of
partial immune cells between the two clusters (Figure 2E). Importantly, a single-sample
gene set enrichment analysis (ssGSEA) demonstrated that Cluster 2 had a higher expression
of 24 immune cell subtypes (e.g., activated and immature B cells, activated and memory
CD8+ T cells, activated and immature dendrite cells, natural killer cells, and natural killer
T cells) than Cluster 1 (Figure 2F). Moreover, the expression of major histocompatibility
complexes (MHCs) in Cluster 2 tended to be higher than that in Cluster 1 (Figure 2G).
Taken together, Cluster 2 tended to have stronger immune infiltration than Cluster 1.
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Figure 2. Comparison of immune infiltration between the two clusters. (A–D) Comparison of the
four ESTIMATE indices, including stromal score, immune score, ESTIMATE score and tumor purity.
(E) Comparison of the proportion of immune cells by CIBERSORT. (F) Comparison of the expression
of immune cells by ssGSEA. (G) Comparison of the expression of MHCs. NS: no significance,
* p < 0.05, ** p < 0.01, *** p < 0.001.
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2.3. Evaluation of Sensitivity to Immunotherapy of the Two Clusters

To explore the potential sensitivity to immunotherapy, we compared the expression of
several immunomodulatory genes between the two clusters, including PD1-related genes,
CTLA4-related genes, and other antagonists or agonists of T-cell activation [21–23]. The
results showed that most of the changed genes were upregulated in Cluster 2 (Figure 3A–D).
Furthermore, chemokines play an important role in the activation of immune cells, and the
same chemokine may play opposite roles in different tumors [24]. We analyzed the expres-
sion of known chemokines and chemokine receptors that inhibit or promote the progression
of HCC [25] and found that Cluster 2 had higher expression of anti-HCC chemokines and
chemokine receptors (CCL4, CCL19, CCL21, CCR5, CCR7) and lower expression of pro-HCC
chemokines and chemokine receptors (CCL28 and CCR10) than Cluster 1 (Figure 3E,F). Be-
cause gene mutations also affect sensitivity to immunotherapy [26], we evaluated the gene
mutation profile and drew the landscapes of the two clusters (Supplementary Figure S1A,B).
However, tumor mutation burden (TMB) did not significantly differ between the two
clusters (Supplementary Figure S1C). The above results indicated that Cluster 2 may have
better sensitivity to immunotherapy than Cluster 1.
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Figure 3. Evaluation of sensitivity to immunotherapy of the two clusters. (A–D) Comparison of the
expression levels of immunomodulatory genes between Cluster 1 and Cluster 2. (E,F) Comparison of
the expression levels of known chemokines and chemokine receptors that regulate the progression of
HCC between Cluster 1 and Cluster 2. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Screening of Hub Genes Related to Immune Infiltration between the Two Clusters

To explain the difference in immune features between the two clusters, we compared
the gene expression profiles of the two clusters and identified 505 DEGs (197 upregulated
and 308 downregulated, Cluster 2 vs. Cluster 1) (Figure 4A). The DEGs were then sub-
jected to a weighted correlation network analysis (WGCNA) to screen the genes that had
the strongest correlation with tumor immunity. We set the soft threshold at 3 to ensure
that the constructed coexpression network approached scale-free distribution (Figure 4B,
Supplementary Figure S2A,B). The DEGs were then divided into different modules with
colors. Ultimately, we found that the blue module with 121 genes was strongly associated
with tumor immunity because it had the highest stromal, immune and ESTIMATE scores
and the lowest tumor purity (Figure 4C).
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Figure 4. Screening of hub genes related to immune infiltration. (A) Volcano plot of DEGs. The
red and blue dots represent upregulated and downregulated genes in Cluster 2, respectively.
(B) Analysis of network topology for soft powers, and the soft threshold was set at 3. (C) Heatmap
analysis between different modules and the four indices of ESTIMATE via WGCNA. (D,E) GO and
KEGG enrichment analysis of the blue module, and immune-related GO terms or KEGG pathways
are marked in red. (F) Scatter plot analysis of 121 genes in the blue module via WGCNA.

