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Abstract: In this study, three new triterpenes (1–3) and fourteen known triterpenoids (4–17) were
isolated from the ethanol extract of Kochiae Fructus, and their structures were elucidated by analyzing
UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. Among them, compounds 6, 8, and
11−17 were isolated for the first time from this plant. The screening results of the glucose uptake
experiment indicated that compound 13 had a potent effect on glucose uptake in 3T3-L1 adipocytes
at 20 µM. Meanwhile, compounds 3, 9 and 13 exhibited significant inhibitory activities against α-
glucosidase, with IC50 values of 23.50 ± 3.37, 4.29 ± 0.52, and 16.99 ± 2.70 µM, respectively, and
their α-glucosidase inhibitory activities were reported for the first time. According to the enzyme
kinetics using Lineweaver–Burk and Dixon plots, we found that compounds 3, 9 and 13 were α-
glucosidase mixed-type inhibitors with Ki values of 56.86 ± 1.23, 48.88 ± 0.07 and 13.63 ± 0.42 µM,
respectively. In silico molecular docking analysis showed that compounds 3 and 13 possessed
superior binding capacities with α-glucosidase (3A4A AutoDock score: −4.99 and −4.63 kcal/mol).
Whereas compound 9 showed +2.74 kcal/mol, which indicated compound 9 exerted the effect of
inhibiting α-glucosidase activity by preferentially binding to the enzyme−substrate complex. As a
result, compounds 3, 9 and 13 could have therapeutic potentials for type 2 diabetes mellitus, due to
their potent hypoglycemic activities.

Keywords: Kochiae Fructus; Kochia scoparia; triterpenoids; α-glucosidase; glucose uptake;
molecular docking

1. Introduction

Diabetes mellitus is a chronic metabolic illness that has become a global public health
problem [1]. According to the International Diabetes Federation (IDF), approximately
536.6 million adults between the ages of 20 and 79 years had diabetes mellitus in 2021 and
this number is expected to rise to 783.2 million by 2045 [2]. Type 2 diabetes mellitus (T2DM)
accounts for over 90% of all patients with diabetes and is characterized mainly by insulin
resistance, reduction of insulin secretion, and hyperglycemia [3]. It is well established
that decreased peripheral glucose uptake, combined with augmented endogenous glucose
production, are characteristic features of insulin resistance [4]. Glucosidase enzymes
catalyze hydrolysis of starch into simple sugars. In humans, these enzymes aid digestion of
dietary carbohydrates and starches to produce glucose for intestinal absorption, which in
turn, leads to an increase in blood glucose levels [5]. From these perspectives, enhancing the
glucose uptake of organs or tissues [6], as well as inhibiting the activity of α-glucosidase [7],
are major strategies for T2DM patients to maintain proper blood glucose levels.

Int. J. Mol. Sci. 2023, 24, 2454. https://doi.org/10.3390/ijms24032454 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032454
https://doi.org/10.3390/ijms24032454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms24032454
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032454?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2454 2 of 18

Adipocytes play a vital role in glucose metabolism. 3T3-L1 preadipocytes, after dif-
ferentiation to adipocytes, serve as excellent in vitro models and are useful tools in under-
standing the glucose metabolism [8]. Kim SH previously proved that berberine-activated,
GLUT1-mediated glucose uptake in 3T3-L1 adipocytes [9]. Recent research by Shyni GL
found that chebulagic acid from Terminalia chebula enhanced insulin-mediated glucose
uptake in 3T3-L1 adipocytes via the PPARγ signaling pathway [10]. This research provided
proof that the 3T3-L1 adipocyte glucose uptake model was an effective and feasible way for
T2DM research. Furthermore, early studies have shown that the inhibition of α-glucosidase
activity could retard the absorption of glucose and decrease the postprandial blood glucose
levels [11,12]. Therefore, α-glucosidase has been taken as a key target for treating diabetes,
and the inhibitors of α-glucosidase can be developed into effective therapeutic drugs to
treat T2DM [13].

Kochiae Fructus (KF) is the dried fruits of Kochia scoparia, which is an important
Chinese herbal medicine. It contains a variety of bioactive components such as triter-
penoids [14,15], flavonoids [16,17], carbohydrates [18], amino acids [18], organic acids [18],
and essential oils [19]. KF was listed as ‘top grade’ medicinal material by the Shennong’s
Classic of Materia Medica and has been used in traditional Chinese medicine to treat rubella,
eczema, cutaneous pruritus, and difficulty and pain in micturition [20,21]. Modern pharma-
cological research showed that KF possessed a broad range of pharmacological activities,
including anti-inflammatory [22], hypoglycemic [23], antioxidant [24], anticancer [25],
antifungal [26], anti-pruritogenic [27], antinociceptive [28], antiallergic [29], and hepatopro-
tective [30] activity.

According to literature, the antidiabetic activity of the n-butanol fraction of KF had
been investigated, however, there are few reports on the hypoglycemic mechanism of cor-
responding chemical constituents of KF. Therefore, in this study, chemical constituents of
KF were isolated and identified. Furthermore, the glucose uptake assay and α-glucosidase
inhibition experiment were used to explore its hypoglycemic effect and the possible hypo-
glycemic mechanism. In addition, in silico molecular docking study was used to determine
the inhibitory activities of candidate compounds against α-glucosidase. Herein are reported
the isolation and structure determination of three new triterpenes (1−3) along with fourteen
known triterpenoids (4−17) from the ethanol extract of KF. Among them, compounds 6, 8,
and 11−17 were isolated for the first time from this plant. In addition, the glucose uptake
effect of compound 13 and the inhibitory activities of compounds 3, 9, and 13 against
α-glucosidase were reported for the first time.

