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Abstract: The overexpression of the pH regulator carbonic anhydrase IX (CAIX) due to hypoxic/
metabolic stress was reported in various tumors as an adverse prognostic feature. Our retrospective
study aimed to investigate the general pattern and dynamics of CAIX expression in rectal adenocar-
cinoma following preoperative neoadjuvant therapy (NAT) in matched initial biopsy and surgical
resection samples. A total of 40/55 (72.72%) of the post-treatment samples showed partial CAIX
expression, frequently in the proximity of hypoxic tumor areas. CAIX expression showed a significant
increase in post-treatment tumors (mean% 21.8 ± 24.9 SD vs. 39.4 ± 29.4 SD, p < 0.0001), that was not
obvious in untreated tumors (mean% 15.0 ± 21.3 SD vs. 20 ± 23.02, p = 0.073). CAIXhigh phenotype
was associated with mutant KRAS status and lack of pathological regression (WHO Tumor Regression
Grade 4 and 5). However, the adverse effect of CAIX on overall or progression-free survival could not
be statistically confirmed. In conclusion, the dynamic upregulation of CAIX expression is a general
feature of rectal adenocarcinoma following neoadjuvant chemo-radiotherapy indicating therapy-
induced metabolic reprogramming and cellular adaptation. A synergism of the CAIX-associated
regulatory pathways and the mutant KRAS oncogenic signaling most likely contributes to therapy
resistance and survival of residual cancer.
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1. Introduction

The treatment efficacy in colorectal carcinoma (CRC) depends on standard variables,
such as the location, the histology subtype, the predictive genetic background, and the
stage of the tumor [1]. However, individual biological features determine functional
differences resulting in heterogeneous responses to chemo- and radiotherapy. Inadequate
perfusion and related tissue hypoxia belong to the yet-underscored causes of regional
tumor resistance [2,3]. Hypoxia interferes with basic cellular and physiological processes,
including cell proliferation, quiescence and apoptosis, glucose metabolism, pH regulation,
and angiogenesis, contributing to the survival of cancer cells [4,5]. The activation of
adaptive mechanisms circumventing hypoxic damage is a hallmark of aggressive cancers
with poor prognoses. As part of the adaptive process, intracellular acidosis in cancer cells
with anaerobic metabolism is compensated at the expense of the extracellular pH, inducing
functional changes in the hypoxic microenvironment, further promoting resistance and
cancer progression [2,4,6].

Carbonic anhydrases belong to a family of zinc metalloenzyme proteins that catalyze
the rapid and reversible hydration of carbonic dioxide to bicarbonate and protons as part
of the cellular pH regulatory system. Carbonic anhydrase IX (CAIX) plays a significant role
in the adaptive response to hypoxia concerted by hypoxia-inducible factor-1 (HIF-1), both
in normal and cancer cells. Moreover, by the contribution to microenvironmental acidosis,
CAIX is involved in tumor-stroma and tumor-immune cell interactions and accelerates
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extracellular matrix degradation, thereby facilitating the invasion and proliferation of
acid-resistant cells [7–11]. The overexpression of CAIX due to hypoxic stress was reported
as an adverse prognostic feature in various tumors [12–19]. CAIX-related changes are
considered complex mechanisms that classical anticancer drugs and biological therapies
cannot effectively exploit [20,21]. The inhibition of the pH regulator CAIX to increase
cellular vulnerability and restore acidic extracellular pH resulted in impaired tumor growth
and reduced metastatic potential of various types of tumor cells [8,20].

