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Abstract: The selection of plant genotypes with improved productivity and tolerance to environ-
mental constraints has always been a major concern in plant breeding. Classical approaches based
on the generation of variability and selection of better phenotypes from large variant collections
have improved their efficacy and processivity due to the implementation of molecular biology tech-
niques, particularly genomics, Next Generation Sequencing and other omics such as proteomics
and metabolomics. In this regard, the identification of interesting variants before they develop the
phenotype trait of interest with molecular markers has advanced the breeding process of new vari-
eties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein
abundance has boosted the identification of potential new regulators of the traits of interest, using
a relatively low number of variants. These important breakthrough technologies, built on top of
classical approaches, will be improved in the future by including the spatial variable, allowing the
identification of gene(s) involved in key processes at the tissue and cell levels.

Keywords: quantitative trait loci; metabolomics; network analysis; plant breeding; proteomics;
transcriptomics

1. Introduction

The identification of genes to improve yield-, stress- or quality-related traits has been
and still is an active field in plant science. It has traditionally relied on the generation of
variability through the artificial induction of mutations (chemical or physical mutagenesis)
or introgression of interesting traits from wild relatives of crops into elite cultivars, followed
by intensive screening of variants throughout several seasons to obtain a stable variant. This
approach did not consider the role of the mutated or introgressed gene(s) but rather focused
almost exclusively on the phenotype associated to that particular mutation or introgression
(e.g., traditional breeding). More recently, molecular tools contributed to facilitate the
selection of potentially interesting variants at early stages, when specific DNA markers
could be associated to specific phenotypic traits (canopy or root architecture, productivity,
quality of fruits or other edible parts, etc.). This facilitates the breeding process but still
misses the functional part. The sequencing of plant genomes has provided a blueprint
on which to directly track the breeding process and understand which aspects are being
modified with the introgression of genes from wild relatives, mutational events or simply
by selection of the most advantageous lines. At present, several tools are available to
better decipher how genes interact with each other contributing to shape the phenotype.
These can be used either as marker identification or as knowledge generation tools, as they
allow the identification of potentially useful genes in classical or modern plant breeding
technologies (genetic transformation or CRISPR/Cas genome editing), the characterization
of the hierarchy of gene expression and the reciprocal connections, hence inferring potential
regulatory roles.
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2. Classical Approaches to Identify Regulatory Components: Introduction to Marker-
Assisted Breeding
2.1. Where It All Began: Quantitative Trait Loci (QTLs)

The two most prominent sources of variability relevant to marker-assisted breeding
are (i) natural variation or (ii) random mutations induced using chemical or physical agents.
These have traditionally been the main sources of variation used to identify and introgress
traits of agronomical interest. The sources of natural variation are either elite cultivars or
wild relatives, which often have poor or no agronomic interest per se but might carry traits
of known interest (e.g., fruit quality, productivity, disease or abiotic stress resistance, etc.).
However, this approach has important limitations: the genotypes’ source of the traits must
be sexually compatible with the cultivars or lines of agronomic interest, and their cross
must produce viable offspring on which to impose the selection process. Generally, lines are
crossed by manual pollination, and the resulting heterozygous F1 progenies are subjected
to multiple rounds of self-pollination using the single-seed descent method to generate
recombinant inbred lines (RILs), or they are backcrossed multiple times to the parental line
exhibiting the elite phenotype to obtain isogenic lines that only differ in small portions
of the donor genome potentially containing the gene(s) regulating the traits of interest
(Figure 1). This approach is especially interesting when the trait(s) of interest comes from a
wild relative with several undesired traits, then it is necessary to reduce the genome load of
the wild relative to a minimum (e.g., the introgression lines, IL, collection of S. lycopersicum
× S. pennellii) [1–3].

Natural variation most often involves complex traits, which are regulated by an
intricate network of potentially interacting genes that contribute to a specific phenotype
that can be quantitated, i.e., the level or the degree of the phenotype expression. This
can be correlated to the presence/absence of DNA markers spanning longer or shorter
genomic regions. The presence/absence of particular DNA markers does not preclude
the role of the genes present in the regions of interest. The main goal of QTL analysis is
to dissect the genetic architecture of quantitative traits, allowing to simultaneously map
genomic regions that significantly affect the trait and to estimate the individual contribution
of those regions to the phenotypic value [4]. Markers that are tightly linked to relevant
QTL can subsequently be used by breeders to guide the introgression of desirable traits
into the genome of elite cultivars. In extreme cases, phenotypic differences might be
primarily due to a few loci with large effects, or to many loci, each with minute effects,
although the latter is the most usual situation, making marker development a daunting task.
Seemingly, a substantial proportion of the phenotypic variation in many quantitative traits
can be explained with few loci of large effect [5–7]. For example, in cultivated rice (Oryza
sativa), studies of flowering time have identified six QTL, with the top five explaining
more than 80% of the variance in this trait [8–10]. As was investigated later, the molecular
characterization of these QTL showed that all of them encode regulatory proteins with
orthologs known to be involved in flowering in the model plant Arabidopsis thaliana [5].

Random mutations induced using chemical or physical agents are also widely accepted
as a tool to enhance crop diversity. Among the diverse chemical agents, ethyl methane-
sulfonate (EMS) is a chemical mutagen that induces G/C-to-A/T transition mutations
in plant genomes through guanine alkylation [11]. Typically, this mutagenic compound
generates point mutations that differ from one crop to another, 1 mutation per Mb in barley
to 1 mutation per 175 kb in Arabidopsis or per 25 kb in hexaploid wheat [12], and it has
been widely used in forward genetics as a source of random variability arising from a
highly homogeneous population (e.g., seeds from a single Arabidopsis plant, a cell culture
obtained from a single genotype and tissue, etc.) [13].

Among the physical agents, classical radiation-induced mutagenesis using high-energy
particle radiation such as X-ray and gamma ray are widely used because they could induce
a large number of genomic mutations [14]. However, emerging mutagens, such as accel-
erated heavy-ions or protons, have the advantage of inducing high mutation frequency
(and a broad mutation type spectrum) at relatively lower doses than classical irradiation
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treatments, causing a large amount of damage to DNA in a small area [15]. An important
advantage of physical over chemical mutagenesis is that it induces mutations that are
substantially more likely to damage gene functions (e.g., the partial or complete deletion
of a gene), thus producing more gene loss-of-function mutations related to target traits
with fewer mutations per genome [14]. Following mutagenesis, the mutagenized popula-
tion must be thoroughly screened to identify interesting mutants in terms of phenotypic
response (stress resistance, plant architecture, etc.). It is important to notice that each
mutation is the result of a rare, random event that is unlikely to occur multiple times in the
mutagenized population. Therefore, mutants with similar phenotypes typically arise from
different mutation events.
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Figure 1. Schematic representation of breeding scheme to identify QTLs conferring stress tolerance
using recombinant inbred lines (RILs) by self-pollination or backcross inbred lines (BILs) by crossing
several times with one of the parental lines (P1 or P2) and subsequent self-pollination during several
generations (Fn) until the population was brought close to homozygosity [16].

