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Abstract: Patients with preexisting metabolic disorders such as diabetes are at a higher risk of
developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that
controls cellular metabolism, holds the key to understanding disease progression at the cellular
level. Our current study aimed to understand how cellular metabolism contributes to COVID-19
outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by
both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism,
regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA
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sequencing (RNASeq) data from blood samples collected from healthy controls and patients with
mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network
analysis to uncover interactions among them and up- or downstream genes within each pathway.
Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and
cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways,
were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the
top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In
summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and
its implication in immune and metabolic dysfunction.

Keywords: COVID-19; metabolism; endocrine; MMP9; RNA sequencing; DEG; Metacore

1. Introduction

The COVID-19 pandemic has been a global health concern since December 2019. Pa-
tients with COVID-19 show a wide spectrum of disease manifestations with the majority
experiencing mild/moderate symptoms including fever, cough, fatigue, and muscle pain.
Around 14–20% develop a severe to critical illness, associated with adverse outcomes and
higher mortality [1]. Immune dysregulation is evident in severe COVID-19, character-
ized by impaired type I interferon (IFN-I) response, aberrant activation of neutrophils,
lymphopenia, and overproduction of proinflammatory cytokines [2–9]. Immunothera-
pies including corticosteroids (e.g., dexamethasone), kinase inhibitors (e.g., baricitinib),
interleukin 1 receptor (IL-1R) antagonist/antibody anakinra, interleukin 6 receptor (IL-6R)
antagonist/antibody tocilizumab and sarilumab have shown some beneficial effects in the
selected group of patients [10]. However, treatment for severe COVID-19 is still limited
due to the complexity of disease pathogenesis and heterogeneity in the patients’ immune
status. Discovery of novel therapeutics targeting the underlying cause of immune dysregu-
lation would offer additional and perhaps more effective treatments, which is essential for
alleviating the disease burden of COVID-19.

The host immune response is tightly linked to the body’s metabolic status. Immune
dysregulation is often associated with an underlying metabolic dysfunction and vice
versa [11–14]. It has been established that preexisting metabolic disorders such as dia-
betes mellitus, obesity, hypertension, or cardiovascular disease, are strong risk factors for
developing severe COVID-19 [15,16]. Investigating the interaction between immune and
metabolic pathways would shed some light on the mechanisms underlying disease progres-
sion. Metabolism is known also to be regulated by the endocrine system, through releases
of various growth factors [17]. One such example is the regulation of glucose metabolism
by insulin [18]. Other growth factors such as insulin-like growth factor 1 (IGF1) and hepato-
cyte growth factor (HGF) also play a role in regulating glucose metabolism [19,20]. Insulin,
IGF1, and HGF have also been implicated in regulating immune response in diabetes and
cancer [21–23].

