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Abstract: Severe coronavirus disease 2019 (COVID-19) has led to a rapid increase in death rates all
over the world. Sepsis is a life-threatening disease associated with a dysregulated host immune
response. It has been shown that COVID-19 shares many similarities with sepsis in many aspects.
However, the molecular mechanisms underlying sepsis and COVID-19 are not well understood.
The aim of this study was to identify common transcriptional signatures, regulators, and pathways
between COVID-19 and sepsis, which may provide a new direction for the treatment of COVID-19 and
sepsis. First, COVID-19 blood gene expression profile (GSE179850) data and sepsis blood expression
profile (GSE134347) data were obtained from GEO. Then, we intersected the differentially expressed
genes (DEG) from these two datasets to obtain common DEGs. Finally, the common DEGs were used
for functional enrichment analysis, transcription factor and miRNA prediction, pathway analysis,
and candidate drug analysis. A total of 307 common DEGs were identified between the sepsis and
COVID-19 datasets. Protein–protein interactions (PPIs) were constructed using the STRING database.
Subsequently, hub genes were identified based on PPI networks. In addition, we performed GO
functional analysis and KEGG pathway analysis of common DEGs, and found a common association
between sepsis and COVID-19. Finally, we identified transcription factor–gene interaction, DEGs-
miRNA co-regulatory networks, and protein–drug interaction, respectively. Through ROC analysis,
we identified 10 central hub genes as potential biomarkers. In this study, we identified SARS-CoV-2
infection as a high risk factor for sepsis. Our study may provide a potential therapeutic direction for
the treatment of COVID-19 patients suffering from sepsis.
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1. Introduction

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) strains has become a pandemic worldwide [1,2]. The SARS-
CoV-2 virus spreads rapidly through respiratory droplets and aerosols [3]. The most
common symptoms of mild COVID-19 are fever, dry cough, sore throat, fatigue, and
diarrhea [4–6]. Pathological manifestations of severe COVID-19 include pulmonary and
multiple organ failure, immune activation, and uncontrolled cytokine responses [7,8]. Im-
portantly, most COVID-19 patients eventually develop symptoms of septic shock, including
cold limbs, microcirculation problems, and cytokine storms [9].

Sepsis is a systemic inflammatory response syndrome caused by the invasion of
pathogenic microorganisms such as bacteria into the body [10]. Sepsis is life-threatening
organ dysfunction caused by a dysregulated host response to infection [11]. Clinical mani-
festations of sepsis begin with inflammation and progress to circulatory organ dysfunction
closely related to the production of pro- and anti-inflammatory cytokines, ultimately lead-
ing to multiple organ failure syndrome [11–13].

Although it presents important differences in pathogenesis, COVID-19 shares many
similarities with sepsis in many aspects. It has been well established that both dis-
eases involve cytokine storms, procoagulant states, toll-like receptor (TLR) signaling,
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pathogen-associated molecular patterns (PAMPs), and damage-associated molecular pat-
terns (DAMPs) [14–16]. Furthermore, manifestations including increased heart rate, res-
piratory failure, fever, leukopenia, hypotension, leukocytosis, multiorgan dysfunction
syndrome, coagulopathy, and septic shock are common to COVID-19 and sepsis [17–20].
In addition, as part of clinical care, the COVID-19 treatment guidelines, “surviving sepsis
campaign”, are being implemented for seriously ill patients [21]. Given the similarities
between COVID-19 and sepsis, it is necessary to determine the biological links and potential
molecular mechanisms that link the two diseases, which may provide new insights into
the pathogenesis of COVID-19 and sepsis and offer potential therapeutic agents for sepsis
patients with COVID-19.

In this study, we identify common differentially expressed genes by performing
differential analysis of blood RNA sequencing data from COVID-19 patients and sepsis
patients, respectively. Bioinformatics systems biology approaches were successfully used
to analyze the underlying molecular mechanisms and identify some drugs that may be
useful for the treatment of COVID-19 and sepsis.

