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Abstract: The emergence of chlorophyll-containing light-harvesting complexes (LHCs) was a crucial
milestone in the evolution of photosynthetic eukaryotic organisms. Light-harvesting chlorophyll-
binding proteins form complexes in proximity to the reaction centres of photosystems I and II and
serve as an antenna, funnelling the harvested light energy towards the reaction centres, facilitating
photochemical quenching, thereby optimizing photosynthesis. It is now generally accepted that the
LHC proteins evolved from LHC-like proteins, a diverse family of proteins containing up to four
transmembrane helices. Interestingly, LHC-like proteins do not participate in light harvesting to
elevate photosynthesis activity under low light. Instead, they protect the photosystems by dissipating
excess energy and taking part in non-photochemical quenching processes. Although there is evidence
that LHC-like proteins are crucial factors of photoprotection, the roles of only a few of them, mainly
the stress-related psbS and lhcSR, are well described. Here, we summarize the knowledge gained
regarding the evolution and function of the various LHC-like proteins, with emphasis on those
strongly related to photoprotection. We further suggest LHC-like proteins as candidates for improving
photosynthesis in significant food crops and discuss future directions in their research.

Keywords: photosynthesis; photoinhibition; light-harvesting; photoprotection; non-photochemical
quenching

1. In Addition to Functioning in Light Harvesting, the Light-Harvesting Proteins Are
Important for Protection from Photoinhibition

Light-harvesting chlorophyll-binding complexes (LHCs) evolved in eukaryotic pho-
tosynthetic organisms to enhance the absorption cross-sections of photosystems I and II
(PSI and PSII). LHCI and LHCII form megacomplexes with PSI and PSII (PSI-LHCI and
PSII-LHCII) in thylakoid membranes and harvest light energy via the bound chlorophylls
a and b. The harvested light energy is then directed towards the photosystem’s reaction
centres (RCs) to drive charge separation and photosynthesis (Figure 1).

Owing to their significant enhancing effect on the ability of PSI and PSII to harvest
sufficient light for efficient photosynthesis, LHCs have enabled eukaryotic photosynthetic
organisms to evolve and thrive in various light-limited habitats. However, under intensive
high-light (HL) intensities or when photosynthetic electron flow is inhibited, the efficient
antenna property of LHCs is problematic and could increase photoinhibition. When
the PSs are saturated with absorbed energy, the chlorophylls embedded in the LHC are
excited with more energy than can actually be exploited by the photochemical reaction
centres, resulting in the formation of chlorophyll triplets. These chlorophyll triplets react
with O2 to form harmful reactive oxygen species (ROS) (Figure 1). In a similar fashion,
ROS is produced in the RC of the PSII and PSI, possibly causing photoinhibition (PI), a
condition in which photosynthesis is inhibited since the PS, primarily PSII, is damaged
faster than the rate of being repaired (Figures 1 and 2) [1–3]. During PI, photosynthesis
declines up to a point where the organism may not survive. Photosynthetic organisms
employ various mechanisms to minimize the effects of PI, starting from reduction in
antenna (LHC) size to limit harvesting of excess light [4,5], through energy dissipation
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via non-photochemical quenching (NPQ) processes [6,7], and up to a rapid repair of
the damaged photosynthetic apparatus [8–10] (Figures 1 and 2). While LHCs function
mainly as antennas that harvest light energy via chlorophylls and funnel it to the RCs
(Figures 1 and 5) [11–14], they also participate in the quenching of excess energy. An
important and well described example of its role in energy quenching is the activation of
the highly protective xanthophyll cycle during exposure to HL intensities. Violaxanthin,
a carotenoid-bound to LHCII, is de-epoxidized by violaxanthin de-epoxidase (VDE) in a
two-step manner first to antheraxanthin and then to zeaxanthin. Zeaxanthin then quenches
the excess energy of nearby excited chlorophyll and prevents the production of harmful
ROS, thereby protecting the PSII (Figure 1).