At the cellular level, metabolism is controlled by mitochondria, which supplies en-
ergy by converting carbohydrates, lipids, and proteins into adenosine triphosphate (ATP)
via oxidative phosphorylation (OXPHOS). Energy produced by mitochondria is used to
support the synthesis of macromolecules that are essential for cell growth and prolifer-
ation. In addition to energy production, mitochondrion also plays pivotal roles in cell
cycle regulation [24] and apoptosis [25,26]. Furthermore, mitochondrion is a signaling
organelle that mediates innate immune responses, leading to production of IFN-I and
pro-inflammatory cytokines [27–29]. The health of mitochondrion is therefore crucial for
maintaining a healthy immunity. Notably, patients with mitochondrial diseases often
suffer from recurrent infections, an indication of underlying immune dysregulation [30,31].
Under physiological conditions, the health and function of mitochondrion is maintained
through a highly regulated cycle consisting of mitochondrial dynamics (fusion and fission),
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mitochondrial biogenesis (synthesis of new mitochondria), and mitophagy (removal of
dysfunctional mitochondria via autophagy) [32]. Balance between mitochondrial biogene-
sis and mitophagy is crucial for maintaining the status quo (mitochondrial homeostasis)
and mitochondrial function thereof. Many signaling pathways are involved in the regu-
lation of mitochondrial biogenesis and homeostasis, one of which is the IGF1 signaling
pathway [33,34]. Mitochondrial homeostasis is perturbed under stress or an inflammatory
condition, leading to mitochondrial dysfunction. Inflammatory cytokines (e.g., tumor
necrosis factor (TNF), interleukin 1 β (IL-1β), and interferon γ (IFN-γ)) and oxidative
stress (e.g., reactive oxygen species (ROS) and nitric oxide (NO)), can induce mitochondrial
biogenesis, perhaps as part of compensatory stress response, which may lead to accumula-
tion of damaged mitochondria. Nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB), mitogen-activated protein kinase (MAPK), and protein kinase B (PKB)/Akt-
dependent signaling pathways mediate the activation of mitochondrial biogenesis induced
by proinflammatory cytokines and oxidative stress [35]. Mitochondrial homeostasis can
also be disrupted by viral infection as a mechanism to evade host immunity [36]. It has been
shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or protein
can directly interact with the host mitochondria or nucleolus [37–39] and downregulate
genes that are associated with mitochondrial dynamics and respiration [40,41]. However, it
is not clear how mitochondrion and its regulation, vary with differing disease severities and
hence contribute to disease outcomes in COVID-19. Our current study is aimed to address
this gap, which is crucial for deciphering the key mechanism underlying COVID-19 pro-
gression. Our data demonstrates the role of growth factor signaling in mediating immune
and metabolism interactions in severe COVID-19.

2. Results
2.1. Description of Human Cohort

Demographic and clinical characteristics of participants are summarized in Table 1.
Participants were divided into two groups: mild/moderate (MldMod) (World Health
Organization (WHO) severity levels 2–5), and severe (Svre) (WHO severity levels 6–9). Sex
proportion for the two groups were: 38 (64%) males for the MldMod group, and 18 (62%)
males for the Svre group. Median age for the two groups were: 64 years (interquartile range
(IQR): 49.5–76.5) for the MldMod group, and 59 years (IQR: 50.0–69.0) for the Svre group.
There were no significant differences in age and sex ratio between MldMod and Svre group.
All subjects from MldMod and Svre groups (n = 88) were hospitalized. Mean length of
hospital stay was 17 days for the MldMod group, and 27 days for the Svre group. Twelve
(20%) subjects from the MldMod group were admitted to the intensive care unit (ICU).
Fifteen (52%) subjects from the Svre group were admitted to ICU with a longer length of
stay (mean of 17 days). Mortality rate was higher in the Svre group (41.5%) compared to
the MldMod (13.5%). Seventy-one healthy volunteers were included as healthy controls
(HC). Median age of the healthy controls was 50 years (IQR: 44.25–54, with 50:50 sex ratio).
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Table 1. Demographic and clinical characteristics of participants.

HC
(n = 71)

MldMod
(WHO 2–5)

(n = 59)

Svre (WHO 6–9)
(n = 29)

p Values_ HC
vs. MldMod

p Values_ HC
vs. Svre

p Values_ MldMod
vs. Svre

Sex (males/females) 36M/35F 38M/21F 18M/11F ns ns ns

Age/years
(median; IQR)

50
(IQR:44.25–54)

64
(IQR: 49.5–76.5)

59
(IQR: 50.0–69.0) <0.0001 <0.05 ns

day_past_on_sympt N/A 6 7 N/A N/A ns

Outcome

LOS in
hospital (days) N/A 17 27 N/A N/A <0.0001

Admission to ICU N/A 12 (20%) 15 (52%) N/A N/A <0.05

LOS in ICU (days) N/A N/A 17 N/A N/A N/A

Death N/A 8 (13.5%) 12 (41.5%) N/A N/A <0.05

p values were calculated as follows: continuous variables by Kruskal–Wallis test, nonparametric, adjusted
p value for multiple comparison and by Mann–Whitney test, nonparametric test, adjusted p value for two groups.
Categorial variables by contingency, Fisher’s exact test. p value < 0.05 is considered statistically significant. LOS,
length of stay, ns: not significant, N/A: not applicable.