2. Result
2.1. The Identification of DEGs and Common DEGs between Sepsis and COVID-19

This flowchart illustrates all the key steps in this study (Figure 1). We downloaded
whole blood expression profiles from GEO and identified common differentially expressed
genes for COVID-19 and sepsis to investigate the interrelationship and impact between
sepsis and COVID-19. First, 4146 DEGs were screened in COVID-19, including 2089 up-
regulated genes and 2057 down-regulated genes (Supplementary Table S1). Then, 432 DGEs
were screened in sepsis, including 219 up-regulated genes and 213 down-regulated genes
(Supplementary Table S2). Following the intersection of differentially expressed genes
from the two datasets, 307 common DEGs were obtained (Figure 2A,B; Supplementary
Table S3). Among them, 170 genes are up-regulated in both diseases and 134 genes are
down-regulated (Figure 2C,D). These results indicated these genes share a high consistency
in the direction of changes, and the underlying mechanisms of sepsis and COVID-19 may
partially associate with each other.

2.2. GO and KEGG Enrichment Analysis

GO and pathway enrichment analyses were performed using the R “clusterProfiler”
package to explore the biological features and enriched pathways of common DEGs. The
GO database was used as the annotation source to perform GO analysis of three aspects:
biological process (BP), cellular composition (CC), and molecular function (MF). We present
the top five items for each category of GO terms in a bar chart. DEGs are significantly
enriched in the regulation of T cell activation as well as mononuclear cell differentiation in
biological process (BP) subsets. External side of plasma membrane and secretory granule
lumen pathways are enriched in cellular compartment (CC) subsets. Pathways involved in
immune receptor activity, MHC protein complex binding, and cytokine receptor activity
are enriched in molecular function (MF) subsets (Figure 3A). KEGG is an online database
for the systematic analysis of gene function, and reveals the interplay between genes and
biological processes [22]. To explore the biological functions and enriched pathways of
common DEGs, KEGG enrichment analysis was performed. The top fifteen pathways
identified by KEGG pathway analysis are as follows: hematopoietic cell lineage, Th1 and
Th2 cell differentiation, Th17 cell differentiation, asthma, intestinal immune network for
IgA production, T-cell receptor signaling pathway, leishmaniasis, inflammatory bowel
disease, PD-L1 expression and PD-1 checkpoint pathway in cancer, antigen processing
and presentation, allograft rejection, primary immunodeficiency, cell adhesion molecules,
graft-versus-host disease, and viral myocarditis (Figure 3B). The complete results of GO
and KEGG enrichment analysis are shown in Supplementary Tables S4 and S5.
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Figure 2. There are two GEO datasets included in the experiment: COVID-19 (GSE179850) and sep-
sis (GSE134347). (A) In a histogram, the number of genes that are differentially expressed between 
COVID-19 patients and sepsis patients. (B) There is an overlap between COVID-19 and sepsis dif-
ferentially expressed genes. (C) The overlapping up-regulated genes between COVID-19 and sepsis. 
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Figure 2. There are two GEO datasets included in the experiment: COVID-19 (GSE179850) and sepsis
(GSE134347). (A) In a histogram, the number of genes that are differentially expressed between
COVID-19 patients and sepsis patients. (B) There is an overlap between COVID-19 and sepsis
differentially expressed genes. (C) The overlapping up-regulated genes between COVID-19 and
sepsis. (D) The overlapping down-regulated genes between COVID-19 and sepsis.

2.3. Identification of Hub Genes

Common DEGs from COVID-19 and sepsis were uploaded to STRING to explore
the network of PPI. PPI network maps were visualized through Cytoscape software to
identify common DEG interaction (Figure 4; Supplementary Table S6). Subsequently, we
identified the most significant hub genes through degree analytical methods using the
CytoHubba plug-in in Cytoscape, including FYN, HLA-DRB1, HLA-DRA, LCK, CD247,
CD4, CD3D, CD3E, CD3G, and HLA-DQB1 (Figure 5). Then, we performed the ROC
analysis to examine the diagnostic performance of these hub genes for distinguishing
disease tissues from normal samples for COVID-19 and sepsis, respectively. Our results
showed that all the hub genes had an excellent diagnostic performance in both COVID-19
and sepsis (Supplementary Figures S1 and S2). These data demonstrated, as the highlight
of this study, that the hub genes may play an important role in the pathological mechanisms
behind COVID-19 and sepsis.
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2.4. Establishment of TF and miRNA Regulatory Networks