2. Results and Discussion
2.1. Chemistry

Compound 1 was obtained as a white amorphous powder. The molecular formula was
established to be C41H62O15 (eleven degrees of unsaturation) by HR-ESI-MS at m/z 396.1971
[M-2H]2− (calcd 396.1972), which was confirmed by 13C and DEPT NMR spectra. The 13C
NMR spectrum (Table 1) revealed signals due to six methyl carbons at δC 33.7 (C-29), 26.4 (C-
27), 24.1 (C-30), 17.7 (C-26), 16.4 (C-25) and 12.2 (C-24); one oxygen-bearing methine carbon
at δC 86.6; a pair of olefinic carbons at δC 123.6 (C-12) and 145.3 (C-13); and two carboxylic
acid carbons at δC 181.9 (C-28) and 181.5 (C-23). These data, coupled with corresponding
information from the 1H NMR spectrum [six methyl groups as singlets at δH 0.80 (H-26),
0.90 (H-29), 0.93 (H-30), 0.96 (H-25), 1.14 (H-24) and 1.16 (H-27); hydroxymethine proton
at δH 4.05 (dd, J = 11.5, 4.0 Hz, H-3); a proton attributed to H-18 at δH 2.84 (dd, J = 13.5,
4.0 Hz); and a triplet vinyl proton at δH 5.23 (1H, brs, H-12)] (Table 2) and 2D NMR
spectra, confirmed that compound 1 had an oleanolic acid skeleton. In the HMBC spectrum,
correlation signals from δH 4.05 (H-3) to δC 26.6 (C-2), 54.0 (C-4), 181.5 (C-23), and 12.2 (C-24)
were exhibited, which confirmed the location of the hydroxyl group at C-3. In the ROESY
contour map, correlations between H-3 and H-5 were detected, which confirmed that H-3
was α-oriented. The aforementioned NMR data of compound 1 were closely similar to those
of momordin Ic [31], except for the signals from ring A, a carboxyl group at C-23 position.
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In the HMBC spectrum, correlation signals from δH 1.14 (H-24) to δC 86.6 (C-3) and 181.5
(C-23) were exhibited, which confirmed the location of the carboxyl group at C-23 (Figure 1).
Furthermore, the hypothesis was supported by the correlations between H-25 (δH 0.96),
H-24 (δH 1.14), and H-26 (δH 0.80) in the ROESY contour map (Figure 1). From the above
data, the structure of compound 1 was deduced to be 3(β)-3-O-β-D-xylopyranosly(1→3)
-β-D-glucopyranosiduronic acid-12-en-23,28-dioic acid.

Table 1. 1H NMR (500 MHz) and 13C NMR (125 MHz) data of compounds 1–3 in methanol-d4.

No.
1 2 3

δH, (J in Hz) δC δH, (J in Hz) δC δH, (J in Hz) δC

1 1.67, overlapped 39.7 1.66, overlapped 39.7 1.92, m 48.3
1.08, overlapped 1.08, overlapped 0.88, m

2 1.87, m 26.6 1.83, m 26.6 3.62, m 69.6
1.68, m 1.67, m

3 4.05, dd (11.5, 4.0) 86.6 4.05, dd (11.5, 4.5) 86.6 2.90, d (9.5) 84.6
4 54.0 54.1 40.7
5 1.49, m 53.1 1.49, m 53.1 0.84, m 56.9
6 2.00, td (13.5, 3.5) 24.2 2.01, td (13.5, 4.0) 24.2 2.04, td (13.5, 3.5) 24.1

1.59, m 1.60, m 1.70, m
7 1.53, overlapped 33.7 1.53, overlapped 33.7 1.56, overlapped 34.0

1.53, overlapped 1.53, overlapped 1.56, overlapped
8 41.0 41.0 40.9
9 1.65, overlapped 49.1 1.64, overlapped 49.1 1.62, overlapped 49.2

10 37.6 37.6 39.4
11 1.92, m 24.6 1.93, m 24.6 1.92, m 24.8

1.90, m 1.91, m 1.90, m
12 5.23, brs 123.6 5.24, brs 123.6 5.27, brs 123.8
13 145.3 145.6 145.2
14 43.0 43.1 43.1
15 1.76, overlapped 29.0 1.76, overlapped 29.0 1.79, overlapped 29.0

1.05, overlapped 1.05, overlapped 1.05, overlapped
16 1.57, overlapped 21.9 1.57, overlapped 21.9 1.52, overlapped 19.7

1.57, overlapped 1.57, overlapped 1.52, overlapped
17 47.8 47.8 48.2
18 2.84, dd (13.5, 4.0) 42.9 2.85, dd (14.0, 4.0) 42.9 2.86, dd (14.0, 4.0) 42.7
19 1.71, m 47.4 1.69, m 47.4 1.70, m 47.4

1.11, m 1.11, m 1.13, m
20 31.8 31.8 31.7
21 1.38, td (13.5, 3.5) 35.0 1.39, td (13.5, 4.0) 35.0 1.39, m 35.0

1.21, m 1.22, m 1.21, m
22 1.73, overlapped 33.9 1.72, overlapped 34.0 1.72, overlapped 33.3

1.27, overlapped 1.27, overlapped 1.32, overlapped
23 181.5 181.7 1.01, s 29.4
24 1.14, s 12.2 1.14, s 12.4 0.80, s 17.9
25 0.96, s 16.4 0.96, s 16.4 1.01, s 17.3
26 0.80, s 17.7 0.81, s 17.7 0.80, s 17.6
27 1.16, s 26.4 1.17, s 26.5 1.16, s 26.5
28 181.9 182.0 178.2
29 0.90, s 33.7 0.91, s 33.7 0.91, s 33.6
30 0.93, s 24.1 0.94, s 24.1 0.94, s 24.1
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Table 2. 1H NMR (500 MHz) and 13C NMR (125 MHz) data of the sugar moieties for compounds 1–3
in methanol-d4.