2.2. Principal Component Analysis Reveals Overall Differences between Mild/Moderate and
Severe COVID-19

Principal component analysis (PCA) was performed to examine the overall variance
in genes related to mitochondrial functions (as listed in Supplement Datasheet S1), which
included a total of 1623 unique mitochondria-encoded, or nucleus-encoded mitochon-
drial genes extracted from all the gene sets listed in Supplement Datasheet S2. PCA
plot showed a good separation between healthy controls (HC) and COVID-19 (COVID)
and a clear trend from mild/moderate to severe (Figure 1). Similar separation among
the groups was also observed when all 19,220 coding genes were used for the PCA
(Supplementary Figure S1). Differences among the groups were also reflected by the
change in cellular composition (by performing a deconvolution analysis of our bulk
RNAseq data), with increased neutrophil and endothelial cell populations associated
with the more severe group (Supplementary Figure S2).
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2.3. Differential Expression Gene (DEG) Analysis Reveals Differences between Mild/Moderate and
Severe COVID-19, Each of Which Is Associated with a Unique Set of Differentially Expressed
Mitochondrial Genes

To determine how SARS-CoV-2 infection impacts mitochondrial function or regulation
in patients with mild/moderate or severe COVID-19, we performed differential expression
gene (DEG) analysis on the selected genes (n = 1623 genes) (Supplemental Datasheet S2).
When compared to healthy controls, there were 67 up- and 13 downregulated DEGs
in the mild/moderate group and 210 up- and 67 downregulated DEGs in the severe
group (Figure 2A). There were 104 up- and 42 downregulated DEGs in the severe group
compared to the mild/moderate one. Figure 2B,C show the unique or overlapping up- or
downregulated DEGs in the severe or the mild/moderate group compared to the healthy
control, respectively. Figure 2D–F, show the top 20 up- or downregulated genes for each
comparison group respectively, namely mild/moderate vs. healthy control, severe vs.
healthy control, and severe vs. mild/moderate.

2.4. Pathway Enrichment Analysis Reveals Regulation or Dysregulation of Pathways Associated
with Mild/Moderate or Severe COVID-19

