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Abstract: We synthesized two hybrid organic–inorganic porous polymers (HPP) through the Heck re-
action of 9,10 dibromoanthracene (A-Br2) or 1,3,6,8-tetrabromopyrene (P-Br4)/A-Br2 as co-monomers
with octavinylsilsesquioxane (OVS), in order to afford OVS-A HPP and OVS-P-A HPP, respectively.
The chemical structures of these two hybrid porous polymers were validated through FTIR and
solid-state 13C and 29Si NMR spectroscopy. The thermal stability and porosity of these materials
were measured by TGA and N2 adsorption/desorption analyses, demonstrating that OVS-A HPP
has higher thermal stability (Td10: 579 ◦C) and surface area (433 m2 g−1) than OVS-P-A HPP (Td10:
377 ◦C and 98 m2 g−1) due to its higher cross-linking density. Furthermore, the electrochemical
analysis showed that OVS-P-A HPP has a higher specific capacitance (177 F g−1 at 0.5 A F g−1)
when compared to OVS-A HPP (120 F g−1 at 0.5 A F g−1). The electron-rich phenyl rings and
Faradaic reaction between the π-conjugated network and anthracene moiety may be attributed to
their excellent electrochemical performance of OVS-P-A HPP.

Keywords: octavinylsilsesquioxane; porous organic–inorganic polymers; heck reaction; thermal
stability; energy storage

1. Introduction

The disparity between the rising energy demand and the stagnant supply has resulted
in a worldwide energy crisis [1–5]. The fast production and excessive use of fossil fuels have
opened an urgent demand for providing solutions to environmental challenges. Therefore,
there is a great need to innovate sustainable and effective energy storage methods [6–10].
Scientists have sought to address this problem by developing renewable energy storage
methods. Supercapacitors (SCs) are one of the most practical approaches to addressing
energy scarcity [11–13], and they have a high energy density, excellent durability, a quick
charge/discharge mechanism, and significant stability [14–16]. In SCs, energy may be
stored in two different ways; the first is the non-faradaic method, in which the ionic
charges are gathered electrostatically at the electrolyte–electrode interface. In contrast, in
the faradaic method, the activity occurs at the solid surface and involves a reversible redox
reaction [17,18]. The electrode material is regarded as one of the main criteria influencing
the effectiveness of SCs [19]. Thus, many inorganic, organic, and hybrid organic–inorganic
materials have been used as electrode materials for SCs [20–24].

Designing new and stable electrode materials is still required to improve SC func-
tionalities. Porous organic polymers (POPs) that have high surface areas, better thermal
stability, porous characteristics, and exciting functions have attracted significant attention,
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leading to their widespread usage in energy storage, optoelectronics, lithium-ion batteries,
gas capture, and catalysis [25–29]. These outstanding functionalities of POPs make them
attractive candidates as electrode materials for SCs [30–35]. POPs are further categorized
into conjugated microporous polymers (CMPs), covalent organic polymers (COFs), and
hyper-crosslinked polymers (HCPs) [36–40]. Polyhedral oligomeric silsesquioxane (POSS)
is suitable for developing porous materials due to its rigid structure and high functionaliza-
tion [41–45]. The existence of organic–inorganic hybrid components in POSS can provide
both organic and inorganic characteristics to develop porous materials [45–50].

Octavinylsilsesquioxane (OVS) is the most efficient nanosized monomer (1–3 nm)
among POSS derivatives due to its accessibility and cheap price [51,52]. OVS-based porous
materials can be synthesized using various techniques, including Heck reactions, click reac-
tions, Friedel–Crafts, and hydrosilylation [40–53]. OVS-based POPs materials have an im-
pressive surface area, pore size, thermal stability, and electrochemical performance [54–58].
Furthermore, previous studies have shown that polycyclic aromatic hydrocarbons (PAH)
could assist in enhancing energy storage performances [59]. Sandeep et al. presented
different PAHs (pyrene, coronene, and triphenylene) as active cathode materials for organic
batteries [60]. Kagatikar et al. synthesized pyrene-based chalcones electrode materials for
supercapacitors that had a capacitance of 220 F g−1 [61]. We synthesized anthracene-based
covalent organic frameworks that experienced a specific capacitance of 589 F g−1 [62].
Herein, we incorporated polycyclic aromatic hydrocarbons (pyrene and anthracene) into
the backbone of OVS to enhance the super-capacitive performance.