In order to elucidate the key molecules that bridge COVID-19 and sepsis, we conducted
a framework to indicate gene regulatory networks involving TFs and miRNAs from DEGs,
respectively. By analyzing the interaction network of TFs using the EnrichR database, we
found 139 potential TFs that regulated common DEGs (Supplementary Table S7). Next, we
constructed the interaction network of DEGs with the top 10 TFs according to the combined
score (Figure 6). Using the miRTarBase module in EnrichR, we obtained 2095 miRNAs that
potentially regulated common DEGs and built the interaction network of DEGs with the
top 10 miRNAs (Supplementary Table S8; Figure 7). Our results indicated the potential
connections between common DEGs with TFs or miRNA, respectively.
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2.5. Identifying Potential Drugs

In order to shed light on the personalized treatment of COVID-19 and sepsis patients,
small molecule medications were located based on the common DEGs utilizing the DSigDB
module in the EnrichR database. According to the combined score, the top 10 associated
drugs with significant correlations were identified (Figure 8; Supplementary Table S9).
These drugs may serve as therapeutic agents for the treatment of COVID-19 and sepsis.
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Cytoscape was used to visualize the PPI network generated by String. The darker the color, the more
connections to the gene are identified. The larger size of the node suggests the higher connection
degree of the gene.
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3. Discussion

In recent years, an increasing number of studies have demonstrated that there may be
potential connections between different diseases. Therefore, interactions between different
diseases are a high-potential field that needs to be studied in the future [23–25]. In this
study, we explored the potential interaction between COVID-19 and sepsis from a unique
perspective. The aim of this study is to provide a new direction and potential targets for
treating both diseases by unravelling the interaction between sepsis and COVID-19.

Sepsis is a systemic inflammatory response syndrome caused by the invasion of
pathogenic microorganisms such as bacteria into the body [10,26]. Progression of sepsis
is closely associated with the production of pro- and anti-inflammatory cytokines [12].
Similarly, COVID-19 increases the secretion of proinflammatory cytokines, G-CSF, and
chemokines. These factors may excessively activate the innate immunity [27]. Therefore,
COVID-19 infection may serve as a high risk factor for the exacerbation of sepsis. In this
study, we performed bioinformatics analysis to identify molecular targets that may serve as
potential biomarkers and indicated the underlying interaction between sepsis and COVID-
19 based on expression profiles from whole blood transcriptional profiles. Extracorporeal
blood purification therapy is a very effective method to improve the prognosis of patients
with sepsis. Removing the inflammatory mediators or bacterial toxins (or both) from
the blood will significantly decrease the host inflammatory response [28]. In addition, a
recent study showed that several novel important biomarkers have also been identified
in the blood of COVID-19 patients [29,30]. These results demonstrate that blood cells not
only participate in the immune system, but also may serve as biomarkers for COVID-19
and sepsis.

After the intersection of differentially expressed genes from COVID-19 and sepsis,
we finally obtained 307 common DEGs. For biological processes, the most significantly
enriched GO term is T cell activation. Activation of T cells is triggered by intracellular
signaling cascades initiated by antigen-activated T cell receptors (TCRs) [31]. Sepsis-
induced persistent immune paralysis is defined, in part, by impaired CD4+ and CD8αβ+ T
cell responses in the post-sepsis setting, whereas dysfunction of T cell immunity impacts
naive, effector, and memory T cells, and is not restricted to classical CD8αβ+ T cells [32].
Sepsis-induced severe and transient lymphopenia is a main factor in decreasing T cell
immunity [32]. CD4+ and CD8+ T cells could be activated by certain antigens in patients
with COVID-19 [33]. T cells showed a more stable activation profile in severe COVID-19
patients than in mild patients [34]. For cellular compartment (CC), the most significantly
enriched GO term is the external side of plasma membrane. Plasma membrane is important
in the viral assembly of SARS-CoV-2 [35]. For molecular function (MF), immune receptor
activity and MHC protein complex binding are enriched in GO terms. Loss of platelet
MHC-I decreases sepsis-associated mortality in septic mice [36]. In addition, SARS-CoV-2
infection leads to MHC-I down-regulation through ORF8 [37].

KEGG is one of the most frequently used databases for functional analysis of genes [22].
In order to explore the most-affected pathways of common DEGs between COVID-19 and
sepsis, we performed KEGG enrichment analysis based on the KEGG database. PD-L1 ex-
pression and PD-1 checkpoint pathway are significantly enriched in the KEGG pathways. A
recent study indicated that severe COVID-19 patients displayed dysregulated expression of
checkpoint molecules PD-1 and its ligand PD-L1, indicating that these checkpoint molecules
could be considered as prognostic markers and therapeutic targets for COVID-19 [38,39].