To determine which pathways were significantly altered by COVID-19 and to eluci-
date differences between the mild/moderate and the severe cases, we performed pathway
enrichment analysis by using all the DEGs as shown in Figure 2A. The top 10 most sig-
nificantly enriched pathways for the upregulated DEGs in the mild/moderate COVID-19
group (vs. healthy control), are shown in Figure 3A. These pathways are mainly in-
volved in type I IFN (IFN-α/β) antiviral signaling and cell cycle regulation including
regulation of G2/M checkpoint and chromosome condensation. No significantly enriched
pathways were associated with the downregulated DEGs Figure 3B,C respectively show
the top 10 most significantly enriched pathways for the up- or downregulated DEGs in
the severe COVID-19 (vs. healthy control). Notably, hypoxia response (transcription of
hypoxia-inducible factor 1 (HIF-1) targets), endocrine signaling (IGF1 signaling), and proin-
flammatory cytokine signaling (interleukin 1 (IL-1)) were enriched in the severe group
for the upregulated DEGs (Figure 3B). On the other hand, glycogen synthase kinase-3β
(GSK-3β), prokineticin receptor 1 (PKR1) and Wnt signaling, were significantly enriched in
the severe group for the downregulated DEGs (Figure 3C). Figure 3D,E respectively show
the top 10 most significantly enriched pathways for the up- or downregulated DEGs in
the severe COVID-19 (vs. mild/moderate). Endocrine (e.g., IGF1 and androgen) signaling
pathways, proinflammatory cytokines (e.g., interleukin 6 (IL-6) and IL-1) signaling path-
ways, and hypoxia response (transcription of HIF-1 targets) were significantly enriched
in the severe group for the upregulated DEGs (Figure 3D). As for the downregulated
DEGs, the significantly enriched pathways were mainly involved in type I IFN immune
response, and CD8+ T cells response (Figure 3E). Functional analyses of the gene ontology
(GO) term enrichment for the DEGs were also performed to demonstrate the alterations of
mitochondria-related cellular processes (Supplementary Figure S3).
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Figure 2. DEGs from comparisons of severity groups. (A) Bar diagram showing the number of up-
(in blue) and downregulated (in red) DEGs from three comparisons: mild/moderate versus healthy
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controls (MldMod vs. HC); severe versus healthy control (Svre vs HC), and severe versus
mild/moderate (Svre vs. MldMod). Y axis: number of DEGs. (B) Venn diagram showing the
number of overlapping or nonoverlapping upregulated DEGs between comparison MldMod vs. HC
(purple) and comparison Svre vs. HC (red). (C) Venn diagram showing the number of overlapping
or nonoverlapping downregulated DEGs between comparison MldMod vs. HC (dark blue) and
comparison Svre vs. HC (light blue). (D–F) Volcano plots showing the significantly up- or downregu-
lated DEGs (red) (with adjusted p-value of <0.05 and an absolute 1.5-fold ([log2] > 0.58) difference in
expression levels) in the three comparisons as in (A), respectively. Name of the top 20 significantly
up- or downregulated DEGs were shown.

2.5. Network Analysis Identifies That Severe COVID-19 Is Associated with Aberrant Activation of
Endocrine Signaling Pathways Leading up to Upregulation of MMP9 and Downregulation of
Innate Immune Signaling Pathways

To further understand the pathways enriched in severe COVID-19 participants (com-
pared to mild/moderate participants), we looked at the interactions among the genes
within each of the top 10 significantly enriched pathways. Figure 4A,F, show the up- or
downregulated genes (known as network objects) respectively, which contribute to the
pathway enrichment. The majority of these genes (colour coded) were involved in multiple
pathways, whereas a few (in black) were found only in one pathway. These genes were
subjected to network analysis in Metacore. Networks and associated pathways entailing
gene–gene interactions, are shown for four selected pathways. Figure 4B–E are for the
upregulated pathways highlighted in red (Figure 4A) and Figure 4G–J are for the downreg-
ulated pathways highlighted in blue (Figure 4F). Networks and associated pathways for the
other six pathways are provided in Supplemental Figure S4. Figure 4B,C show activation
of IGF1, HGF, TGF signaling pathways, which lead to increased MMP9 expression in the
severe COVID-19 (versus mild/moderate). MMP9 was found in five out of the ten enriched
pathways, namely IGF1 signaling in hepatocellular carcinoma (HCC), cell adhesion extra-
cellular matrix (ECM) remodeling, plasminogen activators signaling in pancreatic cancer,
transcription HIF-1 targets, and stromal-epithelial interaction in prostate cancer. Figure 4D
show signaling pathway leading to increased cyclin-dependent kinase 1 (CDK1)/cycling
B1 production in the severe COVID-19 (versus mild/moderate). Figure 4E–J show down-
regulation of IFNα/β response via the Janus kinas-signal transducer and activator of
transcription (JAK/STAT) and MAPK pathways, which lead to decreased toll-like receptor
7 (TLR7), interferon induced with helicase C domain 1 (IFIH1), interferon regulatory factor
7 (IRF7), interferon-stimulated gene 15 (ISG15), interferon-induced protein with tetratri-
copeptide repeats 2 (ISG54/IFIT2), and interferon-α inducible protein 6 (IFI6). Subcellular
localization of the network objects (as in Figure 4A,F) demonstrated that some were found
in the mitochondria but majorities of them were not (Supplementary Datasheet S3).
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Figure 3. Metacore pathway enrichment analysis of DEGs. (A) Top 10 most significantly en-
riched pathways map for the upregulated DEGs comparing mild/moderate to healthy control
(MldMod vs. HC_UP). (B) Top 10 most significantly enriched pathways map for the upregulated
DEGs comparing severe to healthy control (Svre vs. HC_UP). (C) Top 10 most significantly enriched
pathways map for the downregulated DEGs comparing severe vs. healthy control (Svre vs. HC_DOWN).