In this study, we successfully synthesized two hybrids of a porous polymer-linked
OVS unit through a heck reaction of OVS with 9,10-dibromoanthracene (A-Br2) and 1,3,6,8-
tetrabromopyrene (P-Br4)/A-Br2 to obtain OVS-A HPP and OVS-P-A HPP, respectively
(Scheme 1). Their chemical structures, thermal stability, porosity, morphology, and electro-
chemical performances are discussed below.
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Scheme 1. Synthesis of (a) OVS-A HPP and (b) OVS-P-A HPP through Heck reaction.

2. Results and Discussion
2.1. Characterization, Thermal Stability, Porosity, and Morphology of OVS-A HPP and
OVS-P-A HPP

The synthesis of two different hybrids of organic–inorganic HPP (OVS-A HPP and
OVS-P-A HPP) is shown in Scheme 1. We synthesized A-Br2 through the reaction of
anthracene and Br2 with chloroform at 50 ◦C for 4 h (Scheme S1). Then, we prepared
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P-Br4 by the reaction of pyrene with a neat Br2 solution in nitrobenzene at 120 ◦C for
24 h (Scheme S2). Finally, we prepared OVS-A HPP and OVS-P-A HPP through the heck
reaction of A-Br2 and P-Br4/A-Br2, respectively, with OVS, DMF, Pd(PPh3)4 and K2CO3
at 110 ◦C for 72 h (Scheme 1). All organic solvents showed a low solubility for these OVS-
HPPs frameworks (Scheme 1), which is evident in the fact that the Heck reactions were
effective, leading to the development of highly crosslinked OVS materials. The chemical
structures of OVS-A HPP and OVS-P-A HPP were verified through FTIR and solid-state
13C and 29Si spectroscopy, as shown in Figure 1. The absorption bands at 3113 cm−1,
3067 cm−1, 1610 cm−1, and 1108 cm−1 were found in the spectra of OVS, representing
the bond stretching of C=CH, C=C, and Si-O-Si, respectively. The absorption band for
A-Br2, P-Br4, OVS-A HPP, and OVS-P-A HPP were observed at 3073 cm−1, 3031 cm−1,
3079 cm−1, and 3065 cm−1, corresponding to C-H aromatics, respectively (Figure 1a,b).
The development of cross-linked networks was also observed in both porous materials
(OVS-A HPP, and OVS-P-A HPP), as the absorption spectra of the Si-O-Si unit were wider
than that of OVS (Figure 1a,b). Furthermore, due to water absorption, both OVS-A HPP
and OVS-P-A HPP featured OH groups in their FTIR spectra. According to the solid-state
13C NMR results of the OVS-A HPP and OVS-P-A HPP (Figure 1c), the carbon nuclei
signals were found in the range 137–131 ppm and 148–127 ppm, respectively, representing
aromatic carbons and C=C groups in both porous OVS-HPP-based materials. Additionally,
solid-state 29Si NMR analysis was used to verify the functional groups of OVS in the OVS-A
HPP and OVS-P-A HPP structures. Figure 1d displays the signals that appeared near
−11.2 ppm and −80.2 ppm, corresponding to Si-C=C and T3 groups, respectively, for the
OVS cage in the OVS-A HPP and OVS-P-A HPP.
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Figure 1. (a,b) FTIR of OVS, A-Br2, P-Br4, OVS-A HPP and OVS-P-A HPP, (c) 13C and (d) 29Si NMR 
spectra of the OVS-A HPP and OVS-P-A HPP. * is the side band of solid-state nuclear magnetic 
resonance spectroscopy (NMR). 

We performed X-ray photoelectron spectroscopy (XPS) to confirm the presence of Si, 
O, and C elements in OVS-A HPP and OVS-P-A HPP (Figure 2). We observed Si2p, Si2s, 
C1s, and O1s signals corresponding to 103 eV, 155 eV, 284 eV, and 532 eV for OVS-A HPP, 
respectively (Figure 2a), and 103 eV, 156 eV, 284 eV and 534 eV for OVS-P-A HPP, respec-
tively (Figure 2b). XPS analysis confirmed the successful synthesis of OVS-A HPP and 
OVS-P-A HPP materials.  