Earlier data suggest a prognostic role of CAIX upregulation due to hypoxia in col-
orectal carcinoma [17,22,23]. However, its distribution and dynamic nature have not been
studied in detail. According to our hypothesis, anti-tumor therapies, such as neoadjuvant
therapy have a basic effect on cancer cell metabolism and perfusion which is also reflected
by cellular adaptation, such as measurable changes in CAIX expression. As a model sys-
tem, rectal adenocarcinoma samples taken before (diagnostic biopsy) and after (surgical
resection) were evaluated and compared with untreated cases for CAIX expression and
other available variables of the disease. Our retrospective study aimed to investigate (i) the
general pattern of CAIX expression in rectal adenocarcinoma as demonstrated by immuno-
histochemistry; (ii) the expression of CAIX in rectal adenocarcinomas that were untreated
(UT) and following preoperative neoadjuvant therapy (NAT); (iii) the relationship of CAIX
expression in pretreatment biopsy samples compared to treated surgical specimens (control
group); (iv) the correlation of CAIX expression with pathological and biological status
including the cell proliferation, tumor regression grade, and the KRAS mutational status;
(v) the effect of CAIX on patient survival.

2. Results
2.1. CAIX Expression Pattern in Rectal Adenocarcinoma Samples

CAIX expression occurred in a highly variable form and amount in the evaluated
rectal adenocarcinoma samples. In general, selective staining of tumor cells was seen, while
normal/unaffected rectal mucosa proved to be negative for CAIX. Within tumor areas,
characteristic and selective cell membrane staining was observed with variable intensity.
Regarding the distribution in individual cases, a strong association with necrotic foci could
be recognized, presenting a strong perinecrotic tumor cell labeling and a dynamic loss
toward the more distant layers. The relation to necrosis was closer evaluated in surgical
resection samples: NAT resections presented with necrosis in 40 out of the 55 evaluated
samples (72.72%). CAIX positivity was seen in 24 (60%) around the perinecrotic area and
no CAIX expression was identified in 16 (40%) cases. In the 34 cases of UT resected samples,
29 out of the 34 evaluated samples (85.29%) were identified with necrotic areas, of which
26 (89.65%) showed CAIX positivity around the necrotic area, while 3 (10.34%) samples
remained negative for CAIX (Figure 1).

Interestingly, CAIX expression in areas with severe dysplasia could also be frequently
identified, well separating the area from the normal epithelium or low-grade changes. Mod-
erate to severe dysplasia with characteristic membrane CAIX expression was identified in
5/55 (9.09%) of the NAT surgical specimens and 5/34 (14.7%) of the UT surgical specimens
(Figure 2).
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Figure 1. CAIX expression pattern in rectal adenocarcinoma. Conventional HE staining (left, 10×)
and CAIX immunostaining (right) of equivalent tumor areas presenting selective cell membrane
staining. CAIX expression was predominantly found in association with necrotic tumor areas with
variable heterogeneity (top and middle inserts, 10×). Robust membrane labeling in a uniform fashion
was seen in some solid areas of the tumor (bottom row, 40×).

Figure 2. Selective CAIX expression in areas with moderate to severe dysplasia next to rectal
adenocarcinoma (upper row 10×, lower row 40×).



Int. J. Mol. Sci. 2023, 24, 2581 4 of 16

Further to the neoplastic cell clusters of glandular epithelial origin, CAIX expression
within the tumor neostroma was also seen. Increased CAIX expression within the tumor
stroma was observed in 24/55 (43.63%) of the NAT surgical samples while 31/55 (57.37%)
were stroma CAIX-negative. In the UT group of 34 cases, only 9/34 (26.47%) of the surgical
specimens showed stromal positivity for CAIX (Figure 3).

Figure 3. CAIX expression in epithelial and mesenchymal cells of the neostroma in rectal carcinoma
(upper row 10×, lower row 40×).

2.2. Expression Dynamics of CAIX in Neoadjuvant-Treated Rectal (NAT) Adenocarcinomas
(n = 55)

CAIX expression was quantified in all samples by defining the proportion of positive
labeling in the percentage of the tumor area. The labeling in the individual samples from
before and after treatment was compared. In the statistical analysis of the NAT biopsy and
the NAT surgical specimen, we found a marked increase in CAIX following the treatment
(mean 21.8 ± 24.9 SD vs. 39.4 ± 29.4 SD) which was found to be statistically significant
(Wilcoxon matched rank test p < 0.0001). Further, a positive mathematical correlation
between the biopsy and the surgical sample was demonstrated (Spearman correlation test
p < 0.0001, rho: 0.5654) (Figure 4A,B).