1 
 

 

Figure 1. Photosynthesis during HL and suggested photoprotective roles of LHC-like proteins. Light
is harvested in the LHC and directed to PSII RC, where it excites a specialized chlorophyll-pair
(P680) and initiates charge separation and linear electron flow (LEF). Electrons are transferred from
PSII-RC via QA to QB that then join the plastoquinone (PQ) pool. From PQ, the electrons move to
cytochrome b6f, PSI, and ferredoxin NADPH reductase (FNR) (not shown). FNR reduces NADP+
to NADPH, which is further utilized for carbon-fixation reaction via the Calvin–Benson–Bassham
cycle. During HL, PSI and PSII are saturated with energy. The continuous photosynthesis facilitates
a proton gradient between the lumen of the thylakoid and the stroma of the chloroplast due to the
splitting of water and import of protons via the PQ pool and cytochrome b6f. This lumen acidification
leads to protonation of protonable residues in psbS (mostly plants and mosses) and lhcSR (algae and
mosses). In response, the pigment-less psbS interacts and activates NPQ in the LHCII subunit CP29.
lhcSR binds lutein and chlorophyll and can act as a sinkhole for excess energy in the LHC. Thus, it
can receive and scavenge excess energy from LHCII. When the light energy exceeds the amount that
could be used for photochemistry, excited chlorophylls in the LHCs and RCs may dissipate the excess
energy as heat via interactions with other chlorophylls or carotenoids. During HL, the xanthophyll
cycle is activated: violaxanthin is de-epoxidated by VDE to zeaxanthin (via antheraxanthin), which
in turn acts to relax excited chlorophylls and prevent ROS formation. Remaining excess energy
excites chlorophyll to a triplet state where it reacts with O2 to form ROS. The ROS then interacts
with and damages the photosynthetic reaction centres and LHC subunits, leading to photoinhibition.
It is suggested that SEPs/Lils and ELIPs serve as a temporary reservoir for the chlorophylls of the
damaged proteins during their turnover (see also Figure 2).

LHC proteins contain three transmembrane (TM) helices, of which two are homolo-
gous to HL-inducible protein (HLIP) (Figure 3a,b) and harbour a conserved amino acid
sequence known as the LHC motif, as well conserved carotenoid locations and light-
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harvesting chlorophyll binding sites [15]. Intriguingly, it was discovered that LHC proteins
evolved from proteins that do not participate in light harvesting (Figure 4), but instead
serve to protect the PS RCs from excess light (Figures 1 and 2 and 5) [16,17]. These LHC-like
proteins share many structural similarities with the LHC proteins (Figure 3a,b), contain
LHC motifs in their TM helices (Table 1), and are mostly able to bind pigments.
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Figure 2. Suggested roles of HLIP/OHP, ELIPs and SEP/Lil in the PSII repair cycle. During HL,
generated ROS damages mainly the PSII reaction centre protein D1, followed by D2, and then the
LHCII subunits. Chlorophylls from the damaged reaction centres and LHC are transferred to OHP1
or ELIP and SEP/Lil, respectively, while the damaged proteins are degraded. During this time,
the energy of excited chlorophylls is quenched via carotenoids. Once newly synthesized subunits
are incorporated and PSII reassembled, chlorophylls are transferred back to the reaction centre to
harvest light for photosynthesis. It is important to note that ELIPs, SEPs and OHPs are most certainly
involved in regulation of other mechanisms, including chlorophyll and carotenoid biosynthesis.

Table 1. Conserved LHC motif in selected photoprotective LHC-like proteins. The symbols * in the
consensus sequence indicate less conserved residues. Adapted and modified from Rochaix and Bassi,
2019 [18].

Organism Protein LHC-Motif Sequence Location

C. reinhardtii psbS2 ELFVGRLAMVGFSAS 71–85
ELFVGRAAQLGFAFS 159–173

C. reinhardtii lhcSR1 EITHGRVAMLAALGF 81–95
ELNNGRLAMIAIAAF 191–205

C. reinhardtii lhcSR3 EITHGRVAMLAALGF 87–101
ELNNGRLAMIAIAAF 197–211

C. reinhardtii ELIP (1) EINNGRIAMVSVVTA 67–81
EKINGRAAMMGLTSL 346–360

C. reinhardtii ELIP (2) EIVNGRLAMLGFVSA 103–117
ELLNGRAAMIGFAAM 171–185

C. reinhardtii Lil3 (SEP) EKLNGRAAMMGYVLA 162–176
A. thaliana Lil3 (SEP) ELLNGRAAMIGFFMA 174–188
A. thaliana OHP1 (HLIP) EIWNSRACMIGLIGT 69–83
A. thaliana OHP2 (HLIP) EISNGRWAMFGFAVG 130–144