No. 1 2 3
δH, (J in Hz) δC δH, (J in Hz) δC δH, (J in Hz) δC

GlcA-at-C-3 Glc-at-C-28
1′ 4.37, d (7.5) 105.5 4.39, d (7.5) 105.5 5.38, d (8.0) 95.9
2′ 3.35, d (7.5) 74.6 3.34, d (7.5) 74.6 3.31, m 74.1
3′ 3.50, m 86.3 3.52, m 86.1 3.40, m 78.5
4′ 3.56, m 71.8 3.57, m 71.7 3.34, m 71.3
5′ 3.76, m 76.4 3.83, d (9.5) 76.5 3.34, m 78.9
6′ 171.4 171.2 3.81, dd (12.0, 1.5) 62.6

3.68, dt (12.0, 2.0)
6′-OMe 3.77, s 53.0

Xyl→glc-C-3
1′ ′ 4.50, d (7.5) 105.9 4.52, d (7.5) 105.9
2′ ′ 3.24, m 75.4 3.24, m 75.4
3′ ′ 3.32, m 77.7 3.32, m 77.7
4′ ′ 3.47, m 71.2 3.49, m 71.2
5′ ′ 3.89, dd (11.5, 5.5) 67.2 3.89, dd (11.5, 5.5) 67.2

3.20, dd (11.5, 5.5) 3.20, dd (11.5, 5.5)
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Figure 1. Key HMBC, COSY, and ROESY correlations of compound 1.

Compound 2 was obtained as a white amorphous powder. Its molecular formula was
determined to be C42H64O15, on the basis of a negative HR-ESI-MS profile (m/z: 403.2053
[M-2H]2−, calcd 403.2050), implying eleven degrees of unsaturation. The 13C NMR (Table 1)
and HSQC spectra of compound 2 showed 42 carbon signals comprising ten quaternary
carbon atoms [including two carboxylic acid carbon at δC 182.0 (C-28) and 181.7 (C-23)];
fourteen methine carbons [including an olefinic carbon at δC 123.6 (C-12)]; one oxymethine
carbon at δC 86.6 (C-3); and two anomeric carbon signals at δC 105.5 (C-glcA-1) and 105.9
(C-xyl-1)]; eleven methylenes; six methyls; and a methoxy carbon (δC 53.0). The 1H NMR
spectrum of compound 2 (Table 1) exhibited six methyl groups as singlets at δH 0.81 (H-26),
0.91 (H-29), 0.94 (H-30), 0.96 (H-25), 1.14 (H-24) and 1.17 (H-27); hydroxymethine proton at
δH 4.05 (dd, J = 11.5, 4.5 Hz, H-3); a proton attributed to H-18 at δH 2.85 (dd, J = 14.0, 4.0 Hz);
a triplet vinyl proton at δH 5.24 (1H, brs, H-12); and a methoxy group at δH 3.77 (3H, s).
Comparison of 1H and 13C NMR values and the analysis of the HMBC correlations showed
that compound 2 was entirely consistent with compound 1, except for one methoxy carbon
(δC 53.0, δH 3.77) that occurred in compound 2. In the HMBC spectrum, correlation signals
from δH 3.77 to δC 171.2 (C-glc-6) were exhibited, which confirmed the location of the
methoxy group at C-6′ of the glucuronopyranose unit (Figure 2). According to the above
data, the structure of compound 2 was elucidated as 3(β)-3-O-β-D-xylopyranosly(1→3)
-β-D-glucopyranosiduronic acid 6-methyl ester-12-en-23,28-dioic acid.
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Compound 3 was obtained as a white powder with a molecular formula of C36H58O9
(eight degrees of unsaturation), as determined by the pseudo-molecular ion peak at m/z:
657.3973 [M+Na]+ (calcd 657.3973) shown in the HR-ESI-MS spectra. The 1H NMR spec-
trum of compound 3 (Table 1) revealed seven angular methyl signals at δH 0.80 (H-26), 0.80
(H-24), 0.91 (H-29), 0.94 (H-30), 1.01 (H-25), 1.01 (H-23) and 1.16 (H-27); one olefinic proton
signal at δH 5.27 (1H, brs, H-12); two oxygen-substituted proton signals [δH 3.62 (1H, m,
H-2) and 2.90 (d, J = 9.5 Hz, H-3)]; and a proton attributed to H-18 at δH 2.86 (dd, J = 14.0,
4.0 Hz). The 13C NMR (Table 1) and HSQC spectra (Figure 3) of compound 3 showed
36 carbon signals including a carboxylic acid carbon [δC 178.2 (C-28)]; a pair of olefinic
carbons [δC 145.2 (C-13) and 123.8 (C-12)]; two oxygenated methine carbons [δC 84.6 (C-3)
and 69.6 (C-2)]; one anomeric carbon [δC 95.9 (C-glc-1)]; and seven methyl carbons [δC
33.6 (C-29), 29.4 (C-23), 26.5 (C-27), 24.1 (C-30), 17.9 (C-24), 17.6 (C-26) and 17.3 (C-25)],
which were characteristic of the 12-ene triterpene containing two hydroxy groups. The
observed HMBC correlations from C-2 (δC 69.6) to H-1 (δH 1.92 and 0.88), H-3 (δH 2.90),
and H-23 (δH 1.01), and from H-3 (δH 2.90) to C-1 (δC 48.3), C-2 (δC 69.6), C-4 (δC 40.7), C-23
(δC 29.4), and C-24 (δC 17.9), combined with the 1H-1H COSY correlations of H-1/H-2/H-3,
established the existence of the two hydroxy groups at C-2 and C-3, respectively. The
aforementioned NMR data of compound 3 were closely similar to those of oleanolic acid
28-O-β-D-glucopyranosyl ester [32], except for the configuration of the hydroxy group at
C-2. In the ROESY spectrum of compound 3 (Figure 3), cross-peaks were observed between
H-2/H-3, H-23; H-3/H-2, H-5, H-23, implied that the configurations of hydroxy groups at
C-2 and C-3 were both defined as β-orientation. Therefore, the structure of compound 3
was assigned as 2β,3β- Dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucopyranoside.
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The other fourteen known compounds (Figure 4) were characterized as momordin Ic
(4) [31], momordin Ic 6’-methyl ester (5) [33], momordin Ic ethyl ester (6) [34], momordin
IIc (7) [35], momordin IIc 6’-methyl ester (8) [14], 2’-O-β-D-glucopyranosyl momordin
IIc (9) [33], oleanolic acid (10) [36], gypsogenic acid (11) [37], oleanolic acid 28-O-β-D-
glucopyranosyl ester (12) [32], 3β,22β-butyryloxy-olean-12-en-28-oic acid (13) [38], (3β)-3-(β-
D-glucopyranosyloxy)olean-18-en-28-oic acid (14) [39], (3β)-3-(β-D-glucopyranosyloxy)olean-
13(18)-en-28-oic acid (15) [40], (3β)-3-(β-D-glucuronopyranosyloxy)olean-12-en-23,28-dioic
acid (16) [41], (3β)-3-(β-D-glucuronopyranosyloxy)olean-11,13-dien-28-oic acid (17) [42].
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2.2. Glucose Uptake and Cell Viability