For further comparison, the 55 NAT and 34 UT rectal carcinomas were split exactly by
the median CAIX percentage and classified as CAIXlow and CAIXhigh carcinomas. Avail-
able clinicopathological data were evaluated to represent potential differences associated
with CAIX status. Most importantly, statistical significance between CAIX expression and
mutant KRAS status could be established (biopsy p < 0.0151; surgical specimens p < 0.0316),
while no correlation with any other clinicopathological parameters was found. The results
are shown in Table 1.
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Figure 4. Distribution of CAIX expression in NAT biopsies (NAT B) and NAT surgical resection
samples (NAT R) (n = 55). (A) Cumulative result of CAIX tumor labeling (range 0–90% for both groups,
mean 21.8 ± 24.9 SD vs. 39.4 ± 29.4 SD, respectively), where the CAIX labeling is significantly different
(p < 0.0001, ****: statistically highly significant); (B) correlation of CAIX expression determined
between NAT B (pretreatment) and NAT R (post-treatment) samples of the NAT cancer group (p <
0.0001, rho: 0.5654).

Table 1. Statistical distribution of CAIX expression concerning clinicopathological parameters of
NAT rectal adenocarcinoma.

Clinicopathological
Parameters in

Treated Patients

Quantity of CAIX
Expression in Biopsy

Quantity of CAIX Expression
in Resection

Fisher’s Exact
Test in Biopsy

Fisher’s Exact
Test in Resection

CAIXlow CAIXhigh CAIXlow CAIXhigh

Total (n = 55) 27 28 26 29 p > 0.9999

Sex

p > 0.7807Male (n = 35) 19 16 18 17 p > 0.4032

Female (n = 20) 8 12 9 11

Grade of tumor

G2 (n = 36) 20 16 19 17

G3 (n = 17) 6 11 6 11 p > 0.4466 p > 0.5609

G4 (n = 2) 1 1 1 1

Lymph nodes

positive (n = 16) - - 9 7
- p > 0.5532

negative (n = 39) - - 17 22

Metastasis

present (n = 11) - - 6 5
- p > 0.9999

absent (n = 44) - - 24 20
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Table 1. Cont.

Clinicopathological
Parameters in

Treated Patients

Quantity of CAIX
Expression in Biopsy

Quantity of CAIX Expression
in Resection

Fisher’s Exact
Test in Biopsy

Fisher’s Exact
Test in Resection

CAIXlow CAIXhigh CAIXlow CAIXhigh

Necrosis

present (n(B) = 2;
n(R) = 24) 8 7 9 15

p > 0.4706 p > 0.1965
absent (n(B) = 15;

n(R) = 16) 0 2 10 6

Stroma

present (n(B) = 4;
n(R) = 24) 2 2 13 11

p > 0.9999 p > 0.4183
absent (n(B) = 51;