In the early days, breeders mostly employed random DNA markers derived from
genomic regions that are closely linked to the gene of interest. The main drawback of
these markers is that their predictive value depends on the known linkage between marker
and target locus [17]. The popularization and widespread commercialization of Sanger-
based automated capillary sequencers about two decades ago [18] led to a boost in the
development of various types of DNA-based markers, such as microsatellites, random
amplified polymorphic DNA (RAPD) markers, amplified fragment length polymorphisms
(AFLPs) or single-nucleotide polymorphisms (SNPs). The combination of these markers
and bulked segregant analysis (BSA) allowed the development of “chromosome landing”
protocols for the rapid identification of markers tightly linked to a trait of interest [19],
helping breeders to bridge the gap between genotype and phenotype. Next-generation
sequencing (NGS) technologies enabled the development of genotyping-by-sequencing
methods [20] and the rapid sequencing of plant genomes, thus contributing to enhance the



Int. J. Mol. Sci. 2023, 24, 2526 4 of 23

resolution of QTL mapping and the popularization of genome-wide association studies
(GWAS), in which the association between a trait of interest and thousands of SNP markers
is tested. More recently, the advent of third-generation sequencing technologies has enabled
near-complete, chromosome-scale assemblies of whole genomes using long reads produced
by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) sequencers,
either alone or combined with short reads from Illumina, which are sometimes used
to correct sequencing errors present in the long reads [21,22]. The high-fidelity (HiFi)
long reads produced by PacBio’s circular consensus sequencing (CCS) method are now
routinely used for the assembly of highly contiguous plant genomes [23]. These genomic
sequences with unprecedented quality offer an ideal reference for genome resequencing
experiments, where the short reads produced by the Illumina technology are aligned to a
reference genome using programs such as BWA and Bowtie2, which use algorithms based
on the Burrows–Wheeler transform [24]. The resulting alignments can then be scanned by
variant/SNP calling tools, such as BCFtools, FreeBayes, VarScan2 or the Genome Analysis
Toolkit (GATK) package [25], to identify polymorphisms that can subsequently be used in
mapping-by-sequencing, QTL-seq, or GWAS experiments. However, the identification of
markers closely associated with trait-governing genes still remains a challenging task, as
high-coverage genotyping for crops with large genomes and the requirement of measuring
phenotypes for large numbers of individuals are economically costly. This limitation
is linked to the requirement of QTL analysis of large population sizes, as hundreds of
individuals must be accurately genotyped and phenotyped under relevant environmental
conditions. To overcome this limitation, QTL-seq, which combines NGS and BSA, is
becoming increasingly popular [26]. In this method, only two pools of plants exhibiting
opposite, extreme phenotypes are sequenced, and QTLs are then identified by finding SNPs
whose allele frequencies differ significantly between the two pools (Figure 2). To enable the
detection of QTL using strategies based on BSA, different software tools and at least nine
different statistics have been developed, which have been reviewed in [27]. However, like
in classical QTL mapping, these methods will only allow detecting QTLs for which genetic
variation between the parental lines exist. Hence, because parental lines are unlikely to
contain segregating alleles of every locus contributing to the trait, some important genes
will remain undetected.

Interestingly, QTL mapping can also be applied to the study of gene expression
levels, allowing researchers to gain insight into the genetic architecture of the variation
in gene expression and identify regulatory genes that control the expression of the trait
of interest in plants. Initial studies involving so-called “expression QTLs” (eQTLs) were
based on the results of microarray hybridization experiments [28–30]. More recently, the
modern massively parallel RNA sequencing (RNA-seq) techniques have opened the door
to correlate the expression level of each individual gene expressed in a given tissue with the
genotype of thousands of molecular markers, particularly SNPs, which can be detected in
the same experiment [31]. In order to map and detect eQTLs, expression levels are analyzed
with methods similar to those applied to map QTL, underlying other quantitative traits,
such as size or yield. In these studies, the correlation between gene expression levels and
other quantitative phenotypes might also be detected. Allelic variation at the identified
eQTLs affects the expression of other genes, and hence, it might facilitate the identification
of genes that control phenotypes of interest. The genes whose expression is affected by
eQTLs, called e-genes, are also identified by eQTL mapping studies. Some eQTLs (cis-
eQTLs) affect the expression levels of genes located in their vicinity (i.e., genetically linked
to the molecular marker or polymorphism that allowed their detection), while other eQTLs
(trans-eQTLs) affect the expression of unlinked genes [32]. So-called transcriptome-wide
association studies (TWAS) have helped to identify correlations between a quantitative
phenotypic trait and polymorphisms that co-localize with a cis-eQTL [33]. While cis-
eQTLs might correspond to sequences containing regulatory elements, such as promoters,
enhancers, or transcription factor binding sites, trans-eQTL can identify regulatory proteins,
which include not only transcription factors but also other trans-acting regulators that
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potentially affect the expression of many other unlinked genes in the genome. These trans-
eQTLs often correspond to master regulators of developmental or metabolic pathways [30].
A genomic region containing a cluster of trans-eQTLs, which affect the expression of a large
number of genes, is referred to as an eQTL hotspot. Because eQTLs can potentially identify
both regulatory genes and their targets, these experiments can help to build regulatory
networks for the traits of interest, which can be integrated with the information obtained
by studying the co-expression of genes.
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Figure 2. Schematic representation of a QTL-seq experiment to identify SNP loci associated with a
particular quantitative trait. (a) Plants displaying extreme values (high or low) for a quantitative trait
are selected from among the plants of a segregating population. (b) Genomic DNA from the plants
selected is bulked and sequenced. An alignment of the reads to the reference allows calculating the
SNP indices for individual SNPs in the two pools. The red arrows mark the site of one such SNP.
(c) The SNP indices (allele frequencies) are calculated in the low and high pools for all the available
SNP markers along the genome sequence. The presence of a QTL is inferred where the difference
between these frequencies, or ∆(SNP-index), significantly deviates from zero.



