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Abstract: Regulators in gene regulatory networks (GRNs) are crucial for identifying cell states. How-
ever, GRN inference based on scRNA-seq data has several problems, including high dimensionality
and sparsity, and requires more label data. Therefore, we propose a meta-learning GRN inference
framework to identify regulatory factors. Specifically, meta-learning solves the parameter optimiza-
tion problem caused by high-dimensional sparse data features. In addition, a few-shot solution was
used to solve the problem of lack of label data. A structural equation model (SEM) was embedded in
the model to identify important regulators. We integrated the parameter optimization strategy into
the bi-level optimization to extract the feature consistent with GRN reasoning. This unique design
makes our model robust to small-scale data. By studying the GRN inference task, we confirmed that
the selected regulators were closely related to gene expression specificity. We further analyzed the
GRN inferred to find the important regulators in cell type identification. Extensive experimental
results showed that our model effectively captured the regulator in single-cell GRN inference. Finally,
the visualization results verified the importance of the selected regulators for cell type recognition.

Keywords: meta-learning; gene regulator network inference; structural equation model; bi-level
optimization

1. Introduction

The inference of gene regulatory networks (GRNs) allows for a better understanding of
transcriptional regulation and how it works in cell-type identification. The models of GRN
inference based on scRNA-seq achieved success in cancer treatment [1], the recognition
of cellular homeostasis [2], and single-cell multi-omic studies [3]. However, single-cell
RNA sequencing technology has many limitations, such as technical noise [4], high gene
variability [5], and batch effect [6]. Those regulators whose activities are highly variable
among different cell types and predict a small set of essential regulators for significant cell
types still need more attention. Therefore, inferring gene regulatory networks to study cell-
specific phenomena on computational methods is a challenging problem in bioinformatics.

Recently, deep learning has brought new solutions [7,8] to single-cell GRN inference
based on coexpression [9]. The supervised approach has two ways to infer GRNs. One
directly sets a determined ground-truth label as the model convergence target, such as
DGRN [10] and DeepDRIM [11]. The other is to embed a ground-truth network into
the model, such as the GRGNN [12] and scSGL [13]. These models could predict the
potential gene regulatory relationships in high-dimensional scRNA-seq data. However, the
supervised method can only be applied to general tasks with label data. The unsupervised
approach facilitates GRN inference without a ground-truth label, such as VEGA [14] and
DeepSEM [15]. SCODE [16] is a machine learning algorithm based on linear ordinal
differential equations. GENIE3 [17] and GRNBoost2 [18] can also complete GRN reasoning
without the label. However, the problem of highly sparse data features still needs to be
resolved better.
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Meta-learning is adept at solving parameter initialization and insufficient data labels
when using small-scale samples [19]. The meta-learning model is composed of a basic
learner and a meta-learner. The basic learner extracts feature information through rep-
resentation study. The meta-learner guides the basic learner to complete training tasks
by learning the parameters of the basic learner. The meta-learner synthesizes the train-
ing experience of all modules and provides the initial parameters for new task training.
By introducing meta-learning, the generalization ability of deep learning models can be
improved to solve the highly sparse data features. For example, Kun Fu et al. employed
transfer learning to alleviate the training problem of meta-learning on few-shot tasks [20].
Arkabandhu Chowdhury et al. proposed a meta-learning method to complete the data
classification on small-scale samples [21]. Zitian Chen et al. solved the low data samples
of one-shot learning by meta-learning in the image deformation problem [22]. However,
the existing meta-learning methods ought to sufficiently adapt to the single-cell GRN
inference task.