Int. J. Mol. Sci. 2023, 24, 2524 9 of 18

(D) Top 10 most significantly enriched pathways map for the upregulated DEGs comparing severe to
mild/moderate (Svre vs. MldMod_UP). (E) Top 10 most significantly enriched pathways map for
the downregulated DEGs comparing severe to mild/moderate (Svre vs. MldMod_DOWN). False
discovery rate (FDR) for each enriched pathway was shown.
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Figure 4. Metacore network analysis of genes from the enriched pathways. (A) Bar diagram showing
Log2 fold change (LFC) of the genes that contribute to enrichment of the top 10 pathways from
Figure 3D (Svre vs. MldMod_UP). Network analysis of the genes from four of the ten pathways
(highlighted in red) were shown in (B) IGF1 signaling in HCC, (C) plasminogen activators signaling
in pancreatic cancer, (D) transcription HIF-1 targets, (E) IL-6 signaling in colorectal cancer. (F) Bar
diagram showing Log2 fold change (LFC) of the genes that contribute to enrichment of the top
10 pathways from Figure 3E (Svre vs. MldMod_DOWN). Network analysis of the genes from four of
the ten pathways (highlighted in blue) were shown in (G) IFNa/b signaling via JAK/STAT, (H) innate
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immune response to RNA viral infection, (I) main genetic and epigenetic alterations, and (J) IFNa/b
signaling via MAPKs. Red and blue circles denote upregulated and downregulated genes from
the respective enriched pathway. The coloured solid line with arrows represents activation (green),
inhibition (red) and unspecified (grey) effects between the two genes. Bold light green lines represent
well-known canonical pathways. Abbreviations: E, extracellular space; PM, plasma membrane;
C, cytosol; N, nucleus.

3. Discussion

The importance of mitochondrion in COVID-19 pathogenesis and host mitochondrial
transcriptome have been investigated in previous studies [39–41]. However, the role of
mitochondrion, and its regulation in disease progression, are not well-studied. Given the
fundamental involvement of mitochondrion in cell life, function, stress response and death,
it is likely that mitochondrial health of the immune cells, is associated with disease outcome
following SARS-CoV-2 infection [42]. Our current study seeks to better understand the
host immune response from the aspect of cellular metabolism, regulation of mitochondrial
respiration and organization, by appreciating the difference between mild/moderate and
severe infections, identifying what separates mild/moderate and severe infections, and
pinpointing genes or pathways that might be crucial for disease progression. Findings from
our study would potentially help to understand the role of mitochondrion in regulating
functions of tissue-specific immune cells and therefore aid the design of novel COVID-19
treatment, targeting bioenergetic dysfunction of the immune cells.

We analysed and compared genes specifically related to cellular metabolism, regu-
lation of mitochondrial respiration and organization, and apoptosis, which were chosen
to reflect the major functions and regulations of mitochondrion within the cell. Our data
revealed distinct differences between mild/moderate and severe COVID-19, in terms of
the number and types of differentially expressed genes (DEGs) when comparing each of
them to the healthy control as well as when comparing between them. Severe COVID-19
encounters more alterations to the mitochondrion-related transcriptome than mild/moderate
one, as evidenced by more up- or downregulated genes identified in the severe than in the
mild/moderate COVID-19 when compared to the healthy control. Further differences were
revealed by the DEGs identified in severe COVID-19 compared to mild/moderate participants.