Next, to confirm the mechanism of 121 genes related to tumor immunity, we per-
formed Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses. A GO enrichment analysis showed that the 121 genes were enriched
in immune-related terms including dendritic cell dendrite assembly, regulation of dendritic
cell dendrite assembly, CCR7 chemokine receptor binding, cytokine activity and chemokine
activity through GO enrichment analysis (Figure 4D). In addition, the results of KEGG
analysis showed that these genes were involved in immune-related pathways, including
cytokine-cytokine receptor interaction, TGF-β signaling pathway, viral protein interaction
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with cytokine and cytokine receptor and chemokine signaling pathway (Figure 4E). More-
over, we selected 12 hub genes (PODN, DCN, LUM, CCDC80, SVEP1, AEBP1, FBLN2,
TNXB, HAND2, INMT, OMD, and GPBAR1) that were upregulated in Cluster 2 to specify
the key genes of the 121 genes (Figure 4F, Supplementary Figure S2).

2.5. Determination of FBLN2 Functions

First, we constructed a protein-protein interaction (PPI) network of the 12 hub genes,
and found interactions among FBLN2, OMD, LUM and DCN (Figure 5A). A Spearman’s
rank correlation analysis showed moderate to strong correlations among the 12 hub genes
(Figure 5B). Next, ESTIMATE and ssGSEA analyses indicated that these genes closely cor-
related with immune infiltration (Figure 5C,D). Furthermore, we evaluated the correlation
between the 12 hub genes and the prognosis of TCGA-HCC patients individually and
found that only FBLN2 was associated with prognosis. TCGA-HCC patients with high
FBLN2 expression had significantly longer overall survival (OS) than those with low FBLN2
expression (Figure 6A). In addition, a multivariate Cox regression analysis showed that
FBLN2 was an independent protective factor in TCGA-HCC patients (Figure 6B). We further
explored the effect of FBLN2 on tumor immunity through TISIDB and found that the expres-
sion of FBLN2 was positively correlated with the abundance of TILs in HCC (Figure 6C),
and patients with high FBLN2 expression had stronger immune infiltration than those with
low FBLN2 expression based on a CIBERSORT analysis and ssGSEA (Figure 6D,E).
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Figure 5. Determination of the functions of hub genes. (A) PPI network of hub genes. (B) Spearman
rank correlation analysis among hub genes. (C) Correlation between hub genes and the stromal score,
immune score, ESTIMATE score, and tumor purity of ESTIMATE. (D) Correlation analysis between
hub genes and the expression of immune cells by ssGSEA.
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Figure 6. Determination of the functions of FBLN2. (A) Survival curves of patients with different
expression levels of FBLN2. (B) Multivariate Cox regression analysis of the 12 hub genes. (C) Correlation
analysis between FBLN2 and the abundance of tumor-infiltrating lymphocytes through TISIDB.
(D) Comparison of the proportion of immune cells by CIBERSORT in patients with different expres-
sion levels of FBLN2. (E) Comparison of the expression of immune cells by ssGSEA in patients with
different expression levels of FBLN2. ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001.

2.6. Validation of Immune Features by the Gene Expression Omnibus (GEO) and International
Cancer Genome Consortium (ICGC) Databases

The GEO and ICGC databases were used as verification databases to validate previous
results from the TCGA database. As previously described, we divided 164 HCC samples
from GSE19977 [27,28] into two clusters based on the expression matrix of HSPA8 and DEK
via consensus clustering (Supplementary Figure S3A). Interestingly, a Spearman’s rank cor-
relation analysis showed a weak, negative correlation (R =−0.31, p = 6× 10−5) between the
expression of HSPA8 and DEK (Supplementary Figure S3B). The ESTIMATE, CIBERSORT
and ssGSEA analyses showed similar results to those in the TCGA database. Cluster 2, with
high HSPA8 expression and low DEK expression, was found to have a higher stromal score,
immune score, ESTIMATE score and expression of 17 immune cell subtypes than Cluster
1, with low HSPA8 expression and high DEK expression. (Supplementary Figure S3C–E).
In addition, the expression of MHCs, immunomodulatory genes, chemokines and chemokine
receptors of the two clusters was evaluated as before. Cluster 2 had a higher expression of
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MHCs, immunomodulatory genes and anti-HCC chemokines and chemokine receptors
(Supplementary Figures S3F and S4).