n(R) = 31) 25 26 13 19

Tumor-infiltrating
lymphocytes

present (n(R) = 24) - - 13 11
- p > 0.7910

absent (n(R) = 31) - - 18 13

Mucinous
phenotype

present (n = 11) 3 8 4 7
p > 0.1771 p > 0.5104

absent (n = 44) 24 20 22 22

Tumor regression
grade

TRG2 (n = 14) 9 5 5 9

p > 0.0660 p > 0.0590
TRG3 (n = 21) 13 8 12 9

TRG4 (n = 14) 4 10 4 10

TRG5 (n = 6) 1 5 0 6

KRAS status

wild-type (n = 25) 17 8 16 9
p < 0.0151 p < 0.0316

mutant (n = 30) 10 20 10 20

2.3. Immunohistochemical CAIX Expression of Untreated (UT) Rectal Adenocarcinoma (n = 34)

Untreated rectal adenocarcinoma samples were evaluated the same way as previously
presented. CAIX expression was highly variable with values ranging from 0 to 80%. In
contrast to the NAT tumor group, the statistical analysis of the UT biopsy and the UT
surgical specimen did not result in statistical difference regarding CAIX expression (mean
15.0 ± 21.3 SD vs. 20.0 ± 23.02, Wilcoxon matched rank test p < 0.073) but the correlation
between the biopsy and surgical samples could be well established (Spearman correlation
test p < 0.0001, rho: 0.8077) (Figure 5A,B).

Classification as CAIXlow and CAIXhigh based on the median CAIX score in UT
samples was followed by the analysis of related clinicopathological data. Similar to the
NAT group of carcinomas, we found a statistically significant correlation between CAIX ex-
pression and the KRAS status when biopsy CAIX values were considered (biopsy p < 0.0454;
surgical specimens p < 0.0921). All other evaluated parameters were independent of the
CAIX status (Table 2).
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Figure 5. Distribution of CAIX expression in untreated biopsies (UT B) and matching surgical
resection samples (UT R) (n = 34). (A) The range of CAIX tumor labeling was 0–80% for both sample
types, but a significant difference is not provided (mean 15.0 ± 21.3 SD vs. 20 ± 23.02, p = 0.073, ns:
statistically not significant); (B) correlation between UT B and UT R CAIX expression in the UT cancer
group (p < 0.0001, rho: 0.8077).

Table 2. Statistical distribution of CAIX expression concerning clinicopathological parameters of
untreated (control) rectal adenocarcinoma samples.

Clinicopathological
Parameters in

Untreated Patients

Quantity of CAIX Expression
in Biopsy

Quantity of CAIX Expression
in Resection

Fisher’s Exact
Test in Biopsy

Fisher’s Exact
Test in Resection

CAIXlow CAIXhigh CAIXlow CAIXhigh

Total (n = 34) 15 19 14 20 p > 0.9999

Sex

p > 0.2714Male (n = 23) 12 11 12 11 p > 0.4768

Female (n = 11) 4 7 3 8

Grade of tumor

G1 (n(B) = 1, n(R) = 1) 0 1 0 1

p > 0.3547 p > 0.9068

G2 (n(B) = 28,
n(R) = 19) 14 14 9 10

G3 (n(B) = 5,
n(R) = 13) 1 4 5 8

G4 (n = 1 R) - - 0 1

Lymph nodes

positive (n = 17) - - 6 11
- p > 0.7283

negative (n = 17) - - 8 9

Metastasis

present (n = 5) - - 1 4
- p > 0.3786

absent (n = 29) - - 13 16
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Table 2. Cont.

Clinicopathological
Parameters in

Untreated Patients

Quantity of CAIX Expression
in Biopsy

Quantity of CAIX Expression
in Resection

Fisher’s Exact
Test in Biopsy

Fisher’s Exact
Test in Resection

CAIXlow CAIXhigh CAIXlow CAIXhigh

Necrosis

present (n(B) = 2;
n(R) = 26) 0 2 9 17

p > 0.4667 p > 0.5320
absent (n(B) = 4;

n(R) = 3) 2 2 0 3

Stroma

present (n(B) = 0;
n(R) = 9) - - 3 6

- p > 0.9999
absent (n(B) = 34;