PPI networks were constructed using common DEGs to understand the potential
biological functional properties of proteins and predict potential biomarkers for COVID-19
and sepsis. Furthermore, we identified 10 hub genes from common DEGs according to
the degree algorithm. FYN is crucial for T cell receptor signaling, brain functions, and
cell adhesion-mediated signaling [40]. HLA-DRA is an immune-suppressive gene, which
may serve as a novel target for immunosuppressive drugs [41]. CD4 is a member of the
immunoglobulin superfamily and is mainly expressed in most thymocytes and T cell
subsets, and weakly expressed in macrophages and dendritic cells [42]. As a co-receptor
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of TCR in T cell activation, CD4 also plays a role in thymic differentiation by binding to
MHC class II [43]. It has been shown that T cells are regulated by CD4 coreceptor gene
expression during development [44]. Moreover, CD4-expressing cells are early mediators
of the immune system in septic patients [45]. Furthermore, decreased CD4 expression in
lymphocyte subsets has also been observed in COVID-19 patients [46]. CD3D, another
hub gene, plays an important role in the transduction of T cell signaling [47]. These
hub genes may play an important role in immunotherapy and have great potential as a
therapeutic target.

Next, we conducted a framework to elucidate gene regulatory networks involving
TFs and miRNAs from common DEGs. It has been reported that dysregulation of MITF
may induce severe COVID-19 infections [48]. However, its function in sepsis remains to be
addressed. In addition, it has been demonstrated that the miR-491-5p predicting model
was detected as a blood-based biomarker for head and neck squamous cell carcinoma in
humans [49]. In lung cancer cells treated with apigenin, miR-34a-5p may play an important
role in inducing apoptosis through down-regulation of SNAI1 [50]. miR-374a-5p can
suppress the proliferation and migration of non-small cell lung cancer cells via targeting
NCK1 [51]. These hub genes may have the potential to be promising biomarkers and new
targets in therapeutic approaches for COVID-19 and sepsis.

Several drugs have previously been identified as potential COVID-19 therapeutics.
Among them, Remdesivir has been approved by the FDA as a promising antiviral drug with
a broad-spectrum antiviral activity against RNA viruses, including SARS-CoV, SARS-CoV-2,
and hepatitis C virus (HCV) [52,53]. However, several trials have found no statistically
significant differences in clinical improvement or mortality between remdesivir-treated
and control groups. Therefore, there is still an urgent need to discover novel drugs for the
treatment of COVID-19. Ten potential drugs were screened in this study. Fludroxycortide
and isoflupredone are used as anti-inflammatory treatment [54,55]. However, their poten-
tial value in the treatment of COVID-19 and sepsis need to be determined in the future.
Another potential drug, Tamibarotene, has been used in the treatment of COVID-19 [56]. In
addition, we are looking for potential drugs that may treat both diseases simultaneously.
Budesonide is a synthetic steroid with potent local anti-inflammatory effects and systemic
bioavailability, and is likely to be an effective drug for relieving the symptoms of both
COVID-19 and sepsis [57,58]. More importantly, Budesonide has also been demonstrated
to have therapeutic effects in COVID-19 patients in numerous clinical trials [59,60].

It should be noted that our results still have some limitations. All the above results, in-
cluding the identification of hub genes, regulatory networks and drug candidates, are based
on bioinformatics calculations and analyses. Basic experiments or clinical trials are still
needed to verify the biological function of hub genes and the efficacy of drug candidates.

4. Materials and Methods
4.1. Data Collection

Expression profiles were obtained from the National Center for Biotechnology Informa-
tion (NCBI) database GEO (https://www.ncbi.nlm.nih.gov/geo/; accessed on 19 August
2022) [61]. In the COVID-19 dataset (GSE179850), RNA-seq profiling was performed on
whole blood from 31 COVID-19 patients and 16 healthy donors. Whole blood of healthy
control and COVID-19 patients was collected on day 1 (admission day) [62]. The sepsis
dataset (GSE134347) contains whole blood RNA-seq data from 156 sepsis patients and
83 healthy individuals [63], and blood was collected within 24 h of ICU admission. Patient
characteristics are tabulated in original papers.