Similarly, we divided 240 HCC samples from ICGC-Liver Cancer-RIKEN, JP (LIRI-JP)
into two clusters in the same manner, and the remaining analyses (Spearman rank correla-
tion, ESTIMATE, CIBERSORT and ssGSEA analyses as well as the expression of MHCs,
immunomodulatory genes, chemokines and chemokine receptors) yielded approximate
results (Supplementary Figures S5 and S6). Cluster 2, with high HSPA8 expression and
low DEK expression, was found to have a higher stromal score, immune score, ESTIMATE
score, expression of 18 immune cell subtypes, expression of MHCs, immunomodulatory
genes and anti-HCC chemokines and chemokine receptors than Cluster 1, with low HSPA8
expression and high DEK expression. Taken together, Cluster 2 is characterized by stronger
tumor immunity than Cluster 1 in the TCGA, GEO and ICGC databases.

2.7. Verification of the Expression of HSPA8 and DEK in HCC Cells

We compared the expression of HSPA8 and DEK in human HCC cell lines (HepG2
and Huh-7) with that in human normal hepatocytes (L02) through quantitative real-time
polymerase chain reaction (qRT-PCR) and western blotting. The results showed that HCC
cells had higher mRNA and protein expression of HSPA8 and DEK than L02 cells (Figure 7).
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3. Discussion

The complexity of the immune system leads to resistance to immunotherapy in HCC,
and the lack of biomarkers for precisely predicting the effect of immunotherapy in HCC
remains a major unsolved challenge. In addition, clinical trials on HCC immunotherapy
have widely differed in terms of drugs, patients, designs, study phases, and inconsistent
clinical outcomes. Therefore, applicable and unified biomarkers could help reduce the bias
of clinical trials. Histone chaperones are vital determinants of gene expression and genome
stability that regulate tumor development. However, the relationship between histone
chaperones and tumor immunity in HCC remains unclear. In the current study, we revealed
that the histone chaperones HSPA8 and DEK strongly influence the tumor immunity of
HCC. HCC patients with high HSPA8 expression and low DEK expression tend to have
stronger immune infiltration and better sensitivity to immunotherapy. Moreover, FBLN2,
one of the hub DEGs, is an independent protective factor and is associated with immune
infiltration in HCC. Therefore, HSPA8 and DEK are expected to be biomarkers for precisely
predicting the effect of immunotherapy in HCC, and FBLN2 is expected to be a therapeutic
target of HCC.

First, we found that HSPA8 and DEK had the strongest correlation with the ESTIMATE
score among 36 known histone chaperones, indicating that these histone chaperones are
most closely related to tumor immunity in HCC. Significantly, HSPA8 was positively
correlated with the ESTIMATE score, whereas DEK was negatively correlated with the
ESTIMATE score, which is in line with previous studies [14,15,18,19].

Next, we utilized consensus clustering to divide HCC patients into two clusters, and
we compared immune infiltration between the two clusters using ESTIMATE, CIBERSORT
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and ssGSEA. In the ESTIMATE analysis, Cluster 2 had a higher stromal score, immune score
and ESTIMATE score but lower tumor purity than Cluster 1. The CIBERSORT analysis
identified differences in the proportion of partial immune cells between the two clusters.
In the ssGSEA, Cluster 2 had higher expression of 24 immune cell subtypes than Cluster 1,
including CD8+ T cells, dendrite cells (DCs), natural killer (NK) cells and natural killer T (NKT)
cells. Specifically, the current checkpoint inhibitor immunotherapy works mainly by
blocking the binding between PD-L1 on the surface of tumor cells and PD-1 on the surface
of CD8+ T cells [29], and CD8+ T cells were proven to be a favorable prognostic biomarker
for HCC [30]. DCs are key antigen-presenting cells with a role in initiating and regulating
antitumor immunity [31]. NK cells have the capacity to promote antitumor immunity by
enhancing antibody and T-cell responses [32]. Previous studies reported that NKT cells
mediate liver-selected tumor inhibition induced by the gut microbiome [33], and enhance
antitumor immunity by reinvigorating exhausted CD8+ T cells in checkpoint inhibitor
immunotherapy [34]. Taken together, the above three analyses confirmed that Cluster 2
possessed stronger immune infiltration than Cluster 1.