n(R) = 25) 14 20 8 17

Tumor-infiltrating
lymphocytes

present (n(R) = 19) - - 5 9
- p > 0.4953

absent (n(R) = 15) - - 10 10

Mucinous
phenotype

present (n = 6) 2 4 1 5
p > 0.6722 p > 0.3636

absent (n = 28) 13 15 13 15

KRAS status

Wild-type (n = 18) 11 7 10 8
p < 0.0454 p > 0.0921

mutant (n = 16) 4 12 4 12

2.4. Tumor Regression Grade and CAIX in NAT Biopsy and NAT Surgical Specimens (n = 55)

To investigate the effect of neoadjuvant treatment, we determined the tumor regression
grade (TRG) according to the WHO recommendations in the NAT surgical specimens that
were obtained following therapy. The resulting TRG was correlated with CAIX expression
of the same post-treatment sample, but also with the pretreatment biopsy scores for poten-
tial predictive features. When evaluating pretreatment biopsies, the majority of TRG2–3
cases were associated with CAIXlow (64.3 and 61.9%), and reverse, TRG4–5 cases with
the CAIXhigh phenotype (71.4 and 83.3%), indicating an increased potential of treatment
failure in initially CAIXhigh tumors. In contrast, CAIX expression proved to be generally
increased following NAT, also contributing to elevated scores in residual tumors with low
regression grades. Nevertheless, tumors with limited/no treatment response (TRG4–5)
presented with the CAIXhigh phenotype (71.4% and 100.0%) (Figure 6A,B).

2.5. KRAS Status and CAIX Expression in NAT and UT

We determined the KRAS mutational profile in all rectal adenocarcinoma samples that
were included which allowed a comparison with CAIX expression data. The comparison
of KRAS mutant and wild-type tumor groups confirmed significant differences as KRAS
mutant samples presented with much higher CAIX scores and the correlation of CAIX
expression proved to be statistically significant in NAT biopsies, surgical samples, and
UT biopsies, but not in UT surgical samples, according to the Fisher’s exact test (p < 0.05)
(Figure 7A–D).
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Since the KRAS mutant rectal adenocarcinomas were significantly more represented
in the CAIXhigh group uniformly for both NAT and UT samples, we also performed a
combined analysis using the exact CAIX scores related to the KRAS status in the unified
rectal carcinoma cohort (n = 89, mutant n = 46, and wild type n = 43). As expected, the
CAIX expression score proved to be significantly higher in KRAS mutant cases (initial
biopsies: wild-type mean 16.28 ± 24.34 vs. mutant mean 27.67 ± 24.60; Mann–Whitney test
p = 0.0138; NAT & UT surgical samples: wild-type mean 25.51 ± 25.10 vs. 43.15 ± 27.62;
Mann–Whitney test p = 0.002) (Figure 8A,B).
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2.6. Patient Survival and CAIX Expression in NAT and UT Samples

Next, we were looking at the correlation of CAIX expression in NAT biopsy and
surgery samples with overall survival (OS) and progression-free survival (PFS). According
to the statistical analysis (Kaplan–Meier curves), no significant difference in OS or PFS
could be measured between the CAIXhigh and CAIXlow categories (OS biopsies p = 0.9769
vs. surgical samples p = 0.6585; PFS biopsies p = 0.2129 vs. 0.7382).

Similarly, the evaluation of UT biopsy and surgery samples did not result in a sig-
nificant correlation between OS and PFS and the CAIXhigh and CAIXlow expression
groups (OS biopsies p = 0.1620 vs. surgical samples p = 0.7940; PFS biopsies p = 0.4830 vs.
p = 0.1380).

3. Materials and Methods
3.1. Patients and Study Design

The study was based on archived formaldehyde fixed and paraffin-embedded his-
tological samples diagnosed and stored at the Department of Pathology, Clinical Center,
University of Debrecen. The investigation was performed in agreement with the highest
ethical standards and covered by the national ethical approval (IRB reference number:
60355-2/2016/EKU and IV/8465-3/2021/EKU).

We examined 55 matched initial biopsies and post-treatment surgical samples that
were obtained from patients with rectal adenocarcinoma diagnosis undergoing preopera-
tive neoadjuvant chemo-radiotherapy (NAT group). In addition, 34 matched biopsies and
surgical samples were included from untreated rectal adenocarcinoma patients (UT group).
Patients undergoing NAT received the following treatments based on the prescribed proto-
cols: Capecitabine monotherapy protocol 2500 mg/m2; Mayo protocol: Fluorouracil (5-FU)
425 mg/m2 and calcium folinate (FOL) 20 mg/m2 and Fluorouracil (5-FU) monotherapy
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protocol 500 mg/m2. All patients received radiotherapy (total dose of 50.4 Gy (1.8 Gy/day,
5 days/week) together with chemotherapy, two cases received only radiotherapy.