To address the problems above, we proposed a meta-learning framework called
MetaSEM (Figure 1) to infer GRN from scRNA-seq. Specifically, we adopted meta-learning
to optimize the parameters of each module for learning high-dimensional data features.
Next, we employed a meta-decoder to provide pseudo-data labels for the encoder. Then,
we put the feature vectors extracted from the encoder into the training process. After
that, considering the gene regulatory relationship is an endogenous variable and the gene
expression information is an exogenous variable, we initialized a structural equation model
(SEM) [23] adjacency matrix as the GRN layer. We considered the matrix as the regulatory
weight matrix and embedded it into the meta-decoder. Finally, all the parameters were
optimized using a Bi-Level optimization.
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Figure 1. (A) The overview of MetaSEM: the meta-decoder extracts the regulatory relationship to
output a pseudo-data label. The encoder transforms the data feature into feature vectors. The GRN
Layer is a specially designed layer for embedding the SEM matrix. The red arrows indicate the outer
loop, and the yellow arrows indicate the inner loop. With hyperparameter optimization, MetaSEM
integrates the outer and inner loop based on gradient. The θF represents the hyperparameters
of the encoder, and θA represents the hyperparameters of the meta-decoder. (B) By analyzing
the SEM matrix, MetaSEM performs three major functions: identification of the regulators, GRN
visualization, and cell-type identification.
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In this work, we verified the reliability of MetaSEM from the following aspects. We
first compared the model performance of MetaSEM with several state-of-the-art methods.
The experimental results showed that MetaSEM was significantly better than current meth-
ods in terms of EPR, AUPR, and AUROC. Next, to analyze the robustness of MetaSEMwe,
we explored essential data features in single-cell data at different data scales. We then
generated cell-type-specific GRNs on the bulk RNA-seq dataset for further research. Pear-
son correlation analysis of GRNs and gene expression data analysis indicated that the
GRNs were cell-type-specific. Finally, the visualization of cell-type-specific GRNs within
the HNSCC dataset demonstrated the regulators’ importance in identifying cell types.

2. Results and Discussion
2.1. Comparison with Existing Methods

To verify the performance of MetaSEM, we compared the model with four methods:
DeepSEM [15], DGRN [10], GENIE3 [17], and PIDC [2] on the BEELINE dataset. As shown
on the 1000 gene datasets in Table 1, MetaSEM outperformed the existing methods on the
three evaluation metrics. The EPR of MetaSEM in mHSC-L, mHSC-G, and mHSC-E datasets
were 1.36, 1.41, and 1.21, respectively. The EPR of MetaSEM in the mHSCs dataset was 0.15
higher than that of DeepSEM on average. MetaSEM was 0.41 higher than DGRN in AUPR
and AUROC. In addition, GENIE3 and PIDC are far inferior to deep learning methods
because they are unsupervised machine learning methods. The results show that MetaSEM
can effectively memorize gene regulatory relationships and take such relationships to guide
the model to extract essential information.

Table 1. Performance comparison of four competing methods on 1000 gene datasets and 500 gene
datasets.

EPR

Methods

1000 Gene Datasets 500 Gene Datasets

mHSC-L mHSC-
GM mHSC-E hESC mESC hHep mDC mHSC-L mHSC-

GM mHSC-E

DeepSEM 1.09 1.14 1.24 1.43 1.06 1.14 2.55 1.07 1.06 1.30
DGRN - - - - - - - - - -

GENIE3 <1 1.03 1.01 1.00 1.06 1.12 1.01 1.00 1.06 1.03
PIDC <1 <1 <1 <1 1.01 1.03 <1 <1 <1 <1

MetaSEM 1.36 1.41 1.24 2.29 1.24 1.53 3.36 1.13 1.20 1.69

AUPR

Methods

1000 Gene Datasets 500 Gene Datasets

mHSC-L mHSC-
GM mHSC-E hESC mESC hHep mDC mHSC-L mHSC-

GM mHSC-E

DeepSEM 0.63 0.56 0.42 0.30 0.38 0.48 0.43 0.66 0.63 0.58
DGRN 0.15 0.16 0.25 - - - - 0.15 0.27 0.25