4.2. COVID-19 and Sepsis Differentially Expressed Genes

Differential analysis was performed using the R software (version 4.0.2) “limma”
package and “DESeq2” package. In the GSE179850 dataset, we set the threshold of
|log2FoldChange| ≥ 0.5 and |adj.P.Val.| < 0.05 to screen reliable differentially expressed

https://www.ncbi.nlm.nih.gov/geo/
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genes, while we set the threshold of |log2FoldChange| ≥ 1.2 and |adj.P.Val.| < 0.05 to
screen reliable differentially expressed genes in the GSE134347 dataset.

4.3. GO and KEGG Enrichment Pathway Analysis

Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were performed using the “clusterProfiler” package of R soft-
ware. The q value < 0.05 was used for identifying the significant functional items and
pathways.

4.4. Analysis of Protein–Protein Interactions (PPIs)

Networks of protein–protein interactions (PPIs) are associated with all kinds of bi-
ological processes. Construction of a PPI network will provide insight into molecular
processes [64]. Differentially expressed genes were uploaded to STRING (version 11.0) and
the median confidence 0.7 was used to construct the PPI network. Cytoscape (v.3.7.2) was
used to visualize the PPI network. Both the color and the size of the nodes indicate the
score calculated using degree topological analysis methods.

4.5. Extraction of Hub Genes

CytoHubba is a plug-in for Cytoscape that allows users to evaluate and identify the
key modulators of biological networks based on network metrics [65]. To predict hub genes,
we used CytoHubba to screen important nodes in PPI network modules. Determination of
the top 10 genes depends on the degree algorithm. The ranks of hub genes are represented
by a gradient from red to yellow. Finally, the hub genes were ranked for the shortest
accessible paths between hub genes, making them easier to observe.

4.6. Identification of Transcription Factors and miRNAs Associated with Common DEGs

Transcription factors (TFs) control chromatin and transcription by identifying specific
DNA sequences [66]. In addition to controlling genome expression, they provide essential
information for molecular understanding. Enrichr (http://amp.pharm.mssm.edu/Enrichr,
accessed on 19 August 2022) is an open-access resource that is a comprehensive gene set
enrichment analysis web server [67]. We imported common differential genes to Enrichr to
obtain TFs. Subsequently, the top ten TFs were selected according to the composite score
and visualized their interaction relationship in Cytoscape. In addition, we also performed
gene–miRNA interaction analysis using the miRTarBase module in Enrichr. MiRTarBase is
one of the most comprehensive databases of miRNA–target interactions [68]. By exploring
gene–miRNA interaction relationships, miRNAs that affect protein expression by disrupting
the stability and translation efficiency of target mature mRNA were detected [69]. Similarly,
gene–miRNA interaction relationships were visualized in Cytoscape.

4.7. Potential Drug Analysis

Analysis of effective potential drugs for COVID-19 and sepsis is one of the purposes
of this study. We used the DSigDB module in Enrichr to import common DEGs to detect
potentially effective drugs. The DSigDB is an innovative resource for identifying target
genes [70]. Subsequently, the top ten potential drugs were selected for further analysis based
on the comprehensive ranking. PubChem (https://pubchem.ncbi.nlm.nih.gov, accessed on
19 August 2022) is a repository of information on chemicals and their biological activities
for sharing, analyzing, and integrating data from other databases. We used PubChem to
download the molecular formulas of potential drugs and their two-dimensional structures
to assist drug research.

5. Conclusions

In this study, we performed DEGs analysis based on whole blood transcriptome
datasets of sepsis and COVID-19. Our study will provide a more reliable therapeutic
direction for the treatment of sepsis and COVID-19.

http://amp.pharm.mssm.edu/Enrichr
https://pubchem.ncbi.nlm.nih.gov


Int. J. Mol. Sci. 2023, 24, 2591 13 of 16

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24032591/s1.

Author Contributions: Data analysis was performed and the manuscript was written by C.F. The
study was conceptualized by Y.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Any data and R script in this study can be obtained from the cor-
responding author upon reasonable request. The final manuscript was read and approved by all
authors. In this study, publicly available datasets were analyzed. These data are available at NCBI
GEO (https://www.ncbi.nlm.nih.gov/).