We then sought to determine what pathways these DEGs were associated with, to
gain better understanding of their functions and roles in the disease. Pathway enrichment
analysis revealed unique pathways for the DEGs identified in mild/moderate or severe
COVID-19. In keeping with previous findings, we observed downregulated IFN-I response
pathways in the severe COVID-19 compared to mild/moderate one [2–4]. Mitochondrion
is known to mediate IFN-1 response through mitochondrial antiviral signaling (MAVS) and
interferon regulatory factor-3 and -7 (IRF3/IRF7) [27,28]. Our results confirm the impor-
tant role of mitochondrion in mediating innate immune response towards SARS-CoV-2,
and perturbation to the mitochondrial aspect of this response occurs in severe cases of
COVID-19. Concomitant with a downregulated IFN-I response, we observed an upregula-
tion in hypoxia-inducing factor 1 (HIF1) transcription targets and IGF1 signaling pathways.
IGF1 is known for its role in regulating glucose metabolism [20]. Elevated glucose and
glycolysis (hyperglycolysis) are observed in severe COVID-19 as a mechanism to promote
viral replication, through ROS stabilization of HIF1α [43,44]. Hence, upregulated IGF1
signaling could be a host response toward elevated glucose in severe COVID-19. IGF-1 has
also been associated with promoting proinflammatory activity in human peripheral white
blood cells [21].

We delved further into the pathways enriched in severe COVID-19 (compared to
mild/moderate cases) by network analysis to look for connections among the genes within
the pathway and interconnections among the pathways. Out of the top 10 significantly up-
regulated pathways in the severe cases, MMP9 was found in five of them. Its upregulation
is associated with IGF1, HGF, and TGF signaling through MAPK pathway. MMP9 belongs
to the family of zinc-dependent endopeptidases, which plays important roles in cell prolif-
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eration, apoptosis, migration, and differentiation [45]. Overexpression of MMP9 in alveolar
macrophages, bronchial tissues, sputum, and serum, has been previously associated with
chronic obstructive pulmonary disease (COPD), emphysema, and asthma [46] and upreg-
ulation of MMP9 in the blood has been associated with severe COVID-19 [7,47]. Serum
level of MMP9 is found to be significantly elevated in the more severe cases of COVID-19
and in combination with brain-derived neurotrophic factor (BDNF), MMP9 has shown
potential as a predictive marker for COVID-19 severity [47]. It is known that overproduc-
tion of MMPs leads to excessive tissue damage, neutrophil influx, neutrophil activation,
and overproduction of proinflammatory cytokine IL-1β, hence contributing to the disease
progression [7,48]. Our current study, for the first time, provides evidence on MMP9′s
involvement in regulation of mitochondria-related functions and COVID-19 disease pro-
gression. Previously, MMPs have been implicated in mitochondrial dysfunction in diabetic
retinopathy and cardiac disease. MMP9 in particular can be localized to mitochondria and
induces mitochondrial dysfunction [49–52]. Our current study further supports the pivotal
role of MMP9 in modulating immunometabolism via endocrine signaling pathways and
could be a potential therapeutic target against severe COVID-19 [46].

We are aware of a major limitation of the current study. Larger numbers of participants
in the severe COVID-19 group would add additional information on age and sex effects. Fu-
ture study with the use of publicly available data would be useful to address this. Another
limitation of the current study is that we are not able to discern if upregulated expression
of MMP9 and its associated signaling pathways in the severe COVID-19, is because of
increased neutrophil population or cell-specific increased expression. Future analysis of
single cell transcriptomic data would provide better understanding in this regard.