GENIE3 0.09 0.12 0.09 - - - - 0.14 0.15 0.14
PIDC 0.07 0.12 0.10 - - - - 0.16 0.12 0.19

MetaSEM 0.70 0.73 0.66 0.48 0.43 0.70 0.33 0.75 0.77 0.84

AUROC

Methods

1000 Gene Datasets 500 Gene Datasets

mHSC-L mHSC-
GM mHSC-E hESC mESC hHep mDC mHSC-L mHSC-

GM mHSC-E

DeepSEM 0.51 0.57 0.63 0.52 0.51 0.54 0.77 0.52 0.52 0.67
DGRN 0.63 0.67 0.75 - - - - 0.63 0.71 0.77

GENIE3 0.63 0.63 0.59 - - - - 0.52 0.52 0.55
PIDC 0.57 0.61 0.60 - - - - 0.47 0.47 0.59

MetaSEM 0.75 0.77 0.76 0.81 0.61 0.77 0.71 0.67 0.72 0.87

Part of the results are from the following two papers [10,15]; “-” indicates that the experimental result is missing,
and “<1” indicates that the result here is random prediction. The bold number refers to the best performer.
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To further evaluate the performance of MetaSEM, we trained MetaSEM on the 500
gene datasets. It should be noted that the label data in 500 gene datasets was just as 30%
of that in 1000 gene datasets. The results on the 500 gene datasets in Table 1 show that
MetaSEM still surpassed the other methods. The average performance of the model on
the three metrics was 1.34, 0.78, and 0.75. As a result, we can observe that MetaSEM can
perform well in the shortage of label data.

2.2. MetaSEM Can Adapt to High Dimensions and Sparse Characteristics

In this section, we present the results of the robustness of MetaSEM in different
data scales. We first set the sampling points according to the standard deviation of gene
expression and sample size. Then, we built sub-datasets using mHSC-L, mHSC-E, and
mHSC-GM. In addition, we also created another dataset of the same points through random
selection as a reference. We used the same hyperparameters and five-fold cross-validation
during model training. As shown in Figure 2, the red area is larger than the blue area. The
fluctuation range of the model on the three metrics was 11.5%, 15%, and 30.7%, respectively.
This is because genes with a large number of 0 expression values also had a lower standard
deviation. This means that removing these genes would reduce the sparsity of scRNA-seq
data. By comparing the two gene selections, we found that the degree of data dispersion is
an essential feature.
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Figure 2. The robustness of our model on different data scales. Each column corresponds to a cell’s
sub-dataset (left: mHSC-L, middle: mHSC-GM, and right: mHSC-E), and each row corresponds to
an evaluation index (top: EPR, middle: AUPR, and bottom: AUROC). The red region of the figure is
the result of standard deviation selection, and the blue region of the figure is the result of random
selection. Pretraining and fine-tuning were not conducted for each test.
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2.3. MetaSEM Reveals That GRN Specificity is Related to Gene Expression

To verify whether MetaSEM captures specific information, we analyzed the inferred
GRN and gene expression data. We generated the cell-type-specific GRN based on eight
HNSCC sub-datasets. Figure 3 shows the heatmap of the Pearson correlation coefficient
between the different GRNs. In this matrix, two observations are made. First, the average
correlation coefficient is less than 0.1, which indicates that the inferred GRNs have a very
low correlation. Second, as shown in the cancer row, the highest correlation coefficient
is Fibroblast. There are two reasons for this: the cancer dataset contains some cancer-
associated fibroblasts (CAFs) [24], and the correlation between Fibroblast and Cancer
subsets is the highest, which corresponds to the findings of [25].

Figure 3. The Pearson correlation of different cell-type GRNs. Each element in the matrix represents
the Pearson correlation of the GRN corresponding to two different cells. We do not show the results
with a p-value greater than 0.05.

Given the phenomenon reflected in Figure 3, we further analyzed the differences in
the gene expression in the datasets. As shown in Figure 4, the gene expression data of the
Fibroblast and Endothelial subsets has little difference with the cancer subset. However,
the results of the B cell and Mast subsets show significant differences. The p-values obtain
an independent t-test of Fibroblast and Endothelial subsets are 0.17 and 0.37, respectively.
In contrast, the Mast cell and B cell datasets are 0.05 and 0.03, respectively. These results
indicate that MetaSEM can capture the specificity information, which is essential for general
GRN inference tasks.