Int. J. Mol. Sci. 2023, 24, 2526 6 of 23

2.2. Marked Assisted Selection

The above-described experimental approaches allow the identification and mapping
of QTLs that contribute to a trait of interest. This enables the use of tightly linked molecular
markers to guide the introgression of QTLs into an elite parent line to develop near-isogenic
lines (NILs). Introgression can result in the so-called “mendelization” of QTLs, which
are transmitted in a predictable manner as single Mendelian factors, facilitating their fine
mapping and cloning, as well as their use in marker-assisted breeding programs [34]. In
crops, the mendelization of loci controlling quantitative traits facilitates tracking their
presence with molecular markers, which is the basis of marker-assisted breeding. Moreover,
using molecular markers (in any of their forms) will benefit from the parallel use of classical
phenotypic selection, possibly through the use of weighted selection indexes, because no
molecular marker will explain 100% of the total variance of a target trait, and there might
be pleiotropic effects that are difficult to take into account. By using molecular markers
to track the transmission of specific QTLs in a segregating population, breeders can more
easily identify and select for individuals with the desired traits. This information can be
used to optimize the timing and design of crosses between different genotypes. QTLs
of major effect often correspond to regulatory genes controlling metabolic pathways or
developmental processes with a noticeable effect on crop yield or other aspects of plant
biology, such as resistance to pathogens or tolerance to various types of stress, which are
highly desirable traits in crop plants. Similarly, the study of eQTLs in model and crop plants
has furthered our understanding of the molecular basis of traits of agronomic interest. In
Arabidopsis thaliana, a QTL spanning the MYB28 transcription factor gene affects both the
content in aliphatic glucosinolates and the expression levels of genes involved in their
biosynthesis [35], demonstrating how QTLs can have a significant impact on the production
of defense compounds against herbivores. In two studies involving cotton, the overlapping
locations of eQTLs and loci identified in GWAS experiments helped identify candidate
genes controlling fiber quality, growth and salt tolerance [36,37]. In these studies, the
integration of results from GWAS experiments and eQTL mapping has helped researchers
to focus on the loci that were more likely to control the trait of interest.

3. Annotation of Genes: Role of NGS and Comparative Genomics

As mentioned above, during the last decades, a massive revolution has happened at
the level of DNA sequencing with the development of NGS technologies. For instance,
the sequencing cost of the human genome until 2007 was around USD 10 million but has
experienced a 4000-fold drop since the advent of NGS sequencing platforms, and now it is
possible to sequence the 3200 Mb human genome with 30× sequencing depth for about
USD 1000 (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-
Costs-Data, accessed on 23 December 2022). Plant genome sizes vary several orders of
magnitude from the 60 Mb size of the carnivorous corkscrew plant Genlisea aurea genome
to the astonishing 152,000 Mb size of the Japanese plant Paris japonica genome [38]. How-
ever, plant genome sequencing can be even more complex because of the polyploidization
process, which is a frequent event throughout plant evolutionary history, and has been
associated with plant domestication [39]. Until now, 1031 genomes of 788 different plant
species (including subspecies and cultivars) have been sequenced and published [23], still
more than 2000 genome sequences are available at the Genome database of the National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/genome,
accessed on 23 December 2022). In addition, the reduced cost and high coverage of
high-throughput RNA-seq has allowed it to be the most popular technology for profiling
plant gene expression. As a result, the number of plant RNA-seq datasets has been in-
creasing exponentially to the ~83,000 datasets collected at the NCBI Bioproject database
(https://www.ncbi.nlm.nih.gov/bioproject/, accessed on 23 December 2022), and for some
major crops, such as maize, rice, soybean, wheat and cotton, the plant community has
collected a total of ~45,000 libraries so far [40]. Another aspect to consider is the tremendous
increase in the quality of the sequenced genomes and the concomitant improvement in gene
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annotation associated to the advances in sequencing technologies. In fact, assemblies made
using modern long-read technologies such as PacBio or ONT show a ~32-fold increase
in the mean contig N50 (the length of the shortest contig in the set of contigs containing
at least 50% of the assembly length) compared with short-read technologies [41]. This
is especially crucial when dealing with complex genomes such as highly heterozygous
diploid genomes or polyploid genomes, allowing the development of specific pipelines
such as Genomescope 2.0 and Smudgeplot [42].

Hence, a vast amount of plant genetic information has been assembled using well-
established bioinformatics pipelines based on the overlap–layout–consensus (OLC) and
De Bruijn graph (DBG) paradigms, which have allowed for gene functional annota-
tion [23,43,44]. In general, for gene annotation, most researchers combine ab initio gene
detection with the alignment of genomic and transcript data and known gene sequences
from related species. Some of the most popular tools to structurally annotate a genome
include the automated pipelines MAKER2, MAKER-P (which was specifically developed
for plants) BRAKER1, Trinotate, GeneMark-ET or AUGUSTUS, among others. For instance,
the latest annotation of the Arabidopsis genome, Araport 11, allowed the identification
of 27,655 protein-coding and 5178 non-protein-coding genes [45]. Next, the annotated
genes must be functionally classified by inferring their function according to their sequence
similarity using databases based on experimentally derived knowledge, such as the Gene
Ontology (GO) database (http://geneontology.org/, accessed on 20 December 2022), which
provides a collection of terms to precisely describe the function of each gene. Actually, the
functional GO annotation of protein-coding genes is the most widely used, and it ranges
from the functional annotation of more than 94% of the Arabidopsis genes to around 60%
of genes annotated in other less well-studied species such as potato or sugarbeet [45–47].
Hence, for most plant genomes, the use of other resources is a must to obtain a more
complete functional annotation, such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG; http://www.kegg.jp/, accessed on 20 December 2022) that aims to link genomic-
and molecular-level information to higher-level functions of the cell, organism and ecosys-
tem, or the Plant Metabolic Network (http://www.plantcyc.org, accessed on 20 December
2022) that is mainly used to describe enzymatic functions and build up reaction networks.
Really interesting for the identification of functional gene families are the different re-
sources developed for functional identification based on protein domain similarity within
a sequence. Some of the more popular ones have user-friendly web interfaces, such as
the InterPro database (https://www.ebi.ac.uk/interpro/, accessed on 18 December 2022)
or the Conserved Domain Database (https://www.ncbi.nlm.nih.gov/cdd/, accessed on
18 December 2022).