Synechocystis HliA (HLIP) EKLNGRLAMIGFVAL 36–40
Consensus E**NGR*AM*G
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Figure 3. LHCII and LHC-like proteins share vast structural similarities. (a) The known structure
of LHCII (taken from pdb id: 6KAF) is shown in green. The structure models of LHC-like proteins
as predicted by Swiss model. (b) OHP1 and psbS predicted models superimposed on the known
LHCII structure. Note the overlapping of the two conserved TM helices in OHP, LHCI and psbS. All
models (including OHP and SEP) were predicted with Arabidopsis thaliana sequences of the relevant
proteins except lhcSR. The lhcSR model was predicted with C. reinhardtii sequence. The predicted
structures are coloured by hydrophobicity: red indicates hydrophobic regions and blue indicates
hydrophilic regions.
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Figure 4. Suggested evolution of LHC and LHC-like proteins. HLIP was first introduced to eukaryotes
via primary endosymbiosis and acquired a signal peptide when its gene transferred to the nuclear
genome. OHP1-like protein gave rise to a pool of different SEPs. OHP2 is likely a consequence of a
gene-deletion event of SEP while a small portion remains and acts as a membrane anchor. Different
SEPs evolved into LHCs, ELIPs and psbS.
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2. LHC-like Proteins Do Not Serve as Antenna but Function in Protection against
Photoinhibition

The first known ancestor of LHC and LHC-like proteins was discovered in the HL-
stressed cyanobacteria Synechococcus and was named HL-inducible protein (HLIP) [19].
It is now thought that HLIP was involved in a series of gene fusions, duplications, and
deletions, which gave rise to all other LHC-like and LHC proteins, with the latter being
the most recently formed group [17,20] (Figure 4). The LHC-like proteins are classified
into four groups based on their structural characteristics and the number of TM helices
they carry (Table 2). Group 1 includes proteins with one TM helix. They include HLIPs
in cyanobacteria and one-helix proteins (OHP) or small chlorophyll a/b binding (CAB)
proteins in eukaryotes. Group 2 includes proteins with two TM helices, known as stress-
enhanced proteins (SEP) or LHC-like proteins (Lil). Group 3 includes proteins with three
TM helices, which contain both early light-induced proteins (ELIP) and stress-related LHCs
(lhcSR). Group 4 contains a protein with four TM helices named PSII subunit S (psbS) [20].
LHC-like proteins are generally similar to LHCs in their amino acid sequence and also
share structural similarities (Figure 3) [16,20,21]. However, as mentioned above, they do not
participate in light harvesting to drive photosynthesis. On the contrary, there is evidence
that at least some of these proteins have critical roles in the quenching of excess energy
in the NPQ reactions (Figures 1, 2, and 5 and Table 2). Among these, the most studied
are psbS and the stress-related LHCs (lhcSR), which are present in land plants and algae,
respectively, while mosses carry both of them [6,22,23] (Figure 5). LHC-like proteins are
generally not detectable in non-stressed environmental conditions, and are induced by
various stress factors, including cold temperatures, limited nutrients, desiccation, and
intense HL [24–26]. Consequently, it was suggested that LHC-like proteins take part in
adaptation to growth-stress conditions. The LHC-like proteins, which are induced by HL,
with emphasis on those reported to function in photoprotective mechanisms, are the focus
of this review.

Table 2. Summary of LHC-like proteins’ suggested pigments and functions.

TM Helices Protein Organism Pigments Suggested Function

1 HLIP (Prokaryota)
OHP (Eukaryota)

Cyanobacteria,
Algae,
Plants

Chlorophyll a,
β-carotene

Temporarily binds pigments
during PSII repair cycle.

2 SEP/Lil Algae, Plants Chlorophyll a,
Lutein/Zeaxanthin

Temporarily binds pigments
during LHC turnover,

chlorophyll biosynthesis.

3 ELIP Algae, Plants Chlorophyll a, Lutein,
Zeaxanthin

Temporarily binds pigments
during LHC turnover,

suppression of chlorophyll
biosynthesis

3 lhcSR Algae and Mosses Chlorophyll a, Lutein
Thylakoid lumen acidification
sensing, destination for excess

energy transfer from LHC.