Int. J. Mol. Sci. 2023, 24, 2595 6 of 12

Figure 4. The divergence of gene expression on different cell types. The red dot represents the genes
with a positive correlation, the blue dot represents the genes with a negative correlation, and the
black dot represents the gene with no difference in expression level. The grey dot represents the gene
below the threshold.

2.4. The Selected Regulators from the SEM Model Have a Higher Expression Level

Next, we analyzed how MetaSEM extracts regulators. When sorting out the output
of the GRN Layer, we found that the regulatory weight of some genes was very high.
Therefore, we collected the regulatory weights of these genes. The boxplots in Figure 5
show the results. These genes had higher regulatory weight in Fibroclast, T cell, Cancer,
and Endothelial. As shown in the t-SNE plots of Figure 5, the selected genes had significant
weight distribution on different samples. The log2 (transcripts per kilobase per million
(TPM) + 1) of ATF4, JUN, RPL7A, and RPS4X on HNSCC cells were 8.1, 6.5, 6.8, and 9.8,
respectively. Finally, we selected ATF4, JUN, RPL7A, RPS4X, and other genes as regulators
through cross-comparison.

Figure 5. The regulatory weight of the different genes in the eight cells. Four regulators are presented:
ATF4, JUN, RPL7A, and RPS4X. The boxplots show the weight distribution of the regulators on dif-
ferent SEM matrices. The t-SNE plots represent the weight distribution of regulators on the datasets.
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2.5. The Selected Regulators Are the Main Factors of Cell-Type Identification

In this section, we present the relationship between the selected regulators and cell-
type identification. Figure 6 visualizes the GRNs of Cancer and Fibroblast datasets together.
The blue edge represents the typical regulatory relationship. Green and red edges are
the regulatory relationships only in Cancer GRNs or Fibroblast GRNs, respectively. We
marked several regulators in GRNs, such as STAT1, JUN and JUNB. The protein encoded
by STAT1 is a member of the STAT protein family. STAT1 mediates the expression of
various genes, which is essential for cell viability in response to different cell stimuli and
pathogens [26]. JUN and JUNB belong to the same gene family and are related to human
malignancies. JUN often occurs in chromosomal regions of translocation and deletion in
human malignancies [27].

FOS

NFE2L2

STAT1

IRF9

EGR1

ATF3

JUNB

DDIT3

ATF4

JUN

Figure 6. visualization of the GRN inference by MetaSEM on Cancer and Fibroblast datasets. The
size of nodes indicates the regulatory weight. The blue edges are the main part of GRN, indicating
the common regulatory relationship between the two cells. Green and red regulatory relationships
only exist in Cancer GRNs or Fibroblast GRNs.

In order to verify the importance of the regulatory weight of cell-type recognition. We
collected the cell types’ SEM matrix for each gene’s regulatory weight. Then, all genes were
divided into three equal parts according to the regulatory weight for cell clustering. Then,
we used the Louvain and Leiden methods to cluster cell types. As shown in Figure 7, the
effect of clustering positively correlated with regulatory weight. The performance of the
clustering methods on normalized mutual information (NMI), v-score, and adjusted rand
index (ARI) proved this point.
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Figure 7. Visualization of selected regulators with different regulatory weights. Each row represents
a clustering method (top row: Louvain, bottom row: Leiden). Each column represents the regulatory
weight of the selected data by ascending ranking. The dimension reduction method of the graph
is TSNE.

3. Materials and Methods
3.1. Data Preparation

The BEELINE [28] dataset is used to evaluate the model’s performance. The single-cell
dataset contains seven cell types, including five mouse cells and two human cells. For the
BEELINE dataset, we excluded the cells annotated as low quality and genes expressed
in less than 10% of cells. Then, we logarithmically normalized the remaining data. Each
cell only retained the top 1000 standard deviation genes. The sub-datasets were divided
according to different cell types. We further built 500 gene datasets in the same way to
evaluate the model performance in insufficient label data. The ground-truth GRNs were
preprocessed and normalized according to the descriptions in [28].