The screening of transcription factors as master regulators of several, often inter-
connected, plant processes is particularly interesting. This is possible because typical or
conventional transcription factors (TFs) interact with DNA in a sequence-specific man-
ner through one or more well-defined DNA-binding domains (DBDs). So far, more than
80 different DBD types have already been identified in eukaryotes. TFs are usually classi-
fied into superclasses and families according to the structural relatedness of their DBDs,
which normally provides clues for their TF function [48]. Hence, the putative TFs can
be identified based on the presence of conserved DBDs or on the sequence similarity to
previously characterized transcription factors. Vice versa, sequence-specific DNA binding
is the main and first feature that is commonly addressed while trying to characterize (or
discover) a new TF. The high quality of genomes assembled using the long-read sequenc-
ing technologies has allowed the accurate determination of cis elements, which increase
our knowledge of TFs’ functionality and the different plant responses they control [49].
Therefore, the characterization of cis-binding DNA motifs in the promoter sequences of
differentially expressed genes (DEGs) might also contribute to identify stimulus-dependent
gene expression (HOMER Motif analysis software, http://homer.ucsd.edu/homer/motif/;
PlantPAN 3.0, http://plantpan.itps.ncku.edu.tw/, both accessed on 20 December 2022).
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Moreover, publicly available bioinformatic resources such as InterPro, Pfam and SU-
PERFAMILY provide curated DBD models describing the amino acid sequences of groups
of conserved polypeptide regions and domains that could be scrutinized. For instance,
OMICSBOX software (https://www.biobam.com/omicsbox/, accessed on 20 December
2022), formerly called Blast2go, searches for conserved domains or sequence similarity
of translated proteomes from annotated genomes or transcriptomes by a BLAST-based
approach into reference bioinformatic resources, producing the functional classification
of these genes. However, some DBDs and their sequence models may be promiscuous
and produce false-positive hits to non-TF proteins when blasted, and there are also some
TFs that display sequence-specific DNA-binding activity without any recognizable or stan-
dard DBD, making the correct functional annotation not so straightforward, requiring
experimental functional validation [48].

4. Correlation of Genes and Traits Using Omics Technologies

The advent of omics technologies including sequencing-based transcript profiling,
shotgun proteomics, metabolomics and automated phenotyping of traits such as plant
architecture, height and leaf area, as well as physiological parameters (photosynthesis,
water content, etc.), has provided scientists with abundant data and also brought in the
issue of complex dataset interpretation [50]. One of the most popular analyses to handle
large datasets of omics data is co-expression analysis, which enables the identification
of pairs of variables (mRNA, miRNA, metabolites, etc.) with a correlated expression
across several samples (genotypes, treatments, time points, etc.); see Figure 3. The more
conditions (ideally orthogonal), the more powerful the method is. The degree of correlation
is expressed as a score value which reflects the degree of similarity of the “expression”
pattern between two variables. A score value above a certain threshold is defined as a sign
of co-expression. All variable pairs showing score values falling within certain limits (either
positive or negative) can then be used to construct a network in which clustering of variables
is interpreted as a result of a coordinated regulation [50]. This analysis is a powerful tool to
investigate interactions between different biological processes, identification of potentially
key regulatory elements and also to predict functions of unknown genes for which a
functional characterization is not available yet [51].

4.1. Glossary of Network Analysis

• Co-expression network: This refers to a set of (more or less) densely interconnected
variables in which the degree of connectivity is linked to similarity in expression
profiles, abundance or intensity of a given variable throughout the samples (geno-
types, conditions, time series, etc.). These usually express gene expression data and
metabolite or protein accumulation.

• Edges and nodes: In a network, the variables are nodes or vertices and are usually
depicted as points. The connections between the nodes are referred to as edges and
are usually depicted as lines between points.

• Module: A cluster of highly interconnected (showing high absolute correlation, either
positive or negative) variables (genes, metabolites, proteins, etc.) that potentially
reflects functional similarities among cluster members. Modules can be further refined
by applying GO or pathway enrichment criteria.

• Connectivity: The correlation existing between pairs of variables, inferred from
correlation- or mutual-information-based methods.

• Module eigengene E: Defined as the first principal component of a given module, it
is a representation of the variable expression profiles in a module. These values can
be correlated to an external trait (e.g., phenotype). It is also related to the module
membership by correlation of the variable expression level with the module eigengene
E; values close to 1 or -1 indicate positive membership.

https://www.biobam.com/omicsbox/
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• Hub: It is generally defined as a “highly connected gene or protein” which is a
member inside co-expression modules. The topology of a hub might reflect its role as
a regulatory element.

• Module significance: Absolute average variable significance within a module, which
is determined by correlating variable expression to an external trait (e.g., phenotype).
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Networks constitute powerful mathematical representations of the interactions among
different biological components to model biological systems which are extremely complex
in nature. From this point of view, a network analysis can be fed almost with anything,
and it will surely find correlations between pairs of elements that can be subsequently
represented as a network of interactions. The network is essentially constituted by variables
represented as nodes and the interactions among those nodes, derived from an iterative
pairwise correlation analysis, represented as edges. Edges can represent positive or negative
interactions, and nodes can occur grouped together, as a cluster or a module, which suggests
a common functional role, or separated. Separate nodes with a high degree of interaction
are known as hubs and might identify key regulatory elements controlling the information
flow from the stimulus to the response. The network itself is a graph that can be analyzed
using different algorithms to gain insight into the network architecture, defining functional
modules and hubs that connect different modules [53]. The network architecture, the
interaction between nodes (variables) and their distance, which is related to the degree of
interaction, as well as the direction of the interaction, either positive or negative, can be
subsequently corrected by using available data from empirically assessed interactions at
data repositories (Table 1).

Table 1. Data repositories. All websites accessed on 18 December 2022.

Repository Functionalities Species Web Reference

SRA Transcriptomics All branches of life https://www.ncbi.nlm.nih.gov/sra [54]

Metabolights Raw metabolomics All branches of life https:
//www.ebi.ac.uk/metabolights/ [55]

STRingDB Protein–protein
interactions All branches of life https://string-db.org/ [56]

PlaNet Co-function networks Photosynthetic
organisms

http:
//aranet.mpimp-golm.mpg.de/ [57]

PGP Genomics and
Phenomics Chloroplastida 1 https:

//edal-pgp.ipk-gatersleben.de/ [58]

KEGG Molecular networks All branches of life https://www.genome.jp/kegg/ [59]
Reactome Pathway knowledge Animalia https://reactome.org/ [60]

iRefWeb Protein-protein
interactions All branches of life http://wodaklab.org/iRefWeb [61]

GeneMANIA Gene function Animalia, Fungi
and Plantae http://genemania.org/ [62]

1 Monophyletic group of green plants that includes all land plants (embryophytes) and all green algae (chloro-
phytes and streptophytes).

Genes belonging to the same metabolic pathway are expected to be subjected to tempo-
ral and spatial co-regulation at the level of mRNA abundance, thus reflecting the functional
coordination and collaboration to produce metabolites [63,64]. Likewise, orthologous genes
from different plant species are also expected to behave similarly under comparable experi-
mental conditions, in line with their evolutionarily conserved gene functions. There are
several examples in the literature of conserved co-expression modules in homologous or or-
thologous genes related to different plant processes, such as photosynthesis, seed longevity
or cell wall biosynthesis across plant species [53,65]. To date, more than 300,000 sequenced
RNA samples are available from public repositories, corresponding to several thousands
of experiments encompassing gene expression in different organs, tissues, developmental
stages and experimental treatments for several plant species (Table 1) [66]. This unprece-
dented amount of information along with the integration of gene expression in an anatomic,
experimental and temporal context in easy-to-grasp visualization tools facilitates under-
standing of not only gene function but also of how gene expression is orchestrated, pointing
to potential key master regulators.

https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://string-db.org/
http://aranet.mpimp-golm.mpg.de/
http://aranet.mpimp-golm.mpg.de/
https://edal-pgp.ipk-gatersleben.de/
https://edal-pgp.ipk-gatersleben.de/
https://www.genome.jp/kegg/
https://reactome.org/
http://wodaklab.org/iRefWeb
http://genemania.org/
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As a major drawback, the generation of co-expression data requires that omics
datasets are properly normalized. To this respect, transcript profiling data can be found in
several formats:

• log2-fold change between treated samples and controls, which facilitates identification
of over- and down-regulated genes.