4 psbS Mostly Plants and
Mosses -

Thylakoid lumen acidification
sensing, activation of NPQ in

LHCII subunit CP29.
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Figure 5. Proposed quenching mechanisms for psbS, lhcSR, and C. ohadii CBR. HL conditions
promote thylakoid lumen acidification. psbS (mainly in plants) is protonated at conserved Glu
residues (indicated by pink arrows) and undergoes conformational shift before interacting with and
activating energy quenching in the LHCII subunit CP29 (top). lhcSR is protonated at conserved Glu
and Asp residues and also undergoes conformational shift and interacts with LHCII subunits. Excess
energy can be transferred to lhcSR, where it is quenched via carotenoids (middle). The mechanism of
CBR is unknown, yet evidence points to a conserved Glu residue with the same location of one of
the proton-sensing Glutamates of psbS, suggesting a possibility in which CBR acts as a substitute
for psbS and lhcSR in the highly light-tolerant C. ohadii (Levin et al., 2022) [27]. Figure adapted and
modified from Pinnola., 2019 [23] LHCII and PSII core structures were taken from pdb id: 6KAF.

While the photoprotective roles of psbS and lhcSR are well defined (Figure 5) [23], little
is known about the photoprotective mechanisms of other LHC-like proteins. The known
and suggested photoprotective roles of LHC-like proteins include the sensing of thylakoid
lumen acidification, activation of the photoprotective xanthophyll cycle, chlorophyll and
carotenoid synthesis regulation, repair of PSI and PSII, and more [28–31]. Together, LHC-
like proteins act as the guardians of photosynthesis in a variety of stress conditions. As
such, it is important to explore the molecular mechanisms underlying their photoprotection
capabilities. Doing so will enhance our understanding of PI resistance, and may identify
candidates for improving photosynthesis in agriculture crops. For example, transgenic
expression of Arabidopsis psbS alongside the key enzymes of the xanthophyll cycle VDE
and zeaxanthin epoxidase (ZEP) in tobacco lead to faster NPQ relaxation kinetics during a
shift from HL to LL conditions, which, in turn, accelerates CO2 assimilation recovery in the
shade. Importantly, both field and greenhouse experiments resulted in a 15% increase in
crop productivity, as measured by dry mass, and a 33% increase in seed yield [32–34]. It is
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of note that PsbS could not be detected in one of the most light-tolerant algae on the planet,
Chlorella ohadii, and lhcSR is entirely absent from its genome [5,35], raising questions as to
how this alga so efficiently ensures PI protection and why it eliminated these PI protection
players in its evolution.

Herein, we review the suggested general characteristics and photoprotective roles of
LHC-like proteins. We explore the potential of improving photosynthesis via the genetic
engineering of photoprotective LHC-like proteins in agriculturally important crops, discuss
the importance of a gaining a better understanding of the photoprotective functions of
LHC-like proteins, and suggest future research directions.

3. lhcSR and psbS Are Stress-Induced Proteins That Protect Photosynthesis against
Photoinhibition

Similar to LHC proteins, lhcSR contains three TM helices (Figure 3). It is found mainly
in various algae lineages and mosses and binds chlorophylls and carotenoids [36,37]. In the
model green alga Chlamydomonas reinhardtii, three genes encode lhcSR: lhcSR 1, and lhcSR’s
3.1 and 3.2, which the later share the same amino acid sequence. Excessive light conditions
trigger lhcSR expression and their accumulation within several hours [38]. Protonatable
conserved Glu and Asp residues located at the luminal side of lhcSR sense thylakoid lumen
acidification [39], which occurs as a result of proton intake during the elevated activity of
the photosynthetic electron flow under HL intensities (Figures 1 and 5). This acidification
activates qe, the pH-dependent component of NPQ [40]. lhcSR binds chlorophyll a, lutein
and violaxanthin, which under HL is converted to zeaxanthin (via antheraxanthin) through
consecutive de-epoxidation events, a process known as “the xanthophyll cycle” (Figure 1).
While lhcSR associates with the LHCs, zeaxanthin quenches the excited chlorophylls and
thereby prevents ROS formation in both PSI and PSII [41] (Figures 1 and 5).