The head and neck squamous cell carcinoma (HNSCC) dataset [25] is used to study
GRN cell specificity, a heterogeneous epithelial tumor closely related to the long-term
exposure of cells to the environment of alcohol and tobacco. We divided the dataset into
ten subsets based on known cell-type annotations (Fibroblast, B cell, T cell, Endothelial,
Dendritic, Mast, Cancer,-Fibroblast, Myocyte, and Macrophage). We discarded the subsets
without annotations, and the number of samples was less than 50. We also pitched the
genes expressed in less than 30 samples. Finally, the -Fibroblast and Myocyte are removed.
The genes with the top 1000 standard deviations were utilized as the training dataset. The
ground-truth label corresponding to the HNSCC dataset was obtained from the TCGA
database [29].

The datasets were stored in matrices with the vertical axis gene expression and the
sample as the horizontal axis. One cell type corresponds to one matrix, and the values in
the matrix represent the expression values of genes on the samples. Similar to DeepSEM’s
training process [15], we took 64 samples of the dataset as a batch. Each batch was
considered a small sample learning task, and the learning goal was unique through the loss
function. There was no need to divide the test and verification sets on GRN inference.
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3.2. Model Description

The proposed MetaSEM consisted of three parts: an encoder, a meta-decoder, and a
GRN layer. (i) Encoder: This part encodes the gene expression data as the feature vector
using a three-layer MLP. (ii) Meta-decoder: This part models the regulatory relationship
via a two-layer MLP and uses the GRN layer to find the optimal pseudo-data labels. (iii)
GRN Layer: With the SEM model, the GRN layer infers the gene regulatory relationships
and transforms these relationships into pseudo-data labels.

3.2.1. GRN Layer

We generalized the SEM as a GRN layer to model the conditional dependencies
among random variables. We employed the meta-decoder to iterate the GRN Layer for
extracting regulatory information. The final output of this module was an adjacency matrix
representing GRN, and the elements within the matrix described directed edge weights.
The GRN Layer iteration formula is as follows:

A∗ = θA × A + α× A (1)

where A represents the adjacency matrix resulting from modeling based on the SEM, θA
represents the model parameters of the meta-decoder, and α is utilized to control the
learning rate of the matrix in the new iteration.

3.2.2. Encoder

We built a decoder to capture the data feature from gene expression. The encoder
reads the natural gene expression data X in batches. The data Xi of batch i first passes
through a full connection layer to learn the gene expression feature [30]. Then, the feature
vector Xp

i is obtained using a double-layer full connection layer.

Xp
i = JF(θF)

(Xi) (2)

where JF(θF)
(Xi) represents the working process of the encoder to calculate feature vector

Xp
i . Yp

i represents the pseudo-data label from the meta-decoder. The process obtained with
the parameter of the encoder θF from each epoch can be expressed by Formula (3):

θ∗F = arg min
θF

Evi∈VL

[
L
(

JF(θF)(Xi), Yp
i

)]
(3)

where L represents the cross-entropy loss of the network, Yp represents the pseudo-data
label provided by the meta-decoder, and vi is any gene belonging to the dataset VL.

3.2.3. Meta-Decoder

We embedded the GRN Layer into a two-layer MLP to construct the meta-decoder.
Unlike the attention mechanism [31,32], we employed the meta-decoder to guide the
feature extraction. Specifically, the objective of the meta-decoder is to find a prediction
matrix Yp

i that agrees with the label matrix Y. The meta-decoder learns the gene regulatory
relationships from the scRNA-seq. Then, the regulatory relationships are stored in the
GRN Layer. Finally, the meta-decoder outputs the pseudo-data labels to represent the
potential regulatory relationships. This procedure can improve the efficiency of the encoder
by pseudo-data labels.