Figure 1. (a,b) FTIR of OVS, A-Br2, P-Br4, OVS-A HPP and OVS-P-A HPP, (c) 13C and (d) 29Si NMR
spectra of the OVS-A HPP and OVS-P-A HPP. * is the side band of solid-state nuclear magnetic
resonance spectroscopy (NMR).
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We performed X-ray photoelectron spectroscopy (XPS) to confirm the presence of
Si, O, and C elements in OVS-A HPP and OVS-P-A HPP (Figure 2). We observed Si2p,
Si2s, C1s, and O1s signals corresponding to 103 eV, 155 eV, 284 eV, and 532 eV for OVS-A
HPP, respectively (Figure 2a), and 103 eV, 156 eV, 284 eV and 534 eV for OVS-P-A HPP,
respectively (Figure 2b). XPS analysis confirmed the successful synthesis of OVS-A HPP
and OVS-P-A HPP materials.
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Figure 2. XPS analysis of (a) OVS-A HPP and (b) OVS-P-A HPP.

TGA analysis was used to measure the thermal stability and char yield of OVS-A HPP
and OVS-P-A HPP (Figure 3). The thermal decomposition temperatures (Td5, Td10) and char
yield for OVS were observed as 240 ◦C, 255 ◦C, and 4 wt%, respectively. The corresponding
values for A-Br2 were 219 ◦C, 234 ◦C, and 0 wt%, whereas those for P-Br4 were 321 ◦C,
350 ◦C, and 0 wt%, respectively. We found that the developed hybrid porous material’s
thermal stability and char yield were greatly enhanced after the heck reaction, due to the
cross-linking of OVS with A-Br2 and P-Br4/A-Br2. The OVS-A HPP experienced a thermal
stability of (Td5, Td10) 473 ◦C, 579 ◦C, and a char yield of 83 wt%; meanwhile, for OVS-P-A
HPP, they were 317 ◦C, 377 ◦C, and 73 wt%, respectively. The thermal stability and char
yield of OVS-A HPP was higher than that of OVS-P-A HPP due to its higher cross-linking
density. The thermal properties of two hybrid porous materials are summarized in Table 1.
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Figure 3. TGA analysis of (a) OVS, A-Br2, OVS-A HPP and (b) OVS, P-Br4, A-Br2, OVS-P-A HPP.

Table 1. Thermal stability, porosity, and electrochemical performance of OVS-A HPP and OVS-P-A HPP.

Sample Td10 (◦C) Char Yield
(wt.%)

Surface
Area (m2/g)

Pore Volume
(cm3/g)

Pore Size
(nm)

Specific Capacitance at 0.5 A
g−1 (F g−1)

OVS-A HPP 579 83 433 1.1 2 120

OVS-P-A HPP 376 73 98 0.3 2.5 177

The porosity properties of OVS-A HPP and OVS-P-A HPP were measured by N2
adsorption/desorption (Figure 4a,b, and Table 1). The OVS-A HPP exhibited type II
adsorption isotherm features, while the OVS-P-A HPP exhibited type II and IV according
to the IUPAC classifications. The OVS-A HPP and OVS-P-A HPP exhibited rapid N2
absorption uptake potentials in the low and high-pressure zones, indicating the presence
of microporous and mesoporous in their structures. Furthermore, the surface area (SBET) of
OVS-A HPP (433 m2 g−1) was found to be higher than that of OVS-P-A HPP (98 m2 g−1).
The OVS-A HPP and OVS-P-A HPP had mean pore diameters of ca. 2 nm and 2.5 nm,
respectively, and their total pore volumes were 1.1 cm3 g−1 and 0.3 cm3 g−1, respectively
(Figure 4c,d and Table 1).
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The morphological and porous properties of OVS-A HPP and OVS-P-A HPP were
investigated by SEM and TEM (Figure S3). The SEM images of OVS-A HPP showed
clustered small spheres (Figure S3a), while for OVS-P-A HPP, we observed clustered
irregularly shaped columnar and spheres (Figure S3b). The element mapping and energy
dispersive X-ray (EDX) analyses of SEM images confirmed the existence of C, N, and O
atoms (Figures 5 and 6). The corresponding weight percentages of C, N, and O atoms were
found to be 48.3, 16.1, and 36% for OVS-A HPP, and 33.2, 13.3, and 54% for OVS-P-A HPP.
Furthermore, the morphology of hybrid porous materials was further confirmed by the
TEM images (Figure S3c,d)). These images show small pores, confirming porous structure,
and dark and bright patches representing amorphous characteristics in OVS-A HPP and
OVS-P-A HPP.
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2.2. Electrochemical Properties of OVS-A HPP and OVS-P-A HPP