In conclusion, through pathway and network analyses, our current study demon-
strates an aberrant activation of endocrine (e.g., IGF1 and HGF) signaling pathways in the
severe cases, as well as their connection to a upregulation of MMP9, a gene that has been
implicated in the aberrant activation of neutrophil in severe COVID-19 [7] and mitochon-
drial dysfunction in diabetic retinopathy and cardiac disease [49–52]. Our study provides
insight on the interconnection between immunometabolism and growth factor signaling
and their roles in disease progression.

4. Materials and Methods
4.1. Study Design and Participants of Human Cohorts

In this study, 88 patients were recruited from multiple centers from Sydney, Melbourne,
and Perth in Australia and a single center in Czech Republic between February 2020 and
February 2021. The inclusion and exclusion criteria are as follows:

Inclusion criteria: (1) age ≥ 18 years old, (2) World Health Organization definition of
influenza-like illness (fever of 38 ◦C or higher, cough, sore throat, nasal congestion, and
illness onset within the last 10 days), and (3) patient with SARS-CoV-2 infection confirmed
by virological testing respiratory samples (nasal/throat swab/sputum/bronchoalveolar
lavage) collected from patients and tested for SARS-CoV-2 virus. All eligible patients
were assessed by an admitting physician for likelihood of infection. Patients with a high
likelihood of infection, based on history and clinical features, were also enrolled into
the study.

Exclusion criteria: age < 18 years old.
Samples from 71 healthy volunteers included in this study were all collected prior to

2018. Study data were collected and managed by using REDCap electronic data capture
tools [53,54] hosted at the University of Sydney.

4.2. Blood Sample Collection and RNA Isolation

Two and half millilitres of blood were collected into PAXgene Blood RNA tubes (Qia-
gen, Venlo, The Netherlands) from participants according to the manufacturer’s supplied
protocol, resulting in a total of 203 samples (multiple samples were taken from some
patients). Collected samples were inverted 8–10 times gently, immediately after blood
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collection, kept for ~2 h at room temperature, followed by incubation at −20 ◦C for 24 h.
Thereafter tubes were transferred to −80 ◦C prior to processing. Total RNA was isolated
from whole blood samples stored and stabilized in PAXgene RNA tubes according to
the manufacturer’s guidelines (PreAnalytiX, Zurich, Switzerland). The quality and quan-
tity of extracted RNA was evaluated by visualization of 28S and 18S band integrity on a
Tapestation 4200 system (Agilent, Santa Clara, California, CA, USA) and stored at −80 ◦C.

4.3. Library Preparation and RNASeq

Libraries were prepared with 300 ng of total RNA per sample by using the Illumina
Stranded Total RNA Prep with Ribo-Zero Plus (RZP) as per manufacturer instructions
(Illumina, San Diego, CA, USA). Final libraries were cleaned by using beads (Beckman
Coulter, Brea, CA, USA), quantified, and normalised with qPCR using NEBNext Library
Quant Kit for Illumina. All libraries were pooled with 32 samples per lane and sequenced
with 150 bp paired-end (PE) reads by using an Illumina NovaSeq 6000 with v1.5 chemistry
and S4-300 flow cell. A minimum sequencing depth of 48.3 million (M) read pairs were
generated from each library. Base calling and FASTQ conversion were complete with
NovaSeq Control Software (NCS) v1.7.5, Real Time Analysis (RTA) v3.4.4 and Illumina
DRAGEN BCL Convert 07.021.624.3.10.8. FASTQ files were uploaded into Partek Flow
software (Partek Inc., Chesterfield, MO, USA), and primary QC was performed.

4.4. Mitochondrial Gene Sets

Forty-seven gene sets consisted of 7 Hallmark, 33 GOBP, 1 GOMF, 1 WP, 1 HP, and
4 REACTOME gene sets as listed in Supplement Datasheet S2 were obtained from the
molecular signature database (Msigdb) (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp, accessed on 29 September 2022) [55]. These gene sets are associated with the
metabolic pathways, functional or structural maintenance of the mitochondrion, and
mitochondrion-mediated immune response towards SARS-CoV2. A unique gene list
generated from the abovementioned gene sets is listed in Supplement Datasheet S1.