Yp
i = JA(θA)

(Xp
i ) (4)

where JA(θA)
(Xp

i ) indicates the process of calculating pseudo-data labels with the meta-
decoder. In each round of training, the process of calculating and updating from the feature
vector set Vp is shown in Formula (5):

θ∗A = arg min
θA

Evi∈Vp

[
L
(

JA(θA)

(
Xp

i

)
, Yp

i

)]
(5)
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3.2.4. Hyperparameter Optimization

We employed a bi-Level optimization for hyperparameter optimization. Specifically,
the bi-Level optimization calculates the model’s parameters twice and compares the gra-
dients generated. If the gradients drop, the parameters are updated. If not, the second
parameter calculation is executed again [33]. The bi-Level optimization operation can
help the model approximate the optimal parameter solution, reducing the impact of the
erroneous feature vector on the model. We applied a one-step gradient-descent updating
strategy with a significant learning rate to obtain the approximate optimal solution. Af-
ter the approximate optimal parameters are received, the model parameters need to be
updated. µθF and µθA represent the learning rate of the encoder and meta-decoder, respec-
tively. The parameter update operation of the encoder and meta-decoder is expressed by
Formulas (6) and (7):

θ∗F = θF − µθF 5θF JF(Xi) (6)

θ∗A = θA − µθA 5θA JA(Xp
i ) (7)

Finally, the encoder and meta-decoder outputs are extracted for model loss calculation.
The overall loss calculation of the model is expressed in Equation (8):

Loss = arg min
θ

Evi∈VL

[
L
(

Xp
i , Yp

i , :
)
+ β× ∑(W1)

2

2

]
(8)

where ∑(W1) represents the weights of the first fully connected layer of the encoder. β is
the weight of the encoder. Considering the feature vector and the pseudo-data labels as the
main factors in the loss calculation guarantees that the contents learned by the encoder and
meta-decoder remain consistent.

Xp∗ = θF(X)× 0.5 + Xp (9)

Formula (9) represents the method of the encoder to the output feature vector.

3.3. Implementation

MetaSEM is mainly implemented based on the PyTorch framework. The determined
model configurations are as follows: the encoder is built from a three-layer MLP model,
and the meta-decoder is built from a two-layer MLP with the GRN Layer. Hyperparameter
optimization is a one-step gradient-updating strategy based on bi-Level optimization. We
employed the grid search method to determine the model’s architecture and hyperparame-
ters. The number of hidden-layer neurons set 128, and the batch size set 64. The encoder
and meta-decoder optimization employed the Adam optimizer method. The learning rate
is 1× 10−4 for the encoder, 5× 10−4 for the meta-decoder, and 1× 10−2 for the one-step
gradient-updating strategy. In addition, we set the learning decay rate and the other pa-
rameters to default. This article presents the codes of the model and can be downloaded
from GitHub.

3.4. Evaluation Metrics

Following the BEELINE framework [34], we applied the top K edges to evaluate the
performance of MetaSEM on three indices: early precision ratio (EPR), Area Under the
precision-recall curve (AUPR), and area under the receiver-operating characteristic curve
(AUROC), where the value of K is equal to the number of edges of the ground-truth GRN.
The above metrics were developed as indices to evaluate model performance in previous
studies [10,15].

4. Conclusions

This paper proposed a new GRN inference algorithm based on meta-learning to an-
alyze the importance of the selected regulators in cell-type identification. The MetaSEM
learns the potential regulatory relationships from gene expression data. Moreover, meta-
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learning was also used to optimize the process of feature extraction. Extensive experiments
in different single-cell datasets showed that MetaSEM performed better than several ad-
vanced computational methods in GRN inference tasks. Finally, by visualizing the inferred
GRN, we systematically analyzed the importance of the data dispersion. We proved the
importance of the selected regulator in cell-type identification. In the future, we intend
to construct GRN by fusing scATAC-seq data and scRNA-seq data to explore the effect of
GRNs on single cells.
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