Acknowledgments: The authors are grateful for the invaluable support and useful discussions with
other members of Chongqing Medical University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N. Genomic characterisation and

epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]
[PubMed]

2. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A novel coronavirus from patients
with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]

3. Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of
human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [CrossRef] [PubMed]

4. Abd El-Aziz, T.M.; Stockand, J.D. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-
CoV-2)-an update on the status. Infect. Genet. Evol. 2020, 83, 104327. [CrossRef]

5. Sohrabi, C.; Alsafi, Z.; O’neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares
global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [CrossRef]

6. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154.
[CrossRef]

7. Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection:
Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41.
[CrossRef]

8. López-Collazo, E.; Avendaño-Ortiz, J.; Martín-Quirós, A.; Aguirre, L.A. Immune Response and COVID-19: A mirror image of
Sepsis. Int. J. Biol. Sci. 2020, 16, 2479. [CrossRef]

9. Li, H.; Liu, L.; Zhang, D.; Xu, J.; Dai, H.; Tang, N.; Su, X.; Cao, B. SARS-CoV-2 and viral sepsis: Observations and hypotheses.
Lancet 2020, 395, 1517–1520. [CrossRef]

10. O’Brien, J.M., Jr.; Ali, N.A.; Aberegg, S.K.; Abraham, E. Sepsis. Am. J. Med. 2007, 120, 1012–1022. [CrossRef]
11. Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.;

Coopersmith, C.M. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810.
[CrossRef]

12. Cavaillon, J.-M.; Adib-Conquy, M.; Fitting, C.; Adrie, C.; Payen, D. Cytokine cascade in sepsis. Scand. J. Infect. Dis. 2003, 35,
535–544.

13. Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [CrossRef] [PubMed]
14. Salomão, R.; Cunha, F.Q.; Dal-Pizzol, F. Sepsis and COVID-19: Cross-Talk in Signaling Pathways and in Therapeutic Perspectives.

Front. Med. 2022, 9, 917792. [CrossRef] [PubMed]
15. Martin, T.R.; Wurfel, M.M.; Zanoni, I.; Ulevitch, R. Targeting innate immunity by blocking CD14: Novel approach to control

inflammation and organ dysfunction in COVID-19 illness. EBioMedicine 2020, 57, 102836. [CrossRef]
16. Rittirsch, D.; Flierl, M.A.; Ward, P.A. Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 2008, 8, 776–787. [CrossRef]
17. Gauer, R.L. Early recognition and management of sepsis in adults: The first six hours. Am. Fam. Physician 2013, 88, 44–53.
18. Cox, M.J.; Loman, N.; Bogaert, D.; O’Grady, J. Co-infections: Potentially lethal and unexplored in COVID-19. Lancet Microbe 2020,

1, e11. [CrossRef]
19. Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S. Viral and host factors related to the clinical outcome

of COVID-19. Nature 2020, 583, 437–440. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms24032591/s1
https://www.mdpi.com/article/10.3390/ijms24032591/s1
https://www.ncbi.nlm.nih.gov/
http://doi.org/10.1016/S0140-6736(20)30251-8
http://www.ncbi.nlm.nih.gov/pubmed/32007145
http://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
http://doi.org/10.1016/j.jare.2020.03.005
http://www.ncbi.nlm.nih.gov/pubmed/32257431
http://doi.org/10.1016/j.meegid.2020.104327
http://doi.org/10.1016/j.ijsu.2020.02.034
http://doi.org/10.1038/s41579-020-00459-7
http://doi.org/10.1002/JLB.3COVR0520-272R
http://doi.org/10.7150/ijbs.48400
http://doi.org/10.1016/S0140-6736(20)30920-X
http://doi.org/10.1016/j.amjmed.2007.01.035
http://doi.org/10.1001/jama.2016.0287
http://doi.org/10.1016/S0140-6736(18)30696-2
http://www.ncbi.nlm.nih.gov/pubmed/29937192
http://doi.org/10.3389/fmed.2022.917792
http://www.ncbi.nlm.nih.gov/pubmed/35707525
http://doi.org/10.1016/j.ebiom.2020.102836
http://doi.org/10.1038/nri2402
http://doi.org/10.1016/S2666-5247(20)30009-4
http://doi.org/10.1038/s41586-020-2355-0


Int. J. Mol. Sci. 2023, 24, 2591 14 of 16

20. Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun.
2020, 109, 102433. [CrossRef]

21. Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.
Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19).
Intensive Care Med. 2020, 46, 854–887. [CrossRef] [PubMed]

22. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
23. Rahman, M.R.; Islam, T.; Shahjaman, M.; Islam, M.R.; Lombardo, S.D.; Bramanti, P.; Ciurleo, R.; Bramanti, A.; Tchorbanov, A.;

Fisicaro, F. Discovering common pathogenetic processes between COVID-19 and diabetes mellitus by differential gene expression
pattern analysis. Brief. Bioinform. 2021, 22, bbab262. [CrossRef] [PubMed]

24. Ahmed, F.; Asghar Ansari, J.; Eqbal Ansari, Z.; Alam, Q.; Hua Gan, S.; A Kamal, M.; Ahmad, E. A molecular bridge: Connecting
type 2 diabetes and Alzheimer’s disease. CNS Neurol. Disord. Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) 2014,
13, 312–321. [CrossRef]

25. Peng, W.F.; Bai, F.; Shao, K.; Shen, L.S.; Li, H.H.; Huang, S. The key genes underlying pathophysiology association between the
type 2-diabetic and colorectal cancer. J. Cell. Physiol. 2018, 233, 8551–8557. [CrossRef]

26. Russell, J.A. Management of sepsis. N. Engl. J. Med. 2006, 355, 1699–1713. [CrossRef] [PubMed]
27. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with

2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef] [PubMed]
28. Rimmelé, T.; Kellum, J.A. Clinical review: Blood purification for sepsis. Crit. Care 2011, 15, 1–10. [CrossRef]
29. DeKosky, S.T.; Kochanek, P.M.; Valadka, A.B.; Clark, R.S.; Chou, S.H.-Y.; Au, A.K.; Horvat, C.; Jha, R.M.; Mannix, R.; Wisniewski,

S.R. Blood biomarkers for detection of brain injury in COVID-19 patients. J. Neurotrauma 2021, 38, 1–43. [CrossRef]
30. Whetton, A.D.; Preston, G.W.; Abubeker, S.; Geifman, N. Proteomics and informatics for understanding phases and identifying

biomarkers in COVID-19 disease. J. Proteome Res. 2020, 19, 4219–4232. [CrossRef]
31. Griffiths, E.K.; Krawczyk, C.; Kong, Y.-Y.; Raab, M.; Hyduk, S.J.; Bouchard, D.; Chan, V.S.; Kozieradzki, I.; Oliveira-dos-Santos,

A.J.; Wakeham, A. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 2001, 293,
2260–2263. [CrossRef] [PubMed]

32. Jensen, I.J.; Sjaastad, F.V.; Griffith, T.S.; Badovinac, V.P. Sepsis-induced T cell immunoparalysis: The ins and outs of impaired T
cell immunity. J. Immunol. 2018, 200, 1543–1553. [CrossRef] [PubMed]

33. Saini, S.K.; Hersby, D.S.; Tamhane, T.; Povlsen, H.R.; Hernandez, S.P.A.; Nielsen, M.; Gang, A.O.; Hadrup, S.R. SARS-CoV-2
genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation in COVID-19 patients.
Sci. Immunol. 2021, 6, eabf7550. [CrossRef] [PubMed]

34. Roukens, A.H.; Pothast, C.R.; König, M.; Huisman, W.; Dalebout, T.; Tak, T.; Azimi, S.; Kruize, Y.; Hagedoorn, R.S.; Zlei, M.
Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell
responses following COVID-19. Nat. Immunol. 2022, 23, 23–32. [CrossRef]

35. Zhang, Q.; Honko, A.; Zhou, J.; Gong, H.; Downs, S.N.; Vasquez, J.H.; Fang, R.H.; Gao, W.; Griffiths, A.; Zhang, L. Cellular
nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020, 20, 5570–5574. [CrossRef]

36. Guo, L.; Shen, S.; Rowley, J.W.; Tolley, N.D.; Jia, W.; Manne, B.K.; McComas, K.N.; Bolingbroke, B.; Kosaka, Y.; Krauel, K. Platelet
MHC class I mediates CD8+ T-cell suppression during sepsis. Blood 2021, 138, 401–416. [CrossRef]

37. Zhang, Y.; Chen, Y.; Li, Y.; Huang, F.; Luo, B.; Yuan, Y.; Xia, B.; Ma, X.; Yang, T.; Yu, F. The ORF8 protein of SARS-CoV-2 mediates
immune evasion through down-regulating MHC-I. Proc. Natl. Acad. Sci. USA 2021, 118, e2024202118. [CrossRef]
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