The electrochemical properties were investigated in a three-electrode cell (system),
using the techniques for cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD)
in 1 M of KOH aqueous solution (Figure 7a–d). The CV profiles of OVS-A HPP and OVS-P-
A HPP were measured at different scan rates (200 to 5 mV s−1) and potential windows (−1
to 0 V) (Figure 7a,b). Both the samples experienced rectangular CV curves, with humps
suggesting that this capacitive behavior occurred mostly from electric double-layer capaci-
tance (EDLC) and pseudocapacitance [63]. Increasing the scan rate led to a higher specific
current without changing the morphologies of the CV profiles, validating the stabilities
and the efficient electron mobility [64]. The GCD curves of OVS-A HPP and OVS-P-A
HPP were measured at different specific currents (0.5 to 20 A g−1) (Figure 7c,d). The
cathodic peaks can be seen for both electrode materials in CV plots, due to the presence of
heteroatoms (O and Si) in the OVS unit and electron-rich phenyl groups in the anthracene
and pyrene [53,55]. The GCD curve of OVS-A HPP showed an approximately rectangular
curve with a small bend, demonstrating the combined effects of pseudocapacitance and
EDLC [65]. The GCD curves of OVS-P-A HPP demonstrated the traditional characteristics
of a pseudocapacitance with great symmetry, suggesting a strong electrochemical perfor-
mance [66]. The discharge time of OVS-P-A HPP was higher and more prominent than
OVS-A HPP (Figure 7c,d), showing its comparatively high capacitance.
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The specific capacitances of OVS-A HPP and OVS-P-A HPP, calculated from GCD
curves, were 120 F g−1 (calculated by using Equation (S1)) and 177 F g–1 (calculated
by using Equation (S2)), respectively, at 0.5 A g−1 (Figure 8a). The difference in the
specific capacitance between the OVS-A HPP and OVS-P-A HPP was very pronounced
when the specific current was increased to 20 A g−1, experiencing the values of 2 F g–1

and 2.5 F g–1, respectively. As a result, the overall CV and GCD analysis showed that
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OVS-P-A HPP showed higher electrochemical properties than OVS-A HPP. The chemical
structure of OVS-P-A HPP contains pyrene groups with more electron-rich phenyl rings,
allowing the electrolytes to reach the electrode surface more quickly than in the OVS-A
HPP; this was responsible for its comparatively remarkable performance [67]. The Faradaic
reaction between anthracene and the π-conjugated framework may also be responsible
for OVS-P-A HPP’s excellent performance. When the specific current was increased from
0.5 to 20 A g−1, the specific capacitance of OVS-A HPP and OVS-P-A HPP declined,
most likely because there was not enough time for ion mobility at such high specific
currents [68]. The specific capacitance retention of OVS-A HPP and OVS-P-A HPP was also
measured at 2000 cycles from GCD analysis (Figure 8b). The OVS-A HPP and OVS-P-A
HPP exhibited excellent stability, with a specific capacitance retention of 85% and 98%,
respectively. Additionally, the electrochemical performance of OVS-A HPP and OVS-P-
A HPP was exceptional when compared to previously reported porous polymers and
composite materials (Table S1) [53,69–75].
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In addition, we examined the electrochemical properties of the OVS-A HPP and OVS-
P-A HPP for a symmetric supercapacitor using coin cells (Figure S4). The CV profiles
of OVS-A HPP and OVS-P-A HPP were measured at the same scan rates and potential
windows as the three electrodes (Figure S4a,b). The CV curve for OVS-A HPP (Figure S4a)
is quite similar to the three-electrode system, but in OVS-P-A HPP (Figure S4b), the humps
appeared more prominently to assist in the presence of both EDLC and pseudocapac-
itance. The pure triangular GCD curve was observed for OVS-A HPP, suggesting the
presence of EDLC (Figure S4c), and OVS-P-A HPP experienced a triangular curve with
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some bends demonstrating EDLC and a pseudocapacitive response (Figure S4d). The
specific capacity was observed as 33 F g−1 and 80 F g−1 for OVS-A HPP and OVS-P-A
at 0.5 A g−1, respectively. Therefore, two and three electrodes revealed the significant
electrochemical performance of OVS-A HPP and OVS-P-A HPP. Based on the two-electrode
system, the OVS-P-A HPP had a better energy density (40 Wh Kg−1) than the OVS-A HPP
(16 Wh Kg−1) (Figure S5).