The selection criteria included that the basic condition of the treatment was at least
TNM Stage II, and both the biopsy and the resection sample contained representative tumor
tissue for accurate analysis of the CAIX expression. Basic clinical and histopathological
parameters, including sex, tumor grade and depth, presence/absence of metastasis, muci-
nous phenotype, KRAS status, type of neoadjuvant treatment, and tumor regression grade,
were compared. The characteristics of the study group are summarized in Table 3.

Table 3. Clinico-pathological and biological characteristics of rectal adenocarcinomas treated with
neo-adjuvant therapy (NAT) and untreated controls (UT) evaluated in the study.

NAT Treated Patients UT (Control) Patients

Characteristics Classification % (N = 55) Classification % (N = 34)

Sex
Male 35 Male 23

Female 20 Female 11

Age
Male (range) 68.6 (41–85) Male 68.43 (51–84)

Female (range) 66.2 (52–84) Female 69 (52–83)

Histological grade

G1 0 G1 1

G2 36 G2 19

G3 17 G3 13

G4 2 G4 1

Tumor depth

T1 0 T1 3

T2 29 T2 9

T3 25 T3 19

T4 1 T4 3

Nx 0 Nx 2

N0 33 N0 10

N1 15 N1 14

N2 7 N2 8

Mx 51 Mx 0

M0 0 M0 0

M1 (liver) 4 M1 (liver) 1

Mucinous
phenotype

Present 11 Present 6

Absent 44 Absent 28

KRAS status
Wild-type 25 Wild-type 18

Mutant 30 Mutant 16

Type of neoadjuvant
treatment

Capecitabine & RT 32

5FU & FOL & RT 16

5FU &RT 5

RT 2

Tumor regresssion
grade

R1 0

R2 14

R3 21

R4 14

R5 6
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3.2. Immunohistochemical Detection of CAIX

Tumor samples were received after primary colonoscopic biopsy and surgical tumor
resection in PBS-buffered formaldehyde solution (4%) for standard tissue processing. FFPE
embedding and histology were performed in the Department of Pathology, University of
Debrecen. Sections that were 3 µm were cut on silanized slides from the selected blocks
and immunohistochemical staining was performed as usual.

The IHC procedure was as follows: Carbonic Anhydrase IX/CAIX (clone EP161) rabbit
monoclonal antibody (cat. nr. 379R-16, Cell Marque/Sigma-Aldrich, Rocklin, CA, USA),
dilution was 1/200. For antigen retrieval, the Cell Conditioning Solution (ULTRA CC1)
Tris-based buffer (pH 8.5, cat. nr. 950-224) was used for 48 min at 100 ◦C. The incubation
was for 48 min at 37 ◦C in a BenchMark Ultra immunostaining machine (Roche Diagnostics,
Tucson, AZ, USA). The reaction was detected with the OptiView DAB IHC Detection kit
(cat. no. 760–700), followed by Hematoxylin II (cat. nr. 790–2208) staining according to the
manufacturer’s instructions.

The immunostainings were evaluated using light microscopy independently by two
histopathologists (EB, GM) in a blinded fashion. If conflicting values were obtained, the
decision was made by mutual agreement following personal discussion. The expression
of CAIX was quantified using a visual grading system based on the extent of staining
(percentage of positive tumor cells: 0–100%). A median value was calculated from the
obtained percentage expression values. Depending on the median value, the CAIXlow and
CAIXhigh groups were formed for further analysis: the CAIXlow group included all cases
with CAIX values below the median, including negative staining results and the CAIXhigh
group represented cases with values equal to/above the median. CAIXlow and CAIXhigh
categories were separately evaluated within the NAT and UT groups. For comparison,
we investigated the distribution of CAIX and general features of CAIXlow and CAIXhigh
categories in both initial biopsy and surgical resection samples.