Using 3T3-L1 adipose model cells, the insulin-induced glucose uptake-enhancing
assay was performed to determine glucose consumption after treatment with the com-
pounds. The activity represents the compounds’ potential to reduce insulin resistance
in body tissues, such as adipocytes, resulting in hypoglycemic effects [43]. To examine
the effects of the isolated compounds from KF with glucose uptake in 3T3-L1 adipocytes,
14 compounds (purity ≥ 95%; HPLC) were screened for their abilities to enhance glucose
uptake upon the induction of insulin against fully differentiated 3T3-L1 cells. As shown
in Figure 5a, the insulin group could significantly promote the glucose uptake rates of
3T3-L1 adipocytes compared to the control group with a significant difference (p < 0.001).
Simultaneously, compound 13 had a strong effect on glucose uptake in 3T3-L1 adipocytes
at 20 µM (p < 0.001). Additionally, the results of cell viability showed that compared to
the control group, the isolated compounds had no cytotoxicity (Figure 5b). In conclusion,
compound 13 had a significant capability to promote glucose uptake in 3T3-L1 adipocytes,
and without inhibitory effects on cell viability.
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Figure 5. Glucose uptake and cell viability in 3T3-L1 adipocytes. (a) Glucose uptake rate of com-
pounds 1−9, 11−14, and 17. (b) Cell viability of compounds 1−9, 11−14, and 17. Ins, insulin
(positive control); C, compound; compounds at 20 µM and insulin at 250 ng/mL; all values are
mean ± SD from a least three independent experiments, and each group is compared with model
group, significance is denoted by symbols: *** p < 0.001.

2.3. α-Glucosidase Inhibition Activity

α-Glucosidase inhibitors exert hypoglycemic effects by slowing the digestion of carbo-
hydrates and delaying glucose absorption [44]. Identification of potential α-glucosidase
inhibitors were done by in vitro screening of 14 pentacyclic triterpenes (purity ≥ 95%;
HPLC) using an α-glucosidase inhibition experiment. The results are shown in Table 3.
Compounds 1–9, 11–14, and 17 exhibited varying degrees of α-glucosidase inhibitory
activity, with inhibitory rates between 13.71 ± 0.54 and 74.41 ± 1.02%. Further tests
of α-glucosidase inhibitory activities on compounds 3, 9, and 13 were carried out, and
the results are shown in Figure 6. Compounds 3, 9, and 13 showed the most potent α-
glucosidase inhibition activities (p < 0.05) with an IC50 value of 23.50 ± 3.37, 4.29 ± 0.52,
and 16.99 ± 2.70 µM, respectively. This was the first report of the α-glucosidase inhibitory
activities of compounds 3, 9, and 13. Our study showed that compounds 3 and 13 have two
hydroxyl groups over the ring of the pentacyclic triterpenes, which indicated the hydroxyl
group in the ring of the pentacyclic triterpenes may be an effective functional group as
potent α-glucosidase inhibitors. Previous studies also reported that the hydroxyl group of
pentacyclic triterpenes has been found to confer a variety of biological properties, such as
anti-tumor, anti-inflammatory, antimicrobial and hypoglycemic activities [45].

Table 3. α-Glucosidase inhibitory activities of compounds 1−9, 11−14, and 17.

Compounds Inhibitory Rate (%) IC50 (µM)

Acarbose A 87.04 ± 0.29 a 0.001 ± 0.00
1 B 13.71 ± 0.54 j >50
2 B 14.05 ± 4.90 j >50
3 B 59.79 ± 1.04 d 23.50 ± 3.37
4 B 26.28 ± 1.01 i >50
5 B 29.62 ± 2.26 i >50
6 B 35.00 ± 0.40 h >50
7 B 52.71 ± 0.85 f >50
8 B 57.02 ± 36.3 e >50
9 B 74.41 ± 1.02 b 4.29 ± 0.52
11 B 53.98 ± 1.65 e >50
12 B 41.48 ± 1.66 g >50
13 B 69.91 ± 0.59 c 16.99 ± 2.70
14 B 17.49 ± 4.45 j >50
17 B 55.68 ± 0.17 e >50

Data were expressed as the mean value ± SD (n = 3); means followed by the different letters (a−j) are significantly
different (p < 0.05); A, percent inhibition at a concentration of 0.012 µM; B, percent inhibition at a concentration of
50 µM.
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Figure 6. α-Glucosidase inhibitory effects of compounds 3, 9, and 13. (a) Log concentration–inhibition
rate fitting curve of compound 3. (b) Log concentration–inhibition rate fitting curve of compound 9.
(c) Log concentration–inhibition rate fitting curve of compound 13. (d) Log concentration–inhibition
rate fitting curve of acarbose. Calculated IC50 values of different groups by Statistical Product and
Service Solutions (SPSS, version: 21.0), and all values are mean ± SD from a least three independent
experiments.