4.5. Bioinformatic Analysis of RNASeq Data

FASTQ files containing raw sequencing data were quality controlled and preprocessed
into analysis-ready count data by using the highly scalable RNASeq-DE workflow, available
online at https://github.com/Sydney-Informatics-Hub/RNASeq-DE (v1.0.0), accessed
on 10 December 2022 [56]. Default settings were applied unless otherwise described
here. Briefly, 3′ adapter and polyA tails were trimmed from raw sequence reads with
BBDuk (v37.89) [57]. An average of 89.2 million trimmed reads per sample were remaining.
FastQC (v0.11.7) [58] was used to confirm that median sequence and base qualities scored
Phred > 20. Quality checked, trimmed reads were aligned as pairs to the human reference
genome, GRCh38 primary assembly and gene set release 106 (obtained from Ensembl)
with STAR, setting –sjdbOverhand to 149. Sequencing batch level binary alignment (BAM)
files were merged and indexed with SAMtools (v1.10) [59] to obtain sample level BAMs.
HTSeq-count (v0.12.4) [60] with -s reverse was used to obtain feature level raw counts. Raw
counts were annotated by using the package biomart (version 2.42.1, [61] by using function:

useEnsembl (biomart=“ensembl”, dataset=“hsapiens_gene_ensembl”, GRCh=38). En-
tries with no gene symbol were deleted. Then raw counts were normalized and log2
transformed by using function rlogTransformation from the DESeq2 package (version
1.16.1, [62]). An increment was added to the normalized values to make all values positive.
For this analysis, mitochondrial genes were selected from different databases (Supple-
ment Datasheet S1). Subsequently, identification of differentially expressed mitochondrial
genes (DEGs), package LIMMA (version limma_3.42.2, [63,64]) was used with function
model.matrix (~0 + group). Volcano plots were generated with the package Enhanced-
Volcano, version 1.8.0 [65]. Further analysis and visualization of expression data was
performed by using the R software package (version 3.4.0) [66].

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://github.com/Sydney-Informatics-Hub/RNASeq-DE
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4.6. Metcore Pathway Enrichment and Network Analysis

To comprehensively dissect the pathways associated with the DEGs, MetacoreTM,
a Cortellis Solution software (Clarivate Analytics, UK, https://clarivate.com/products/
metacore/, accessed on 1 December 2022), was used to perform curated pathway-enrichment
analysis and GO analysis. Comparing different phenotypes, three lists of differentially
expressed mitochondrial related genes were generated and uploaded in MetaCore path-
way analysis:

I. mild/moderate COVID-19 vs. healthy controls,
II. severe COVID-19 vs. healthy controls, and
III. mild/moderate vs. severe COVID-19.

Pathway enrichment analysis was used for analysing experimental data in terms of
their enrichment of pathway maps. Pathway maps tool was used to identify the enriched
pathways involving DEGs in terms of the hypergeometric distribution, and the p-values
were calculated by using the default database as the background (based on a false discovery
rate (FDR) p < 0.005). Analysis between the three comparison groups were based on an
adjusted p-value of <0.05 and an absolute 1.5-fold ([log2] > 0.58) difference in expression
levels. Changes in expression levels were presented as fold changes for a given gene. (FDR)
adjustment was applied for multiple testing. An FDR of 5% was used as the cutoff to
determine whether a pathway was statistically overrepresented in the gene list. Adjusted
p-value are expressed in -log(p-value) and ranked by statistical significance. Genes denoted
as network objects, were used to build network. The “Analyze network” building algorithm
with number of nodes in a network “50” was used for analysis. Canonical pathways were
chosen. The network with the highest number of total nodes was chosen.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24032524/s1. References [67–69] are cited in the supplemen-
tary materials.
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