3.3. Tumor DNA Extraction from FFPE Tissue Samples

Tumor samples with a >20% tumor percentage were selected based on H & E staining
for molecular analysis. Genomic DNA was extracted from FFPE tissues using QIAamp
DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). The DNA concentration was measured
in the Qubit dsDNA HS Assay Kit using a Qubit 4.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA).

3.4. Mutation Testing Using StripAssay

Reverse hybridization was carried out using the KRAS XLStripAssay according to
the manufacturer’s protocol (ViennaLab Diagnostics, Vienna, Austria). The assay certified
for human in vitro diagnostics (IVD) covers 29 clinically relevant mutations of the KRAS
gene. Hybridization strips were aligned using the standardized layout supplied with the
reagents for interpretation. Positive bands allowed the determination of the KRAS mutant
status and the accurate identification of individual KRAS variants.

3.5. Statistical Analysis

We used GraphPad Prism 8 statistical software (Dotmatics, Boston, MA, USA) from
which Wilcoxon matched rank test, Spearman correlation test, Mann–Whithney U test, and
the VassarStats (http://vassarstats.net, accessed on 4 January 2023) online software was
used to apply the Fisher’s exact test which was to evaluate the statistically significant asso-
ciation between the expression of proteins and clinical and histopathological parameters.
Only p < 0.05 was considered significant.

4. Discussion

The present study focuses on the dynamic expression of hypoxic stress-related CAIX
in rectal adenocarcinoma determined by immunohistochemistry. Diagnostic rectoscope
samples and post-treatment surgical resection samples from neoadjuvant-treated cases

http://vassarstats.net
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and untreated control cases were compared. As expected, CAIX expression was limited
to a variable fraction of cancer cells in a highly specific cell membrane localization. The
extent of CAIX was heterogenous and individual, stretching over a wide spectrum from 0
to 90% of the tumor cell compartment. CAIX characteristically presented in the proximity
of tumor necrotic foci, but larger solid areas lacking necrosis were also seen. Moreover,
areas with severe dysplasia could be distinct by increased CAIX labeling compared to
the surrounding normal glandular epithelium. Due to the intratumoral complexity of the
labeling, the sample cohort was split by creating the CAIXlow and CAIXhigh categories for
further analysis. In our study, the CAIX expression showed no statistical correlation with
most of the conventional clinic-pathological parameters. Similar results were published by
Korkeila et al., who investigated CAIX expression in 166 samples of rectal carcinoma and
found that the CAIX expression pattern was independent of the selected parameters, e.g.,
size, nodal status, or grade of the tumor [22]. Kovacova and Hodorova also concluded that
CAIX expression was not significantly associated with sex, grade of tumor, nodal status, or
presence/absence of metastasis [23]. Tupa et al. also did not detect a significant difference
between CAIX expression and clinical-morphological characteristics [24].

In our current analysis, we aimed to compare CAIX expression dynamics by including
pretreatment, post-treatment, and untreated control rectal carcinoma samples. We hypothe-
sized that chemo-radiotherapy-related stress and perfusion deficiency are associated with
hypoxic damage and the induction of adaptive mechanisms. As an important observation,
a significant increase of CAIX could be demonstrated following chemo-radiotherapy in
the surgical resection samples (NAT), while this was not obvious in the untreated (UT)
tumor samples. In a single report, Guedj et al. in their study pointed out that CAIX expres-
sion was significantly lower in pretreatment biopsy specimens from responders than in
non-responders [25]. In our samples, the local effects of chemo-radiotherapy were visible
by standard histology, including tissue remodeling following mass tissue damage and
tumor necrosis. Residual tumor areas persisted with reduced cell proliferation activity
(determined by the Ki-67 labeling index), a regressive feature that is related to the direct
cytotoxic effect and loss of proper tissue perfusion. In line with other histological changes,
the overexpression of CAIX demonstrated here may indicate hypoxia-driven adaptation
which potentially contributes to the resistance mechanisms leading to limited treatment
response rates.