Furthermore, immunomodulatory genes were proven to be predictive biomarkers of
immunotherapy. Patients with a higher expression of PD-L1 and PD-L2 reportedly will
benefit more from immunotherapy [35,36]. Here, we compared the expression of several
immunomodulatory genes between the two clusters, and the results showed that most of
the changed genes were upregulated in Cluster 2. Moreover, we found that Cluster 2 had a
higher expression of anti-HCC chemokines and chemokine receptors, and a lower expression
of pro-HCC chemokines and chemokine receptors than Cluster 1. Thus, our results strongly
suggest that Cluster 2 has better sensitivity to immunotherapy than Cluster 1.

Subsequently, we utilized WGCNA to determine the potential reason for the difference
in immune features between the two clusters. The DEGs in the blue module had the
strongest correlation with tumor immunity, which was further confirmed by GO and KEGG
enrichment analysis. We then screened 12 hub genes from the blue module based on MM
and GS, such as PODN, DCN, CCDC80, SVEP1 and AEBP1, which were reported to be
predictive biomarkers and correlated with immune infiltration in various cancers [37–41].
In addition, ESTIMATE and ssGSEA analyses indicated that these 12 hub genes closely
correlated with immune infiltration, and all were upregulated in Cluster 2. Therefore, these
12 hub genes might explain why Cluster 2 possesses stronger immune infiltration and
better sensitivity to immunotherapy than Cluster 1.

Intriguingly, FBLN2 was the only hub gene associated with the prognosis of TCGA-
HCC patients. FBLN2 encodes an extracellular matrix protein, fibulin-2, which was reported
to suppress the proliferation of non-small cell lung cancer and the metastasis of breast
cancer [42,43]. However, studies involving the relationship between fibulin-2 and tumor
immunity are lacking. In the current study, Cluster 2 had higher FBLN2 expression than
Cluster 1, and patients with high FBLN2 expression presented longer OS than those with
low FBLN2 expression. In addition, the expression of FBLN2 was positively correlated with
the abundance of TILs and immune infiltration in HCC patients. Therefore, FBLN2 has the
potential to be a therapeutic target of HCC. Importantly, fibulin-2 is commercially available.
Therefore, immunotherapy combined with recombinant fibulin-2 or activators of FBLN2 is
a promising research direction.

Although the current study reveals the effect of the histone chaperones HSPA8 and
DEK on tumor immunity in HCC, it has certain limitations and drawbacks. First, our
results were primarily obtained by bioinformatics analyses, which require laboratory-
based experiments for further confirmation. Second, because our study cohorts were
collected from different public databases, intratumor or intrapatient tumor heterogeneity
was inevitable. Therefore, further studies to unravel the specific mechanisms regulating
tumor immunity should be performed.
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4. Materials and Methods
4.1. Data Acquisition

The transcriptome profiling data of 369 HCC samples and the corresponding clini-
cal information as well as their mutation annotation file (MAF) files containing somatic
mutation information were downloaded from the TCGA database. The transcriptome
profiling data of 164 HCC samples were downloaded from the GEO database (GSE19977).
The transcriptome profiling data of 240 HCC samples were downloaded from the ICGC
database (ICGC-LIRI-JP).

4.2. ESTIMATE Analysis

After the transcriptome profiling data were imported into R software (version 4.1.3),
the R package “estimate” [44] was used, and the ESTIMATE analysis was used to evaluate
the tumor microenvironment of each patient with HCC. The results of ESTIMATE analysis
included the stromal score, immune score, ESTIMATE score and tumor purity of each HCC
patient. The stromal score and immune score represented the abundance of stromal cells
and immune cells, respectively. The ESTIMATE score was calculated based on the stromal
score and immune score, representing the extent of immune infiltration. The tumor purity
equaled one minus the ESTIMATE score, representing the abundance of tumor cells in
tumor tissue.

4.3. CIBERSORT Analysis

After the transcriptome profiling data were imported into R software, the code “CIBER-
SORT” [45] was used, and then a CIBERSORT analysis was conducted to estimate the
abundance of 22 immune cells in each HCC sample. The ordinate of the result represents
the percentage of 22 immune cells.

4.4. ssGSEA

After the transcriptome profiling data were imported into R software, the R package
“GSVA” [46] was used, and then ssGSEA was applied to quantify the extent of immune
infiltration in each HCC sample. The ordinate of its result represented the extent of
infiltration of 28 immune cells.