• Reads per kilobase of transcript per million mapped reads (RPKM) for single-end
reads from RNA-seq experiments [67], which facilitates comparison of transcript levels
within and between samples.

• Fragments per kilobase of transcript per million mapped fragments (FPKM) for RNA-
seq experiments producing paired-end reads.

• Transcripts Per Million (TPM), which is similar to the former two, but the order of
operations is inverted.

• Trimmed Mean of M-values (TMM) for genes meeting a corrected p-value and false
discovery rate (FDR) lower than 0.05, which dramatically reduces the number of false
discoveries due to different distribution of expressed transcripts [68]. This method
assumes that the most genes are not differentially expressed.

Other omics that can be integrated into co-expression network analysis are metabolomics.
Metabolomics data can also be presented in several ways: absolute values, which is less
common, and relative values (peak area relative to internal standard area, total intensity,
sample amount, etc.), which are more widespread but might differ between techniques,
instruments, extraction procedures, etc. Moreover, despite values within the same batch
of analyses or from the same laboratory being highly reproducible and robust, they differ
greatly when considering a different platform (operators, instruments, solvents, etc.). In
this regard, the standardization of procedures for metabolomics is less advanced than
for RNA-seq, despite great efforts having been made to provide a set of rules to report
metabolomics data, such as the Metabolomics Standardization Initiative or MSI [69]. The
preferred metabolomics platforms are based on mass spectrometry (MS) measurements
coupled to chromatographic or capillary electrophoresis separation, followed by nuclear
magnetic resonance (NMR), usually not coupled to any separative technique. These analyt-
ical techniques generate data with different appearance and scaling; therefore, they need to
be normalized before attempting any statistical analysis. The normalization method is not
trivial, as it must be noted that metabolite concentrations correlate better with metabolic
fluxes than with enzyme expression levels. This fact has been attributed to reaction mecha-
nisms, the self-regulatory nature of metabolic networks, post-translational regulation and
the topological organization of metabolism [70]. As early as 2005, Hirai and co-workers [71]
published a study in which the integration of metabolomics and transcriptomics allowed
the identification of regulatory genes of different metabolic pathways such as anthocyanin
and glucosinolates. Authors used Batch-Learning Self-Organizing Maps (BL-SOM) to attain
this objective. The normalization of transcript and metabolite profiling data (microarray
and different targeted and nontargeted analytical techniques) was attained by calculating
the logarithm of the ratio of treated vs. control samples. Hence, both metabolomics and
transcriptomics data exhibited similar values, removing any effect of variations in sample
amount. Nowadays, most normalization methods are data-based; to this regard, it must be
taken into consideration that both sample and variable normalizations can either reduce
or increase analytical variance and batch effects [70]. Normalization strategies have two
main objectives: preprocess metabolomics data for a subsequent statistical analysis and the
removal of batch effects. Batch effects are especially relevant in MS-based metabolomics;
therefore, different strategies have been tested and implemented: LOESS (Locally Estimated
Scatterplot Smoothing) using quality controls (QC) interspaced in the batch sample list, the
variation of QC values across sample batches is taken as a proxy to evaluate instrumental
drift; and post-acquisition data normalization using MS useful signals or probabilistic
quotient normalization (PQN), which prevents impact of variability in concentration. For
1H-NMR-based metabolomics, PQN [72] is based on the calculation of the most likely
dilution factor by looking at the distribution of the quotients of the amplitudes of a test
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spectrum compared to that of a reference spectrum whereas constant sum (CS) simply
normalizes total spectrum intensity to a single value [70]. Other strategies for cross-sample,
between-sample (e.g., sum, median, weight and quantile) and within-sample normalization
(e.g., feature transformation) are also widely used in the field of nontargeted metabolomics.
Despite the active research in this field, to date, there is no definitive and standardized
methodology. The sequential application of a normalization strategy should be depen-
dent on the metabolomics platform and ensure that it does not get rid of the biological
information or the variance associated to the sample [70]. More recently, Correia and co-
workers [73] investigated several workflows, with their respective normalization strategies
comprising large homogeneous and small heterogeneous datasets, and concluded that the
biggest impact on network construction was related to between-sample normalization.

Proteomics can also be integrated within a co-expression network analysis and, as in
metabolomics, different platforms are also available and widely used: 2D-gel electrophore-
sis to investigate differentially expressed proteins (e.g., DIGE, [74]), where the identification
of proteins is attained by performing offline mass spectrometry analyses to match with spec-
tra available in databases (Uniprot, swissprot, pfam, etc.), and shotgun proteomics based
on analysis of samples by liquid chromatography coupled to mass spectrometry, which
allows multiplexing through isobaric labeling of peptide extracts and co-injection [75]. Both
approaches allow the analysis of differentially expressed proteins and also the identifica-
tion of protein post-translational modifications through changes in mz associated to the
incorporation of different biologically relevant moieties (e.g., acetylation, phosphorylation,
glycosylation, sumoylation, etc.). MS-based proteomics approaches can be normalized
as for metabolomics. For instance, Minadakis and co-workers [76] scaled protein abun-
dance data, derived from the sum of ion count for each of the peptides associated to an
individual protein, between −1 and +1 to integrate proteomics and transcriptomics in
a co-expression network to investigate protein and gene changes in response to diurnal
rhythms in cyanobacteria. Another example is the ProtExA tool [77], which primarily
uses log2-transformed datasets (as a requirement of the LIMMA package, used for the
statistical analysis, that is, implemented into the workflow) but can also use several other
normalization methods. Therefore, it is likely that the statistical approach chosen might
coerce the normalization strategy, which is something to take into consideration when
interpreting results. Cueff and co-workers [78] used straightforward centered and scaled
2D-gel proteomics data to build a co-expression network to investigate secondary dor-
mancy induction by hypoxia or high temperature in barley seeds, but no integration of
other omics was performed.