2.4. Enzyme Kinetic Equation

It is well accepted that enzyme kinetics can provided some useful information for
predicting the interactions between the ligands and enzymes. To clarify how and where
triterpenes bind to α-glucosidase, we first measured the enzyme kinetics of compounds
3, 9 and 13, by using methods similar to those described in the literature [46]. As shown
in Figure 7, the concentrations of 1/[pNPG] are displayed on the X-axis, and 1/v values
obtained from the Lineweaver–Burk plot are shown along the Y-axis. The plots of com-
pound 3 intersected in the second quadrant, meaning that the Vmax values decreased and
the Km values increased with the increased concentration of inhibitors (Figure 7a). The
plots of compounds 9 and 13 intersected in the third quadrant, meaning that both the Km
and Vmax values decreased with the increased concentration of inhibitors (Figure 7b,c).
The results indicated that compounds 3, 9 and 13 caused a mixed-type inhibition, which
meant they could bind to both the free enzyme and the enzyme-substrate complex [47].

We also examined Dixon plots of how compounds 3, 9 and 13 affect α-glucosidase.
As shown in Figure 8, these plots further confirmed that compounds 3, 9 and 13 are
mixed-type α-glucosidase inhibitors. The Ki values of compounds 3, 9 and 13 were
56.86 ± 1.23, 48.88 ± 0.07 and 13.63 ± 0.42 µM, respectively, while the Ki’ values of these
compounds were 47.89 ± 1.37, 19.52 ± 0.26 and 8.82 ± 0.06 µM, respectively. Ki is the
equilibrium constant for the inhibitor binding to α-glucosidase, and Ki’ is the equilibrium
constant for the inhibitor binding to the α-glucosidase−pNPG complex [48]. The results
showed that the Ki’ values were smaller than the Ki values, which indicated that the
inhibitor−enzyme−substrate complex binding affinity exceeds the binding affinity of the
inhibitor−enzyme. The binding sites and mechanism underlying inhibition have yet to be
determined. However, the results of compounds 3, 9 and 13 bound to either α-glucosidase,
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or the α-glucosidase−pNPG complex, further confirmed that compounds 3, 9 and 13 are
mixed−competitive inhibition against α-glucosidase.
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(a) 1/[pNPG]−1/v fitting curve of compound 3. (b) 1/[pNPG]−1/v fitting curve of compound
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2.5. Molecular Docking

Molecular docking is a key tool in structural molecular biology and computer-assisted
drug design. The goal of ligand–protein docking is to predict the predominant bind-
ing modes of a ligand with a protein of known 3D structure [49]. The calculated bind-
ing energies of 2β,3β-dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucopyranoside (3),
and 22β-hydroxy-oleanolic acid (13) with α-glucosidase, were found to be −4.99 and
−4.63 kcal/mol, respectively. But the binding energy of compound 9 with α-glucosidase
was found to be +2.74 kcal/mol, which indicated poor binding (Figure 9). This result
further suggested that compound 9 exerted the effect of inhibiting α-glucosidase activity
by preferentially binding to the enzyme–substrate complex. This coincided with the re-
sults of the enzyme kinetic analysis, in which the Ki and Ki’ values of compound 9 were
48.88 ± 0.07 and 19.52 ± 0.26 µM, respectively. Interestingly, significant H-bonding inter-
actions with the hydroxyl groups of compounds 3 and 13 were found in all these binding
sites. For compound 3, there are four residues (Asn 247, Thr 285, Ser 282 and Asp 242)
which formed six hydrogen bonds with the compound. Among these, the hydrogen of
the hydroxyl groups at the C-2 and C-3 position on the ring A of compound 3 formed
four hydrogen-bonding interactions with Asn 247, Thr 285, Ser 282 residues of the enzyme
(Figure 10). For compound 13, only one hydrogen bond was formed between the com-
pound and the residues of α-glucosidase. It was established between the hydrogen of the
hydroxyl group at the C-3 position on the ring A of compound 13 and Arg 359, with a
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distance of 2.1 Å (Figure 10). This accounts well for the previous observation that hydroxyl
groups were essential to improve the inhibitory activity of the compound.
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Figure 8. Determination of Ki and Ki’ of compounds 3, 9, and 13 on α-glucosidase. (a) 1/v−[I] fitting
curve of compound 3. (b) 1/v−[I] fitting curve of compound 9. (c) 1/v−[I] fitting curve of compound
13. (d) [pNPG]/v−[I] fitting curve of compound 3. (e) [pNPG]/v−[I] fitting curve of compound
9. (f) [pNPG]/v−[I] fitting curve of compound 13. All values are mean ± SD from at least three
independent experiments.
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Figure 10. The 2D interaction diagram of the docking poses of compounds 3 (a) and 13 (b) on 

α-glucosidase of 3A4A. 