Aggressive tumor behavior and treatment resistance are associated with the occurrence
of driver mutations. In this cohort, we were able to evaluate the relationship of CAIX
expression with the KRAS mutational status which proved to be correlated, as KRAS
mutant rectal adenocarcinomas presented initially and following neoadjuvant therapy with
significantly higher CAIX scores and CAIXhigh phenotype. This relation was observed
independently of the treatment status and indicates a close interaction of mutant KRAS-
activated MAPK pathway with cancer cell metabolism and oxygen demand in rectal
carcinoma. This mechanism is supported by McDonald et al., who examined the pH
regulation by CAIX in pancreatic ductal adenocarcinoma cells with activated KRAS. In
response to hypoxia, KRAS-activated pancreatic ductal adenocarcinoma cells presented
with CAIX overexpression through the stabilization of HIF1A and HIF2A, as an adaptive
process to maintain pH and glycolysis. This study suggests CAIX functions as a critical
vulnerability in KRAS-driven pancreatic ductal adenocarcinoma [15].

A widely used measure of therapy failure is the tumor regression grade which can
be estimated and classified in post-treatment surgical samples [26,27]. The analysis of
CAIX expression presented that the lack of significant tumor regression (TRG 4–5) was
associated with the CAIXhigh phenotype determined in both pre-treatment biopsies and
post-treatment rectal carcinoma specimens. This indicates a potentially increased resis-
tance of CAIX-expressing cancer cells and suggests the utility of CAIX scoring for the
characterization of post-treatment tumors [28–30].

Despite these particular correlations, the true prognostic role of CAIX remains rather
controversial. Our study was not able to demonstrate long-term survival differences be-
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tween CAIXlow and CAIXhigh disease groups. However, earlier findings are contradictory
regarding the predictive significance of CAIX, which might be primarily associated with
the complexity of target determination and sample cohorts. CAIX expression was re-
ported to be significantly associated with decreased disease-specific survival [2]. In reverse,
rectal cancer patients with negative or weak CAIX staining intensity had significantly
longer disease-free survival [22]. Kuijik et al., in their review study stated that patients
with high CAIX expression in colorectal carcinomas could expect shorter disease-free and
progression-free survival, and worse metastasis-free survival [17]. On the contrary, the
analysis of 539 colorectal patients for cancer-associated carbonic anhydrases did not result
in a significant correlation between major clinical parameters, survival, and extent of CAIX
immunostaining [31]. Debucquoy et al. also claimed, based on their results, that CAIX has
no prognostic significance [28]. As an interesting finding, CAIX mean protein expression
intensity was significantly upregulated in ulcerative colitis-associated colorectal carcinoma
compared with sporadic colorectal carcinoma suggesting CAIX as a marker to address can-
cer etiology [29]. The discrepancies may be explained by the variability of the population
composition, histological subtypes, antibodies, detection systems, statistical methods, and
lack of standardization.

It is getting increasingly clear that individual sensitivity to hypoxia and acidosis is
a critical feature of cancer. Despite many debatable points, our present work seems to
extend the current knowledge with several important findings: (i) CAIX is inducible and
significantly increased by the neoadjuvant chemo-radiotherapy in rectal adenocarcinoma;
(ii) failure in tumor response defined by TRG following neoadjuvant therapy is associated
with high CAIX expression; (iii) the mutant KRAS status is associated with increased
CAIX expression and their synergistic effects can be suspected in cancer progression and
treatment failure. Studies on CAIX expression in rectal adenocarcinoma allowed a deeper
insight into the phenotypic changes of the cancer tissue upon hypoxic stress but the clinical
significance of the hypoxia-CAIX axis in individual cases is still to be established.
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