4.2. Co-Expression Network Analysis

As mentioned above, networks constitute a powerful mathematical representation
of the interaction among different biological components to model naturally complex
biological systems. The network is essentially constituted by variables represented as
nodes and edges that represent the interactions among those nodes, either as positive or
negative, or close (high correlation) or loose (low correlation) interactions. Individual nodes
exhibiting a high degree of interaction are known as hubs and are considered potential key
regulatory elements controlling the information flow from the stimulus to the response.
It is important to note that, despite being essentially a nonsupervised approach, accurate
annotation of nodes, as well as grouping according to function of pathway, is a necessary
step to contextualize resulting networks and to remove spurious correlations with no clear
biological relevance. In this sense, co-expression network analysis is an excellent strategy
to uncover novel and unanticipated interactions between well-characterized functional
modules, to elaborate data-driven hypotheses on the key regulatory role of different
elements and to hypothesize gene and other molecular functions of uncharacterized nodes
based on their surrounding functional landscape. In addition, different software programs
exist for integration of omics and network construction and analysis [79]. Some examples
are listed in Table 2.
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Table 2. Main software packages used for the integration of omics datasets. All websites were
accessed on 20 December 2022.

Software Omics 1 Functionalities Comments Repositories Reference

mixOmics
ggmixOmics T, P, M, R

Multivariant-
based framework

(PCA, CCA,
PLS-DA, etc.)

Dimensions
reduction,

extraction of
variable subgroups

connected with
traits and

visualizations

R/CRAN [80]

xMWAS T, P, M
Multivariant- and

network-based
framework

Application for
paired and

unpaired study
R/GitHub

R/GitHub [81]

metaboGSE T, M

Connection of
network-based
approaches and

gene set
enrichment

analysis

Creation of
subnetworks in the

context of
experimental

condition

R/CRAN [82]

FELLA M

Network-based
enrichment
analysis of

metabolites lists

Supporting KEGG
database R/BioC [83]

MetExplore T, P, M

Network-based
analysis, pathway

mapping, flux
balance modeling

and analysis

Easy way for
network creation,

visualization,
curation and
metabolite
mapping

https://metexplore.
toulouse.inrae.fr/

index.html/
[84]

OmicsNet T, P, M, R
Network- and

pathway-based
approach

Building,
visualization and

exploration of
biological

networks in 3D
space

https:
//www.omicsnet.ca/ [85]

MiBiOmics T, P, M

Correlation-based
tool for creating,
dimensionality
reduction and
exploration of

networks

Provide the tools
for data processing

(filtration,
normalization and

transformation)

https://shiny-bird.
univ-nantes.fr/app/

Mibiomics
[86]

MetaBridge T, M Network-based
pathway mapping

Identification of
connections

between
metabolites and

enzymes,
visualization of
data and results

https:
//metabridge.org/ [87]

1 T, transcriptomics; P, proteomics; M, metabolomics; R, regulatory omics.

4.3. Construction of a Network

The network can be understood as a 3D unrooted dendrogram in which distances
between nodes are calculated as a function of variable expression correlation. Therefore, the
first step in the network construction is the generation of a dataset containing the distance
metrics between pairs of variables representing steady-state or time series kinetics. There
are several methods for gene network inference, including correlation, mutual information
(MI), Bayesian network and probabilistic graphical models. Typically, correlation and
MI methods are used for constructing large-scale graph convolutional networks (GCNs)

https://metexplore.toulouse.inrae.fr/index.html/
https://metexplore.toulouse.inrae.fr/index.html/
https://metexplore.toulouse.inrae.fr/index.html/
https://www.omicsnet.ca/
https://www.omicsnet.ca/
https://shiny-bird.univ-nantes.fr/app/Mibiomics
https://shiny-bird.univ-nantes.fr/app/Mibiomics
https://shiny-bird.univ-nantes.fr/app/Mibiomics
https://metabridge.org/
https://metabridge.org/
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with more than 10,000 nodes [88]. The most popular and straightforward methodology to
generate a list of pairwise comparisons between variables is Pearson’s correlation. With this
methodology, a correlation coefficient and a p-value are generated for each pair of nodes.
It has the advantage of being robust, fast (several millions of combinations in a dense
dataset can be calculated within seconds in any benchtop or laptop computer) and easy to
implement [89] but, unfortunately, it can only detect linear relationships [90]. Moreover,
Pearson’s correlation is sensitive to outliers, leading to the false discovery of correlations
when extreme values appear in the variable dataset. Conversely, Spearman’s correlation
metrics enables the identification of nonlinear correlations [91] through the representation
of correlation ranking between pairs of variables [50], and it is more robust to extreme
values that “force” high correlation indices. The qualitative biclustering algorithm (QUBIC)
is another method that enables capturing co-expressed modules under a subset of all the
conditions without prior information to group the datasets. As a drawback, it requires
large numbers of sample sets representing the different conditions to be efficient [92].
Other methods, known as MI, generate a generalization of pairwise correlation coefficients,
which detects statistical dependence between two variables. These methods can be further
improved, enabling the identification of both linear and nonlinear relationships [89]. How-
ever, the selection of the statistical method should be defined by the biological question
to answer. In this regard, several attempts to empirically evaluate and select the best
distance metrics and inference methods have been carried out. For instance, Huang and
co-workers [88] tested several distance metrics: Pearson, biweight midcorrelation, Spear-
man, Kendall rank correlation coefficient, Gini correlation coefficient and cosine similarity
coefficient, as well as MI-based methods: ARACNE (additive and multiplicative), MRNET
and CLR on microarray and RNA-seq data from maize. In this work, correlation-based
metrics resulted in a more predictive co-expression network, although interactions with
some specific genes were better detected with MI-based methods [88]. Similar results were
obtained by Lieske and co-workers [93] with Arabidopsis thaliana microarray and RNA-seq
datasets, particularly focusing on well-known metabolic pathways. These authors reported
that Pearson’s correlation combined with Highest Reciprocal Ranking (HRR) performed
better than other correlation metrics or MI-based methods. One of the most popular and
widespread methods used to perform network analysis is weighted gene co-expression
network analysis (WGCNA), which can be applied with the WGCNA R package [94],
which performs network construction, module selection, module and gene selection, calcu-
lations of topological properties, data simulation and visualization and interfacing with
external software packages. Within this package, different co-expression measures (such as
Spearman or biweight midcorrelation) are implemented apart from Pearson’s correlation.