4.5. HPA Database

The Human Protein Atlas (HPA) database (https://www.proteinatlas.org/, accessed
on 14 May 2022) was used to investigate the protein content in human HCC samples
and normal liver samples. The HPA database is a web portal that prestores the tissue
distribution information of 26,000 human proteins in tumor tissues, including HCC. Once
we inputted a protein name (e.g., HSPA8, DEK), we automatically obtained the immunohis-
tochemical results of this protein in HCC samples and normal liver samples.

4.6. TISIDB

TISIDB (http://cis.hku.hk/TISIDB/index.php, accessed on 9 May 2022) [47] was used
to assess the correlation between gene expression and the abundance of TILs in HCC
samples. TISIDB is a web portal that prestores multiple heterogeneous data types. Once we
inputted a gene name (e.g., HSPA8, DEK or FBLN2), we automatically generated a heatmap
of the abundance of TILs based on the expression of this gene.

4.7. Consensus Clustering

After the transcriptome profiling data were imported into the R software, the gene
names (e.g., “HSPA8” and “DEK”) were set as the clustering criteria. The R package
“ConsensusClusterPlus” [48] was then used, and consensus clustering was used to divide
the HCC samples into different clusters based on the expression matrix of HSPA8 and DEK.
The result was a heatmap of the expression of HSPA8 and DEK in each HCC sample, and

https://www.proteinatlas.org/
http://cis.hku.hk/TISIDB/index.php
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the samples with the same expression matrix of HSPA8 and DEK were assigned to the
same cluster.

4.8. Tumor Mutation Burden Calculation

After the transcriptome profiling data and the corresponding MAF files contain-
ing somatic mutation information were imported into the R software, the R package
“maftools” [49] was used, and then the TMB was calculated according to the preset algo-
rithms. The value of TMB reflected the ability of the tumor to produce new antigens and
predicted the sensitivity of immunotherapy.

4.9. DEG Identification

After the transcriptome profiling data were imported into the R software,
|log2FoldChange| > 1 and adjusted p value < 0.05 were set as threshold values. Then, the
R package “DESeq2” [50] was used, and the differential expression analysis was used to
identify DEGs among the different clusters, which were generated by consensus clustering
(see Section 4.6).

4.10. WGCNA

After the transcriptome profiling data and the corresponding clinical information were
imported into the R software, the R package “WGCNA” [51] was used. The WGCNA
was then conducted to divide DEGs (see Section 4.8) into several modules based on their
correlations with the immune infiltration indices including stromal score, immune score,
ESTIMATE score and tumor purity. The soft threshold was set according to the scale-free
topology standard. The modules were named with different colors. The module with
the strongest correlation with immune infiltration was then screened out. Subsequently,
the hub genes in the module with the strongest correlation with immune infiltration were
screened based on the threshold values of MM > 0.8 and GS > 0.6.

4.11. GO Enrichment Analysis

After all the gene names in the module with the strongest correlation with im-
mune infiltration (see Section 4.9) were imported into the R software, the R package
“clusterProfiler” [52] was used, and then a GO enrichment analysis was applied to investi-
gate the biological functions of these genes. The results consisted of biological process (BP),
cellular component (CC), and molecular function (MF), representing the potential biological
functions of these genes.

4.12. KEGG Pathway Analysis

After all the gene names in the blue module with the strongest correlation with
immune infiltration (see Section 4.9) were imported into R software, the R package
“clusterProfiler” [52] was used, and a KEGG pathway analysis was applied to investigate
the biological functions of these genes. The results showed the bubble chart of potential
signaling pathways.

4.13. STRING

STRING (https://string-db.org/, accessed on 9 May 2022) [53] was used to construct
the PPI network of the hub genes screened by WGCNA (see Section 4.9). STRING is a
web portal for searching known protein interactions and predicting unknown protein
interactions. Once we inputted the list of 12 hub gene names, we automatically generated
the PPI network of these genes.