In land plants, psbS is the pH sensor and not lhcSR. However, while lhcSR has three
TM helices, psbS contains four (Figure 3) and while it does carry LHC motifs, structural
analysis of Spinacia oleracea psbS revealed a structure that is too tightly packed to bind
pigments such as chlorophylls [42]. Therefore, psbS may be responsible for proton sensing
and the activation of qe (the quenching of energy due to lowering the lumen pH) in higher
plants, but it cannot be the quencher itself. Instead, it likely undergoes a conformational
shift that facilitates its interaction with and activation of other LHC proteins for energy
quenching, with recent studies indicating the minor antenna CP29 [43] (Figure 5). Inter-
estingly, mosses contain both lhcSR and psbS, where both contribute to NPQ [44] and
although initially psbS could not be detected in the model green algae C. reinhardtii under a
variety of growth conditions [45], it was recently shown to be transiently induced under
HL conditions. However, it was reported to accumulate to low levels, and to play a minor
role in NPQ compared to lhcSR [46,47]. Surprisingly, psbS appears to be continuously
expressed upon exposure to low light (LL) levels during a diurnal cycle [48,49]. Consider-
ing this evidence, psbS in C. reinhardtii was recently suggested to participate in the initial
activation of lhcSR and NPQ, as well as in the reorganization of thylakoid membranes and
LHC proteins [50]. Furthermore, the accumulation of lhcSR 1 and psbS in the thylakoid
membrane of C. reinhardtii is induced by UV-B light using the nucleo-cytosolic UVR-8 pho-
toreceptor. Accumulation of lhcSR 1 and psbS in UV-B light leads to a significantly better
photoprotection under subsequent HL stress, which induces the accumulation of lhcSR
3 [51]. While most studies have focused on the protection of PSII via energy dissipation,
under HL conditions the UV-B induced lhcSR 1 mediates energy transfer from LHCII to
PSI instead of PSII, thus protecting it from excess energy [52].

4. One-Helix LHC-like Proteins (HLIPs/OHPs/Small-CABs) Protect PSII during
Biogenesis and the Photoinhibition Repair Cycle

HLIPs were discovered in HL-stressed cyanobacteria [19] and are believed to be
the earliest ancestor of all other LHC and LHC-like proteins [17,20]. HLIP homologs
were later also found in eukaryotes [53] and were named OHPs or small chlorophyll
a/b binding proteins (small-CABs). They possess a single trans-membrane helix, which
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harbours an LHC motif (Figure 3 and Table 1) and pigment-binding sites [54]. In both
cyanobacteria and eukaryotic photosynthetic organisms, HLIPs/OHPs were shown to
play central roles in the biogenesis and repair of PSII. In the cyanobacteria Synechocystis
and Synechocococcus, there are four HLIP genes (HliA-D or ScpB-E) [55] which encode
proteins that bind PSII and stabilize the trimeric structure of PSI, imperative for its activity
under HL conditions [56–58]. HLIPs have been shown to retard PSII-associated chlorophyll
degradation and have been suggested to temporarily bind the pigments of PSII during its
repair, when its subunits are being substituted [56,59,60] (Figures 1 and 2). In line with these
reports, recent findings discovered HLIPs as part of chlorophyll-binding protein complexes
that are important in the early assembly steps of PSII and chlorophyll biosynthesis [61,62].
A model of HLIP predicted a homo-dimeric structure and it was demonstrated that energy
is dissipated via direct energy transfer between chlorophyll a and β-carotene [54]. The
proteins may function by dissipating excess light energy that is absorbed by chlorophylls
during the PSII repair cycle, when it cannot be utilized for photochemistry (Figures 1 and 2).

In eukaryotic organisms, OHP1 and OHP2 replace HLIPs and are similarly induced by
HL [53,63]. Recent studies suggest that they are crucial for PSII assembly and chlorophyll
biosynthesis [30,64–67]. Mutations of either OHP1 or OHP2 in Arabidopsis resulted in
less pigmentation, a disrupted thylakoid architecture and severe growth deficits, [66]
while a deletion of OHP1 affected the function of core PSII proteins and resulted in lower
accumulation of PSI protein [30]. Further studies indicated that OHP1 and OHP2 form
a temporary protein complex with high chlorophyll florescence 244 (HCF244) and core
proteins of PSII during PSII biogenesis [64,67] and that OHP function is fully dependent on
its pigment-binding capacity [67]. These findings indicate that similarly to HLIPs, OHPs
may temporarily associate with PSs and bind pigments while damaged core proteins are
being replaced (Figures 1 and 2).