3. Materials and Methods 

3.1. Chemicals, Reagents and Cell 

1H and 13C and 2D NMR spectra were obtained on a Bruker–Avance Ⅲ-500 MHz 

(Bruker Corporation, Madison, WI, USA) spectrometer with chemical shifts recorded in δ 

(ppm), using tetramethylsilane (TMS) as the internal standard, while the coupling con-

stants (J) were given in hertz. Mass spectra were obtained on an MS Waters AutoSpec 

Premier P776 mass spectrometer (ESI-MS) and a UPLC-IT-TOF-MS (HR-ESI-MS), re-

Figure 9. Molecular docking pictures of compounds 3, 9, and 13 on α-glucosidase of 3A4A. (a) 3D-
structural model of α-glucosidase bound to compound 3 and the close-up view of the compound 3
molecule bound at the active site of α-glucosidase. (b) 3D-structural model of α-glucosidase bound
to compound 9 and the close-up view of the compound 9 molecule bound at the active site of α-
glucosidase. (c) 3D-structural model of α-glucosidase bound to compound 13 and the close-up view
of the compound 13 molecule bound at the active site of α-glucosidase. The 3D-structural model of
α-glucosidase is shown in green; residues that may be involved in the interactions of compound-
binding are drawn with a stick model and shown in purple. The possible hydrogen-bond interactions
are indicated with dashed lines (yellow).
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3. Materials and Methods
3.1. Chemicals, Reagents and Cell

1H and 13C and 2D NMR spectra were obtained on a Bruker–Avance III-500 MHz
(Bruker Corporation, Madison, WI, USA) spectrometer with chemical shifts recorded in δ
(ppm), using tetramethylsilane (TMS) as the internal standard, while the coupling constants
(J) were given in hertz. Mass spectra were obtained on an MS Waters AutoSpec Premier
P776 mass spectrometer (ESI-MS) and a UPLC-IT-TOF-MS (HR-ESI-MS), respectively. An
IR spectrum was recorded on a BRUKER VERTEX 70 (Bruker Corporation, Madison, WI,
USA) spectrometer in KBr pellets. The UV spectrum was measured on a SHIMADZU UV-
2401PC (Shimadzu Corporation, Berlin, Germany) series spectrophotometer, with methanol
as a solvent. CD spectra was obtained on an Applied Photophysics Chirascan Circular
Dichroism Spectrometer (Applied Photophysics Ltd, UK). Optical rotation was taken on an
Autopol VI, Serial #91058. Column chromatography was run on silica gel (80–100 mesh
and 200–300 mesh) (Qingdao Marine Chemical Co., Ltd., Qingdao, China), LiChroprep
RP-C18 gel (Merck, 40–63 µm, Darmstadt, Germany) and Sephadex LH-20 (Gytiva Sweden
AB, Upsala, Sweden). Fractions were monitored by thin-layer chromatography (TLC), and
spots were visualized by heating silica gel plates sprayed with 10% H2SO4/CH3CH2OH. A
semipreparative HPLC was run on a Shimadzu system (Shimadzu Corporation, Nakagyo-
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ku, Kyoto, Japan) with a Shim-pack Scepter C18-120 (4.6 mm × 250 mm, 5 µm). The 3T3-L1
mouse preadipocytes were purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA). High-glucose DMEM, low-glucose DMEM, Pen-Strep solution (P/S),
insulin, certified fetal bovine serum (FBS), special newborn calf serum (NBCS), and phos-
phate buffered saline (PBS) were purchased from Biological Industries (Shanghai, China).
3-Isobutyl-1-methylxanthine (IBMX) and dexamethasone (DEX) were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Rosiglitazone (ROSI) was purchased from Meilun Biotech
Co., Ltd. (Dalian, Liaoning, China). Dimethyl sulfoxide (DMSO) was obtained from So-
larbio (Beijing, China). The glucose test kit was purchased from Rongsheng Biotech Co.,
Ltd. (Shanghai, China). CellTiter 96® AQueous One Solution Cell Proliferation Assay
was also acquired (Promega Corporation, Madison, WI, USA). α-Glucosidase (33 U/mg),
acarbose, 4-nitrophenyl-α-D-glucopyranoside (pNPG), and ascorbic acid were purchased
from Yuanye Biotech Co., Ltd. (Shanghai, China). The other chemicals and reagents were
purchased from local suppliers. The absorbance was measured by a microplate reader
(Molecular Devices, Palo Alto, Santa Clara, CA, USA).

3.2. Plant Materials

KF, the fruits of Kochia scoparia (Linn.) Schrad produced in Shandong, were purchased
from Yunnan Lvsheng Pharmaceutical Co., Ltd (Yunnan, China). in 2019, and identified
by Prof. Yumei Zhang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of
Sciences. A voucher specimen (No. 2019001) of KF was deposited in the Innovative Drug
Research Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences.