4.14. Cell Culture and qRT-PCR

The human HCC cell lines HepG2 and Huh-7, and the human normal hepatocyte
line L02 were purchased from the Cell Bank of the Type Culture Collection of the Chinese
Academy of Sciences. HepG2 and Huh-7 cells were cultured in Dulbecco’s Modified Eagle’s

https://string-db.org/
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Medium (Gibco, Grand Island, NY, USA). L02 cells were cultured in Roswell Park Memo-
rial Institute 1640 medium (Gibco). All media were supplemented with 10% fetal bovine
serum (Gibco) and penicillin-streptomycin. All cultures were maintained in a humidified
chamber with 5% CO2 at 37 ◦C. Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). cDNA was reverse transcribed by a HiScript 1st Strand cDNA Synthe-
sis Kit (Vazyme, Nanjing, China). qPCR was performed using AceQ qPCR SYBR Green
Master Mix (Vazyme). 18S was selected as the internal control. The primer sequences were
as follows:

18S-F, 5′-TTCGAACGTCTGCCCTATCAA-3′;
18S-R, 5′-ATGGTAGGCACGGCGACTA-3′;
HSPA8-F, 5′-GCTTCTATCCAGAGGAGGTGTCTT-3′;
HSPA8-R, 5′-GACCAGCAATAGTTCCAGCATCTT-3′;
DEK-F, 5′-CTGGAATGGCAAGGAAGGCTAAG-3′;
DEK-R, 5′-TTTGGTGGCTCCTCTTCACTTTC-3′.

4.15. Western Blotting

Cells were lysed in radioimmunoprecipitation lysis buffer (50 mM Tris, pH 7.4,
150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate (SDS), 0.1% sodium deoxycholate)
containing proteinase inhibitor cocktail (MedChemExpress, Monmouth Junction, NJ, USA).
The protein samples were electrophoresed through 10% SDS polyacrylamide gels and
transferred onto polyvinyl difluoride membranes (Millipore, Billerica, MA, USA). After
blocking with 5% bovine serum albumin at room temperature for 1 h, the membranes were
incubated with primary antibodies at 4 ◦C overnight, and then incubated with secondary
antibodies at room temperature for 1 h. Immunoreactivity was detected with enhanced
chemiluminescent autoradiography (Millipore). Chemiluminescence was determined using
the AI600 System (GE Healthcare, Little Chalfont, Buckinghamshire, UK). The antibody
against GAPDH (60004-1-Ig, dilution 1:1000) was purchased from Proteintech. Antibodies
against HSPA8 (8444, dilution 1:1000) and DEK (29812, dilution 1:1000) were purchased
from Cell Signaling Technology (Danvers, MA, USA).

4.16. Statistical Analysis

Normally distributed continuous variables were compared using the Student’s t-test;
otherwise, they were compared using the Mann-Whitney U test. Categorical variables
were analyzed using the chi square test or Fisher’s exact test, as appropriate. Correlations
were analyzed with the Spearman rank coefficient. A binary logistic regression analysis
was utilized to analyze the difference in histological grade between the two clusters. The
Kaplan-Meier method and log-rank test were conducted to draw survival curves. A Cox
regression analysis was utilized to identify independent risk factors affecting the prognosis.
Boxplots are used to present the data between different groups. The middle line of the
box shows the median value of the data; the upper and lower limits of the box are the
75% and 25% quartiles of the data, and the two vertical lines above and below the box
represent the maximum and minimum values. A p value < 0.05 was considered statistically
significant. All statistical tests were performed using R (version 4.1.3, The University of
Auckland, Auckland, New Zealand) and SPSS (version 22.0, IBM, Armonk, NY, USA) software.

5. Conclusions

In conclusion, the histone chaperones HSPA8 and DEK are closely related to the
tumor immunity of HCC. By clustering HCC patients from TCGA-HCC, GSE19977 and
ICGC-LIRI JP based on the expression matrix of HSPA8 and DEK, we demonstrated that
HCC patients with high HSPA8 expression and low DEK expression tend to have stronger
immune infiltration and better sensitivity to immunotherapy. The above phenomenon may
be explained by 12 hub genes that were upregulated in Cluster 2 and that are strongly
related to tumor immunity. Furthermore, FBLN2, one of the hub genes, is an independent
protective factor in HCC patients and is associated with tumor immunity. Therefore, HSPA8
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and DEK are expected to be biomarkers for precisely predicting the effect of immunotherapy,
and FBLN2 could be a therapeutic target of HCC. Our study provides a new direction for
discovering potential biomarkers of immunotherapy in HCC.
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