5. Two-Helix LHC-like Proteins (SEPs/Lils) Function in Chlorophyll Biosynthesis and
Protection against Photoinhibition

SEPs/Lils likely evolved when an early eukaryotic OHP-like protein acquired a second
TM helix, which did not contain the LHC motif (Figures 3 and 4). Later, different SEPs
gave rise to LHCs, ELIPs, and psbS through gene duplications and, in the case of LHC and
ELIP, an eventual loss of the fourth helix [17,20] (Figure 4). Four SEPs were identified in
Arabidopsis: the poorly studied HL-induced Lil4 and Lil5 (formerly known as SEP1 and
SEP2, respectively) and Lil3.1 and Lil3.2, which are present at constant levels regardless
of the light regime [15,68]. Although its expression is independent of light, Lil3 forms a
homo-multimeric chlorophyll-binding protein complex in dark-grown barley seedlings that
are de-etiolated (transferred to light), suggesting light-dependent regulation of the complex
formation [69]. Lil3 has been implicated in the stabilization of geranylgeranyl reductase
(GGR) and has been found associated with protochlorophyllide oxidoreductase (POR), key
enzymes in the production of crucial metabolites used for chlorophyll a biosynthesis [70,71].
Its participation in chlorophyll biosynthesis was strengthened by additional studies in
barley and Arabidopsis [72,73]. Finally, Lil3 binds pigments and is capable of NPQ via direct
energy transfer from chlorophyll a to a xanthophyll (lutein or zeaxanthin), suggesting that
similar to HLIPs, it can also transfer pigments to their final destination while quenching
damaging light energy [74]. In contrast to HLIPs/OHPs, Lil3 associates with LHCII
subcomplexes rather that the PS core, which may be an indication of its distinct targets for
photoprotection during PI [72] (Figure 2).

6. Three-Helix LHC-like Proteins (ELIPs) Play Important Roles in Protection against
Photoinhibition

Like SEPs, ELIPs co-localize with the LHC and, similar to lhcSR and LHC, contain
three TM helices and accumulate during HL stress [20,75–77]. ELIPs bind chlorophyll a
and numerous molecules of lutein and have therefore been suggested to scavenge excited
chlorophylls that are unbound to LHC during LHC protein turnover and thereby prevent
ROS formation [78,79] (Figures 1 and 2). Two ELIPs were identified in Arabidopsis: ELIP1
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and ELIP2 [68]. An Arabidopsis mutant (chaos) that cannot rapidly accumulate ELIPs,
suffered from bleaching and photooxidative damage during exposure to HL, due to ROS
formation by excited chlorophylls [80]. The constitutive expression of ELIP genes prior to
HL stress was sufficient to prevent these affects [80]. Moreover, the constitutive expression
of ELIP2 resulted in a decrease in the levels of chlorophyll, and of glutamyl tRNA reduc-
tase and magnesium chelatase, which are key enzymes in chlorophyll biosynthesis [31].
Together, these observations suggest that ELIPs bind the chlorophyll of damaged LHCs
while suppressing chlorophyll synthesis in order to avoid the accumulation of excited free
chlorophylls during HL stress. This scenario was later challenged, as it was shown that
a double elip1/elip2 mutant of Arabidopsis was just as prone to PI and photooxidative
stress as WT and did not accumulate free pigments [29]. It was noted that zeaxanthin was
decreased in the elip1/elip2 mutant, perhaps indicating that ELIP regulates the protective
xanthophyll cycle. In an additional study, the enhanced protection of PSII from PI was
noted in an Arabidopsis mutant lacking ELIP2 but transgenically expressing the ELIP1/2 of
the desiccation-tolerant moss Syntrichia caninervis [81].

Ten ELIP homologs were identified in Chlamydomonas, some of which are induced
by HL stress [82,83]. ELIP3 is upregulated by a combination of HL and cold stress, re-
sulting in improved survival of C. reinhardtii under photooxidative stress and higher PSII
activity [26]. In accordance, an ELIP3 knockdown mutant showed significantly less PSII
activity and did not survive under HL and cold stress conditions [26]. Moreover, the
addition of a ROS quencher reduced ELIP3 expression, suggesting that ROS trigger ELIP3
expression [26]. In the green alga Dunaliella salina, an ELIP homolog is co-regulated with
carotenoid biosynthesis and was therefore named carotenoid biosynthesis-related protein
(CBR) [84]. CBR associates with LHCII, binds zeaxanthin [85,86], and was suggested to
be involved in the organization and/or stabilization of PI-protective protein complexes
with high lutein and zeaxanthin content [87]. Interestingly, CBR is the most upregulated
protein in HL-adapted Chlorella ohadii cells, one of the most light-tolerant photosynthetic
organisms [5,27]. Analysis of CBR accumulation in C. ohadii cells grown under HL found
co-localization of CBR and LHCII, and ranked it to be the most abundant LHC-like protein
with a light-dependent expression pattern [27]. It is important to note that C. ohadii does not
contain genes encoding lhcSR [35] and psbS was found to be expressed below the proteomic
detection levels under HL conditions [5,27]. These results implied that CBR plays a key role
in the photoprotection of photosynthesis in an extremely light-tolerant organism, which
lacks lhcSR and expresses limited or no quantities of psbS. Intriguingly, C. ohadii CBR has
been found to be homologous to the abovementioned ELIP3 of Chlamydomonas, which
was shown to be induced by ROS formation and crucial for its survival under HL and
cold stress [26,27]. Additionally, amino acid sequence analysis and structural modelling
of CBR implied that a conserved glutamate is located in the same position as one of the
proton-sensing glutamates of psbS, suggesting, in the absence of psbs and lhcSR, a possible
role in sensing low pH in the lumen during HL (Figure 5).