3.3. Extraction and Isolation

The air-dried fruits of K. scoparia (20 kg) were extracted four times (7, 3, 3, 1 day,
respectively) with 80% ethanol (45, 30, 30, 30 L, respectively) at room temperature. The
extracts were filtered and evaporated under reduced pressure to obtain the ethanol extract
of Kochiae Fructus (EE, 2.03 kg). Then, the EE (2.0 kg) was subjected to silica gel column
chromatography and eluted with petroleum ether, ethyl acetate, and ethanol to obtain the
petroleum ether fraction of EE (PEF, 0.15 kg), ethyl acetate fraction of EE (EAF, 0.26 kg),
and ethanol fraction of EE (ETF, 1.40 kg), respectively. The ETF (1.40 kg) was subjected to
silica gel column chromatography and eluted with ethyl acetate/methanol (3:1, 0:1) to yield
two fractions (Fr. 1, Fr. 2). Then, the two fractions were dissolved with 20% (v/v) ethanol
(EtOH)/water (H2O) solution and centrifuged at 5000 rpm for fifteen minutes, respectively.
Two supernatants were evaporated under reduced pressure to yield two sub-fractions (Fr.
1.1, Fr. 2.1), respectively. Removal of the supernatant gave the sediment (Fr. 3) by rotary
evaporators. Fr. 1.1 (114.7 g) was chromatographed on a silica gel column (200–300 mesh)
and eluted with chloroform (CHCl3)/methanol (MeOH) gradient system (20:1 to 1:1) to
yield two sub-fractions 1.1.1 and 1.1.2). Fr. 1.1.1 (74.6 g) was subjected to repeated column
chromatography over silica gel, RP-C18, Sephadex LH-20, preparative HPLC, to afford
compounds 3 (3.08 mg), 7 (4.21 mg), 8 (9.11 mg), and 12 (17.52 mg). Fr. 1.1.2 (42.4 g)
was subjected to repeated column chromatography over silica gel, RP-C18, Sephadex
LH-20 (Gytiva Sweden AB, Upsala, Sweden), preparative HPLC, to afford compounds 5
(3.04 mg), 13 (2.75 mg), 14 (16.5 mg), 15 (3.28 mg), 16 (2.05 mg), and 17 (5.37 mg). Fr. 2.1
(100 g) was separated by Sephadex LH-20 column using CHCl3-MeOH isocratic system
(1:1) to afford three sub-fractions (Fr. 2.1.1, Fr. 2.1.2, and Fr. 2.1.3). Fr. 2.1.1 (27.7 g) was
subjected to repeated column chromatography over RP-C18 and a preparative HPLC to
afford compounds 1 (5.03 mg), 2 (2.86 mg), 9 (3.28 mg) and 11 (2.46 mg). Fr. 3 (100 g)
was ground and dissolved by heating with 100% ethanol solution at 60 ◦C, filtered, and
the ethanol in the filtrate was removed under reduced pressure to obtain sub-fraction 3.1
(Fr. 3.1). Fr. 3.1 (86 g) was ground into powder and dissolved with ethanol (86 × 5 mL);
the mixture solution was stirred using a magnetic stirrer at 600 rpm for 24 h. Finally, the
filter residue was obtained by filtration. After repeating the above operation four times,
the filter residue was finally obtained (Fr. 3.1.1, 30 g). Fr. 3.1.1 (30 g) was purified by
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a preparative HPLC (MeOH-H2O-acetic acid (CH3COOH), 85:15:0.2, isocratic) to give
compound 4 (5.2 g). The EAF (260 g) was subjected to silica gel column chromatography
and eluted with CHCl3/MeOH (50:1 to 0:1) to yield compound 6 (3.37 mg). The PEF
(150 g) was subjected to silica gel column chromatography and eluted with petroleum
ether/CHCl3 (50:1 to 0:1) to yield compound 10 (56.1 g).

3.3.1. 3(β)-3-O-β-D-xylopyranosly(1→3)-β-D-glucopyranosiduronic acid 12-en-23,28-dioic
acid (1)

The molecular formula was C41H62O15, white amorphous powder; [α]25 D + 17.1◦

(c 0.187, MeOH); UV/Vis (MeOH, λmax, nm) (log ε): 203 (3.92). IR (KBr) vmax 3434, 2928,
2870, 1625, 1385, 1038 cm−1; ECD (MeOH, λmax, nm) (4ε): 195 (8.22), 262 (0.28). 1H
NMR (500 MHz, methanol-d4) and 13C NMR (125 MHz, methanol-d4), see Tables 1 and 2;
HR-ESI-MS m/z 396.1971 [M-2H]2- (calcd 396.1972) (see Supplementary Data).

3.3.2. 3(β)-3-O-β-D-xylopyranosly(1→3)-β-D-glucopyranosiduronic acid 6-methyl
ester-12-en-23,28-dioic acid (2)

The molecular formula was C42H64O15, white amorphous powder; [α]25 D + 4.5◦ (c
0.089, MeOH); UV/Vis (MeOH, λmax, nm) (log ε): 203 (3.92). IR (KBr) vmax 3419, 2927,
2864, 1694, 1386, 1258, 1037 cm−1; ECD (MeOH, λmax, nm) (4ε): 195 (4.62), 262 (0.23). 1H
NMR (500 MHz, methanol-d4) and 13C NMR (125 MHz, methanol-d4), see Tables 1 and 2;
HR-ESI-MS m/z 403.2053 [M-2H]2- (calcd 403.2050) (see Supplementary Data).

3.3.3. 2β,3β-dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucopyranoside (3)

The molecular formula was C36H58O9, white amorphous powder; [α]25 D + 22.67◦

(c 0.172, MeOH); UV/Vis (CH3OH, λmax, nm) (log ε): 203 (3.76). IR (KBr) vmax 3422, 2928,
2867, 1738, 1385, 1259, 1071, 1030 cm−1; ECD (MeOH, λmax, nm) (4ε): 195 (6.31), 241 (0.40).
1H NMR (500 MHz, methanol-d4) and 13C NMR (125 MHz, methanol-d4), see Tables 1 and 2;
HR-ESI-MS m/z 657.3973 [M+Na]+ (calcd 657.3973) (see Supplementary Data).

3.4. 3T3-L1 Preadipocytes Culture and Differentiation

The murine 3T3-L1 preadipocytes were supplied by the American Type Culture
Collection (ATCC, Manassas, VA, USA). The cells were cultured in high-glucose DMEM
supplemented with 10% (v/v) newborn calf serum (NBCS), 1% (v/v) Pen-Strep solution
(P/S) at 37 ◦C in a humidified atmosphere of 5% CO2, and then starved until the cells
reached confluence (day 0). Two days later (day 2), the cells were cultured in DMEM
supplemented with 10% (v/v) fetal bovine serum (FBS), 1% (v/v) P/S, 0.5 mM 3-isobutyl-
1-methylxanthine (IBMX), 1 µM dexamethasone (DEX), 1 µM rosiglitazone (ROSI) and
100 nM insulin. Three days after (day 5) the induction, the culture medium was replaced
with DMEM containing 10% (v/v) FBS, 1% (v/v) P/S, and 100 nM insulin for one day
(day 6). Then the cells were completely differentiated into mature adipocytes (Figure 11).