4.4. Module Selection

Once the network is already constructed, the next logical step is to proceed with
module selection containing elements potentially sharing functional similarity (same sig-
naling or metabolic pathway, etc.). To define a module, several measures of network
interconnectedness have been defined [95]. As a default method, the WGCNA R package
uses the topological overlap measure, or TOM. Essentially, modules can be detected by
performing unsupervised clustering using hierarchical cluster analysis, or HCA. Then,
branches of the dendrogram correspond to modules that can be identified using different
methods: constant-height cut or dynamic branch cut methods [94]. The number of clusters
depends on the selection cutoff value, which is defined after a cluster stability/robustness
analysis. It must be noted that large datasets are more likely to generate artifactual con-
nections or edges. Therefore, to improve the biological meaning of networks, threshold
values need to be calculated to ensure network properties and reduce false associations.
To this respect, Burns and co-workers [96] suggested a stepwise approach that has al-
ready been implemented in the software Knowledge Independent Network Construction
(KINC, https://kinc.readthedocs.io/en/latest/, accessed on 21 December 2022). However,
it must be noticed that these stringent values (around 0.85–0.95) exclude moderate rela-

https://kinc.readthedocs.io/en/latest/
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tionships, which usually underlie extremely complex biological questions. This includes
missing values which might have a biological meaning and that should be considered in
the association tests.

As already mentioned, GO term enrichment or other biological information tests (such
as metabolite over-representation analysis extracted from KEGG, Reactome, BioCyc or
AraCyc, etc.) are a highly recommended step to extract biologically meaningful information
from networks. To facilitate visualization and summarizing, the WGCNA R package
implements a function to extract eigengenes of each module, which can be interpreted as
the weighted average expression profile of a given module [94]. Node module membership
usually follows a binary assignment in HCA, as well as most standard clustering methods,
and it is usually sufficient for most studies, but, for some applications, a fuzzy measurement
of module membership for all nodes might be advantageous when nodes that lie near the
boundary of a module or are intermediate between two or more modules are expected.

In addition, performing network construction and module detection in large datasets,
especially when spanning different omics datasets, might be computationally challenging
when operating with small benchtop or laptop computers, even for “light” operations
such as Pearson’s correlation. For this reason, the WGCNA R package has implemented
a function that preclusters nodes into large clusters, known as blocks, using a variation
of k-means clustering, and subsequently applies HCA to each block. Modules are then
defined as branches of the resulting dendrogram. Then, to integrate the module detection
results across blocks, an automatic module merging step between modules with highly
correlated eigengenes is performed. An interesting option when dealing with different
networks and their respective adjacency matrices is the identification of consensus modules,
present in a big fraction of all networks, further supporting connectivity between nodes
and the identification of hubs [94].

Biological significance can be encoded numerically, the greater the significance the
greater the number. In other types of analyses, this significance can be interpreted as
pathway membership or functional relationship. This can be achieved by using a sample
trait to define omics based on the absolute correlation between the trait and the omics
profile data. Moreover, module significance can also be defined as the average gene
significance across module genes, using eigengene E(q) and correlation or p-value resulting
from a univariate regression between E and the sample trait, generally a continuous trait.
As a result, modules with high trait significance (correlation coefficient and/or p-value)
may represent modules related to the sample trait and, hence, genes with high module
membership are good candidates for further experimental validation of the gene–trait
association. Network topological properties are interesting aspects to analyze and describe,
which constitute the network statistics or indices, namely: whole network connectivity,
intramodular connectivity, topological overlap, clustering coefficient, density, etc. Indeed,
differential analysis of network concepts such as intramodular connectivity is linked
to specific regulatory changes affecting the expression of different omics data profiles.
The WGCNA R package has several functions already implemented to attain topological
network analysis. Finally, one of the most attractive outputs of the network analysis is
probably the network visualization, as well as the possibility to manually manipulate it to
extract information.

One of the most powerful software to attain network visualization is Cytoscape, an
open-source platform which includes a plethora of community-contributed plugins (now
called apps) to carry out different relevant analyses in molecular life sciences (e.g., BINGO,
stringAPP, CluePedia, CoExpNetViz and many others). It can be freely downloaded from
https://cytoscape.org/ (accessed on 21 December 2022) and is based on JAVATM, which
enables its usage in different computer platforms. Cytoscape was developed back in
2001 to provide biologists from different areas with an interactive tool that allows a close
manipulation and inspection of the constructed network (zooming in and out, moving
or removing nodes, etc.). Moreover, Cytoscape nowadays encompasses several apps that
expand the capabilities of the software, with tools such as functional annotation and

https://cytoscape.org/
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discovery, module detection and analysis of different topological attributes of the network,
even performing differential network analysis to investigate potential rewiring of network
connections in response to different factors [97], in addition to all the visual customization
tools available. Therefore, it is usually more convenient to use Cytoscape to visualize and
analyze topological attributes of networks constructed using other tools (e.g., WGCNA
R package). Indeed, it is possible to seamlessly connect R with different external tools
including Cytoscape, such as the RCX tool [98] or, conversely, use Cytoscape from within
R, such as RCy3 [99].

Another interesting software package is mixOmics (http://mixomics.org/, accessed
on 20 December 2022) (currently only available from bioconductor) [80], which performs
multivariate analysis of biological datasets focusing on data exploration, dimension reduc-
tion and, particularly, visualization. This software, implemented in R, is especially aimed
towards the integration of different biological data sources, which the method assumes
have been appropriately normalized to transform discrete into continuous data modes
(microarray, RNA-seq, MS-based proteomics or metabolomics, 16S rRNA sequencing for
meta barcoding, etc.). In the mixOmics workflow, a data matrix with N observations (typi-
cally distributed in rows) × P predictors (this is normalized omics data) and a categorical
outcome (e.g., control and treated, genotype 1 and genotype 2, etc.) is expressed as an
indicator matrix, where columns represent each category (genotype, treatment, etc.) and
rows indicate class membership or categorization value. As indicated by authors, the
software can handle several thousands of predictors, but to optimize computational time, it
is highly recommendable to thin predictors to less than 10,000 by, for instance, removing
low-count genes in RNA-seq data or predictors with zero variance across observations
to optimize computational time. To reduce data dimensionality, the software has imple-
mented a series of multivariate analysis strategies: unsupervised analyses, such as principal
component analysis (PCA), independent component analysis (ICA), partial least squares
regression (PLS), multigroup PLS, regularized canonical correlation analysis (rCCA) and
regularized generalized canonical correlation analysis (rGCCA), and supervised analyses,
such as PLS-DA, GCC-DA and multigroup PLS-DA [81]. In addition, mixOmics provides
sparse variants which allow feature selection and, hence, the identification of key predictors
related to the molecular signature. Using this approach, Hasbún and co-workers [100]
recently identified secondary metabolism rearrangement as a key response that allows
primed Pinus radiata seedlings to thrive under stressful conditions. This was achieved by
integrating proteomics data as predictors and the physiological measurements as response
using sPLS multivariate models. The integration of different omics data measured on
the same biological samples (N-integration) is also possible. This is performed with the
DIABLO (Data Integration Analysis for Biomarker discovery using Latent cOmponents)
method, which identifies a multiomics signature that discriminates the outcome of interest.
Essentially, DIABLO identifies a signature constituted by highly correlated features across
different omics by modeling relationships between the omics datasets. To attain this, linear
combinations of variables are constructed that maximize the sum of covariances between
pairs of datasets. The design matrix indicates the weight of each pairwise covariance. The
indicator or response variable is transformed into a dummy variable within the function.
Finally, a regression is performed through sparse GCCA to compress each dataset. The
implementation and application of the DIABLO method has proved useful to identify
already known and novel multiomics biomarkers (e.g., mRNAs, miRNAs, CpG islands,
proteins and metabolites) [101]. Each dataset (each omics) is represented as a block, which
are then inter-correlated and represented as a heatmap to show the profile of each de-
scriptor, as well as a Circos plot that depicts the correlation between predictors (estimated
from latent components as explained in [102]). Finally, this is represented as a network
to identify modules of closely related features. On the other side, it is also possible to
integrate the same descriptors across several independent studies or P-integration using
MINT (Multivariate INTegrative method) [103]. By following this approach, sample size is
increased, hence allowing comparison among similar studies, thus providing a benchmark