7. Soluble Pigment Binding Proteins also Contribute to Photoprotection

As described, LHC and LHC-like proteins share distinct structural similarities, are
located in the thylakoid membrane, and contribute to photoprotection. These proteins, with
the exception of psbS, bind both carotenoids and chlorophylls. In addition, soluble pigment-
binding proteins also offer alternate routes for energy dissipation via NPQ and thus promote
photoprotection. The structures of these proteins differ significantly from the membranal
LHC and LHC-like proteins and they do not share the LHC and LHC-like ancestor protein.
In cyanobacteria, one such protein is the orange carotenoid protein (OCP) [88]. OCP forms a
homodimer complex where each monomer binds a single carotenoid [89]. Upon activation
by sensing blue-green light, OCP undergoes a conformational change and interact with
the cyanobacterial photosynthetic antenna (phycobilisome). Following this, via its bound
carotenoid, it presents a route for the thermal dissipation of excess energy and acts as a
singlet oxygen quencher [90–93].
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In plants, an example is the water-soluble chlorophyll-binding protein (WSCP) [94].
WSCPs form a homo tetramer and, contrary to the cyanobacterial OPC, bind one chlorophyll
per each monomer, but no carotenoids [95]. The exact function of WSCPs remain a mystery;
however, evidence suggests a role in photoprotection, despite the lack of carotenoids.
Chlorophyll bound to WSCP is much less sensitive to intense light compared to unbound
chlorophylls due to a formation of a physical barrier by the phytyl moieties, shielding the
oxidizable sites of the chlorophyll, and thus preventing damage by ROS to the chlorophylls
themselves [95–97]. Moreover, the overexpression of WSCP in transgenic plants leads to a
reduction in ROS generation, highlighting its role as a protective protein under stress [98].

8. LHC-like Proteins Function as Enhancers of Photosynthesis and Survivability
during Abiotic Stress and Their Overexpression May Increase Crop Yield

Considering the growth of the Earth’s population and the anticipated food shortage,
new approaches to increase food production should be explored and developed. Improving
photosynthesis as a means of enhancing crop growth and yields has been a long-standing
aim [33,34,99–101]. Other techniques implemented to achieve this important goal include
the selection of light-tolerant strains and improving the efficiency of CO2 assimilation and
light-to-biomass conversion, as well as the manipulation of metabolic pathways by genetic
engineering. Alongside their crucial roles in the protection of photosynthesis from pho-
toinhibition, studies have suggested the potential of LHC-like proteins as photosynthesis
enhancers. The overexpression of psbS in field-grown tobacco led to a decrease in stomatal
opening in response to light, which resulted in a significant 25% reduction in water loss
per assimilated CO2 molecule [102]. As described above, the transgenic expression of
Arabidopsis psbS alongside VDE and ZEP in tobacco accelerated NPQ relaxation kinetics
during a shift from HL to LL conditions, which, in turn, shortened time to CO2 assimilation
recovery in the shade. Importantly, both field and greenhouse experiments resulted in a
15% rise in crop productivity, as measured by dry mass [32]. Moreover, using the same
strategy in the important crop soybean grown in fields, leads to an increase of up to 33%
in seed yield [34]. In rice, another highly important crop, psbS overexpression resulted
in a higher grain yield under fluctuating light conditions [103]. These studies provide
proof of the ability to increase biomass and yield in important crops via the overexpression
of the LHC-like protein psbS, exclusively or alongside other proteins. While psbS is the
most studied LHC-like protein, other members of the family were also shown to increase
biomass and to provide protection under abiotic stress. In C. reinhardtii mutants lacking all
lhcSRs, expression of lhcSR under the control of a heat shock protein promoter allowed
for the fine-tuning of NPQ, resulting in higher photosynthetic efficiency and biomass accu-
mulation [104]. Transgenic tobacco overexpressing ELIP showed higher survivability after
freezing, a higher net photosynthesis rate after chilling, a higher plant fresh weight after
osmotic stress, and higher maximal photochemical efficiency after HL treatment [105]. As
mentioned earlier, the overexpression of ELIP3 in Chlamydomonas improved the survival of
the cells under HL and cold stress. In contrast, a knockdown mutant showed low photosyn-
thetic efficiency and rapidly died under these conditions [26]. Similarly, the overexpression
of Rhododendron ELIP in Arabidopsis resulted in a much stronger tolerance to freezing and
higher PSII function after 3 days of recovery from freezing [106]. A recent study in the red
alga Neopyropia yezoensis overexpressing OHPs failed to detect any obvious enhancement
of photoprotection [107]. In contrast, Arabidopsis OHP knockout mutants exhibited higher
susceptibility to HL [108], were unable to grow on soil [30], and demonstrated compro-
mised growth [66]. Taken together, these studies highlight the potential of using psbS
and other LHC-like proteins to protect plants and improve photosynthesis under various
abiotic stresses.