3.5. Glucose Uptake and Cell Viability Assays

The mature adipocytes were inoculated in a 96-well plate at 5 × 104 cells per well for
24 h. The 3T3-L1 adipocytes were divided into model groups (blank control), insulin group
(250 ng/mL, positive control), and sample group (20 µM). After 24 h of administration,
10 µL medium was used to measure the glucose content. The absorbance value was detected
by a microplate reader at 505 nm. The glucose uptake rate was calculated as follows:

Glucose uptake rate (%) = [1 − A2/A1] × 100 (1)

where A1 is the absorbance of the mixed-glucose, DMEM-supplemented control, and A2 is
the absorbance of the blank, insulin, or sample group.
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Cell viability was detected by using a CellTiter 96® AQueous One Solution Cell Prolif-
eration Assay (Promega Corporation, Madison, WI, USA) according to the manufacturer’s
instructions after the glucose uptake experiment [50]. CellTiter 96® AQueous One Solution
Cell Proliferation Assay reagent (20 µL/well) was added to the plate and incubated at
37 ◦C for 180 min before absorbance was measured at 490 nm, and the relative cell viability
was calculated as follows:

Relative cell viability (%) = A1/A2 × 100 (2)

where A1 is the absorbance of the blank control, and A2 is the absorbance of the sam-
ple group.

3.6. In Vitro α-Glucosidase Inhibition Assay

The α-glucosidase inhibition assay was carried out on the basis of the method reported
by Zhang et al., with minor modifications [51]. Briefly, α-glucosidase (0.1 U/mL), pNPG
(5 mM) and Na2CO3 (0.5 M) were prepared in PBS (0.1 M, pH 6.8), and the samples were
diluted to different concentrations (0.0625, 0.125, 0.25, 0.5, 1, and 2 mM) using PBS. In a
96-well microplate, a mixture of 80 µL PBS, 10 µL sample, and 50 µL α-glucosidase solution
were added and incubated for 15 min at 37 ◦C, 10 µL PBS used as a blank control. To
initiate the reaction, pNPG (40 µL) was added to the reaction mixture and incubated at
37 ◦C for 30 min. The reaction was terminated by adding 20 µL of Na2CO3, after which
the absorbance was determined at 405 nm by a microplate reader (SpectraMax190, Micro-g
Biotech, Guangzhou, China). Acarbose was used as a positive control in this α-glucosidase
inhibition assay. IC50 values were defined as the concentration of the compound required to
inhibit 50% of α-glucosidase activity under assay conditions. The α-glucosidase inhibition
activity was calculated as follows:

Inhibition rate (%) = (A1 − A2)/A1 × 100 (3)

where A1 is the OD value of the blank control, A2 is the OD value of the tested samples,
and the analysis was performed in triplicates.
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3.7. Kinetics Involved in the Inhibition of α-Glucosidase

The kinetic analysis of compounds 3, 9, and 13 were measured using the reaction
conditions in Section 3.6. Typically, three different concentrations of each compound
around the IC50 values were chosen. Under each concentration, α-glucosidase activity
was assayed by varying the concentration of pNPG as a substrate [46]. The inhibition
types of active compounds were determined by Lineweaver–Burk plots [the inverse of
velocity (1/v) against the inverse of the substrate concentration (1/[pNPG])] with substrate
concentrations of 1.25, 2.5, 5, 10, 20 µM. Ki and Ki’ values were determined from 1/v versus
[I] (Dixon plot) and S/v versus [I] plots, respectively.

3.8. Molecular Docking

The molecular docking approach can be used to model the interaction between a small
molecule and a protein at the atomic level [52]. The structure of α-glucosidase (PDB ID:
3A4A) was obtained from the Online Protein Data Bank [53], and the 3D structures of the
ligands were generated by Chem3D Pro (version: 14.0). Complexed ligands and water
molecules in the crystal structure of α-glucosidase were virtually removed by PyMOL Win
application (PyMOL, version: 2.4.0). Gasteiger charges and essential hydrogen atoms were
added by using the AutoDock tools (ADT, version: 1.5.6). The cubic grid box dimensions
of α-glucosidase were defined as x = 98, y = 126, and z = 102 Å with spacing of 0.692 Å.
Finally, the PyMOL molecular graphics system (version 2.4.0) was used to visualize ligand–
enzyme interactions.

3.9. Statistical Analysis

IBM SPSS Statistics for Windows, version 26.0 (IBM Corp., Armonk, NY, USA), was
used to analyze all of the data. The experiments were carried out in triplicates and the
results were expressed as an average of the three measurements ± SD. One-way analysis
of variance (ANOVA) was used to compare the means of different analysis investigations.
Differences were considered significant when * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Conclusions

Seventeen compounds, including three previously undescribed and fourteen known
triterpenes, were isolated from the ethanol extract of KF. We detected their hypoglycemic
activities via assays for α-glucosidase inhibition and glucose uptake of 3T3-L1 adipocytes.
Next, we performed enzyme kinetics and molecular docking investigations to analyze
the possible mechanisms against enzymes. The results of the glucose uptake experi-
ment showed compound 13 had a significant promotion on glucose uptake rate of 3T3-L1
adipocytes (p < 0.001). Simultaneously, enzyme-inhibition results suggested that com-
pounds 3, 9, and 13 possessed potent inhibitory effects on α-glucosidase, and their enzy-
matic kinetics on α-glucosidase showed that they are mixed-type inhibitors. The hydroxyl
group in the ring of the pentacyclic triterpene played a key role in maintaining α-glucosidase
inhibitory activity according to the docking simulation. In summary, this study enriched
the chemical composition diversity of KF and provided effective evidence for its use in
hypoglycemic herbal medicine.
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