http://mixomics.org/
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for a specific condition, cultivar, etc., although the primary objective is the classification
of samples, subsequently providing a robust molecular fingerprint associated to specific
sample groups. Essentially, the methodology is similar to that used in DIABLO; the number
of components that describe the biological system is defined by sparse PLS-DA, which
identifies the molecular signature that can be the used to build the model, taking into con-
sideration the balanced error rate (BER) calculated as the averaged proportion of wrongly
classified samples in each class, weighting up small sample size classes. Cross-validation
as “leave one out” is performed by removing a particular study only once, reflecting the
reality of prediction performed on independent external studies and based on a repro-
ducible molecular signature identified on the training set [103]. A more detailed list of
other available tools are referenced in [79], and the most interesting are listed in Table 2.

5. Applications in Plant Biology

The most straightforward application of co-expression network analysis is the study of
metabolic pathways and their regulation [104–107], including plant stress responses [108–110]
and, more importantly, the identification of potential candidates for the biotechnological
improvement of crops [51]. This is of special relevance, as it makes it possible to directly
transfer all knowledge gained in model species over the years to species of agronomic
interest, such as soybean [108]. In this species, a co-expression network was constructed
from time series RNA-seq data using a correlation-based method, which subsequently was
imported into Cytoscape for further analyses, such as module and hub gene identification,
to characterize the salt stress response in a sensitive and a tolerant cultivar. A similar
approach has also been used to investigate the mechanistics of a physiological disorder
in citrus, known as juice sac granulation, associated with huge crop losses in pummelo
(Citrus maxima), which is related to lignin deposition in the pulp. Using WGCNA, a
module significantly correlated with lignin deposition contained 11 DEGs related to lignin
biosynthesis and, more importantly, several TFs showing a high degree of correlation with
lignin biosynthesis, among which coding genes for MYB, NAC, OFP6 and bHLH130 TFs
were found, providing potential candidate genes to control the onset of this disorder [111].
In another fruit crop, pear, co-expression network analysis contributed to the identification
of PpPIF8 as a key regulator of anthocyanin biosynthesis. This gene was rapidly regulated
by light and through additional studies, such as overexpression in pear peel and calli and
Y2H, confirming its role in anthocyanin biosynthesis and also clarifying its mechanism
of action [112]. Nicotine biosynthesis in tobacco was also investigated with WGCNA
using different varieties with high and low metabolite content [105]. In this work, co-
expressed modules were correlated with nicotine accumulation as an external trait, and
genes associated to this module were related to metabolism of nicotine precursors such
as Arg, Orn, Asp, Pro and GSH. Hence, elevated levels of these precursors were always
related to high nicotine levels. Interestingly, nicotine biosynthesis requires precursors that
are also used for polyamine biosynthesis, putrescine being a core intermediate in nicotine
biosynthesis and establishing a flow between biosynthetic pathways as a potential way
for variety selection. The biosynthesis of tartaric acid in grapes was recently investigated
using an in silico approach as the end-product of ascorbate catabolism, for which little
information about its metabolism in plants exists. Therefore, taking advantage of public
repositories of omics data VTC-Agg (https://sites.google.com/view/vtc-agg, accessed on
20 December 2022), a search for genes involved in this pathway was performed, essentially
by interrogating datasets using two already characterized gene candidates (Vv2kgr and
VvLidh3) by classical biochemical approaches. Interestingly, these two genes were not
mutually co-expressed throughout more than 1300 samples and 33 experiments but were,
respectively, co-expressed with other genes involved in ascorbate metabolism, indicating
that these two genes are likely not co-regulated and add more complexity to the biosynthetic
pathway of tartaric acid, potentially involving plant hormones such as auxin or abscisic
acid [113].

https://sites.google.com/view/vtc-agg
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6. Future Prospects

The advent of single-cell omics, spatial transcriptomics and mass spectrometry imag-
ing (MSI) techniques opens up a new scenario for the integration of omics data in neigh-
boring tissues, contributing to better understand cell-to-cell communication within and
between tissues. This will lead to potentially new signaling molecules, including metabo-
lites and proteins, with a role in the integration of exogenous or endogenous signals to
develop a particular tissue response. Single-cell RNA sequencing (scRNA-seq) has already
contributed to unravel, at least partially, novel gene functions. In Arabidopsis, the investi-
gation of cell-type-specific expression patterns of TMO5/LHW-induced genes in response
to phosphate starvation revealed their connection to cytokinin biosynthesis in vascular
cells, resulting in an increase in root hair density and phosphate uptake, as well as the
identification of cell-type marker genes as responsible for yield traits in maize (reviewed
in [52]). To help bridge the spatial gap, different procedures have been implemented to
analyze gene expression patterns in specific cell types or histologically defined tissues.
Unfortunately, this requires transgenic plants to be generated to exploit cell-specific reporter
gene tagging [114,115]. This can be partially overcome by using ultra-thin tissue sections
and Laser Capture Microdissection (LCM), but this approach is technically challenging and
tedious to obtain sufficient material for RNA extraction. More recently, spatial transcrip-
tomics, which allows the visualization of transcriptome-wide gene expression information
in tissue cryosections, achieved using barcoded oligo dT arrays and next-generation se-
quencing, was developed and its applicability to a wide range of species confirmed [114].
Unfortunately, at present, this methodology does not have resolution at the cell level, but
it will surely improve with time and constitutes an interesting strategy to consider when
spatial resolution is required. Moreover, the spatial resolution variable can be used in
correlation-based approaches to obtain an organ-based interactome in combination with
other omics, such as metabolomics. To this respect, MSI strategies [116,117] constitute a
suitable option to integrate the spatial variable for plant hormones and metabolites with
gene expression.
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