9. Concluding Remarks and Future Perspectives

The LHC-like proteins form a large group of mostly HL-induced TM proteins that are
capable of binding pigments and performing NPQ via energy transfer from chlorophylls
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to carotenoids. An exception to this rule is psbS, which is unable to bind pigments due to
its tightly packed structure, containing four TM helices [42] (Figure 3a). Instead, psbS is
protonated upon acidification of the thylakoid lumen and undergoes a conformational shift
before interacting with PSII and activating NPQ in the LHCII minor antenna CP29 [43]
(Figure 5). Similarly, under acidic conditions, lhcSR is protonated and associates with
LHCII proteins [39], but unlike psbS, it binds carotenoids that offer a route for the thermal
energy dissipation of excess energy in the LHCs of both PSs [41] (Figures 1 and 5). Simi-
larly, ELIPs and SEPs associate with LHCII subunits and bind pigments. Their suggested
role involves the temporary binding of chlorophylls that were detached from damaged
LHC subunits during their turnover under HL stress, while simultaneously regulating
chlorophyll synthesis [72,74,78] (Figures 1 and 2). In C. ohadii, one of the most light-tolerant
photosynthetic organisms on the planet [35], an ELIP homolog named CBR accumulates
massively under HL and co-localizes with LHCII [5,27]. The absence of lhcSR from the
genome of C. ohadii and the failed detection of psbS in both LL- and HL-grown cells [5,27]
raise questions about the significance and function of CBR in this particular organism. It
was suggested that CBR is activated in a similar manner to psbS and lhcSR, as they all
contain a conserved protonable Glu on their luminal side [27] (Figure 5). Unlike the above-
mentioned proteins, HLIPs in cyanobacteria and OHPs in eukaryotes seem to associate
with the PS core proteins, rather than with the LHC, where they are also suggested to act
as a temporary reservoir of detached pigments from damaged core proteins during their
turnover in HL stress [56,60,64,67] (Figures 1 and 2). The functions of the LHC-like proteins
discussed in this review are summarized in Table 2.

Although the exact molecular mechanisms through which LHC-like proteins act to
protect the PSs from PI are yet to be fully uncovered, it is clear that they play key roles in
photoprotection, which can be exploited to increase the yield and survivability of agricul-
turally important crops. Recent experiments have shown this potential by overexpressing
psbS, resulting in increased crop productivity and grain yield while reducing water loss due
to stomatal opening in plants exposed to fluctuating light [32,34,102,103]. These promising
results highlight the biotechnological potential and importance of understanding and uti-
lizing LHC-like proteins to improve photoprotection capacities. Notably, psbS is by far the
most studied LHC-like protein. However, as described above, other LHC-like proteins have
shown to increase biomass and protect photosynthesis and should definitely be further
tested for their ability to also increase crop productivity. In the future, psbS and the other
LHC-like proteins can be introduced to important crops via genetic engineering, both to
increase their yield and expand their environmental niche by making them more resilient
to light and other stresses.
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