3. Materials and Methods
3.1. Materials

We ordered potassium carbonate (K2CO3), nitrobenzene (C6H5NO2), bromine solu-
tion (Br2), and octavinylsilsesquioxane (OVS) from Alfa Aesar. Acros Organics provided
acetone, methanol (MeOH), chloroform (CHCl3), and tetrahydrofuran (THF), as well as
N,N-dimethylformamide (DMF), and methanol (MeOH). Anthracene (A), pyrene (P), and
tetrakis (triphenylphosphine) palladium (0) [Pd(PPh3)] were supplied from Sigma-Aldrich.
The instrumental methods and electrochemical experimental conditions can be found in
the Supplementary File.

3.2. Synthesis of 9,10-Dibromoanthracene (A-Br2)

Anthracene (5.00 g, 2.80 mmol), Br2 (12.5 mL), and CHCl3 were added to a two-neck
flask and heated at 60 ◦C in an N2 environment for 5 h. After that, the yellow solid (A-Br2,
85%) was filtered. 1H-NMR (500 MHz, CDCl3, Figure S1): 8.6 (s, 2H), 7.6 (s, 2H). 13C-NMR
(124 MHz, CDCl3, Figure S2): 133, 128, 127, 123.

3.3. Synthesis of 1,3,6,8-Tetrabromopyrene (P-Br4)

Pyrene (6.00 g, 30 mmol), Br2 (12 mL), and C6H5NO2 (200 mL) were added to a two-
neck flask and heated at 120 ◦C in an N2 environment for 24 h; after that, the yellow solid
(P-Br4, 91%) was filtered and washed by EtOH and dried under reduced pressure before it
was used in the reaction. The NMR data of P-Br4 were not provided in this work due to its
poor solubility in all organic solvents.

3.4. Synthesis of OVS-A HPP and OVS-P-A HPP

OVS (0.40 g, 0.63 mmol), A-Br2 (0.85 g, 2.53 mmol), [P-Br4 (0.003 g, 0.064 mmol)/A-Br2
(0.81 g, 2.41 mmol)], K2CO3 (3 g) and Pd(PPh3)4 (0.08 g) in DMF (30 mL), were added
to the two-neck flask, and the reaction mixture was refluxed for 72 h at 110 °C. Then,
the resulting solid was washed with different solvents (THF, methanol, and acetone) to
obtain a green powder (0.38 g, 95%) for OVS-A HPP or a yellow powder (0.30 g, 75%) for
OVS-P-A HPP. The instrumental methods and experimental conditions can be found in the
Supplementary File.

4. Conclusions

Two different hybrid porous polymers of OVS-A HPP and OVS-P-A HPP were success-
fully synthesized through the heck reaction of OVS with anthracene and pyrene/anthracene.
N2 isothermal profiles showed the presence of micro and mesoporous properties in them
with BET surfaces of 433 m2 g−1 and 98 m2 g−1 for OVS-A HPP and OVS-P-A HPP, respec-
tively. The TGA analysis revealed that OVS-A HPP experienced a higher thermal stability
and char yield (579 ◦C and 83 wt%) than OVS-P-A HPP (377 oC and 73 wt%) due to the
higher cross-linking density of anthracene with OVS. Furthermore, the specific capacitance
of OVS-A HPP and OVS-P-A HPP was 120 F g−1 and 177 F g−1, respectively. The elec-
trochemical analysis demonstrated that OVS-P-A HPP exhibited higher super-capacitive
performance than OVS-A HPP and the other reported porous polymer materials.
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