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Abstract: Exploring new and high efficiency mimic enzymes is a vital and novel strategy for an-
tibacterial application. Haloperoxidase-like enzymes have attracted wide attention thanks to their
amazing catalytic property for hypohalous acid generation from hydrogen peroxide and halides.
However, few materials have displayed halogenating catalytic performance until now. Herein, we
synthesized N-doped C/CeO2 (N-C/CeO2) composite materials by a combination of the liquid and
solid-state method. N-C/CeO2 can possess haloperoxidase-like catalytic activity by catalyzing the
bromination of organic signaling compounds (phenol red) with H2O2 at a wide range of temperatures
(20 ◦C to 55 ◦C), with a solution color changing from yellow to blue. Meanwhile, it exhibits high
catalytic stability/recyclability in the catalytic reaction. The synthesized N-C/CeO2 composite can
effectively catalyze the oxidation of Br− with H2O2 to produce HBrO without the presence of phenol
red. The produced HBrO can resist typical marine bacteria like Pseudomonas aeruginosa. This study
provides an efficient biomimetic haloperoxidase and a novel sustainable method for antibacterial
application.

Keywords: N-C/CeO2 composite; catalytic materials; biomimetic catalyst; haloperoxidase-like
enzyme; antibacterial

1. Introduction

Microbiological contamination constitutes one of the fatal worldwide issues facing
both environmental sustainability and public healthcare [1,2]. Various antibacterial meth-
ods have been developed to limit microbial growth, such as the addition of excess chlorine
dioxide [3] or antibiotics [4,5], even new types of antibacterial materials, such as nano sil-
ver [6,7]. However, the toxicity of disinfection byproducts and the bacterial resistance lead
to a quest for novel and effective methods [8,9]. Therefore, it is necessary to exploit novel
and effective environment-friendly and nontoxic antibacterial materials and antibacterial
technology. Different conventional antibacterial agents and biomimetic catalyst emulate
nature enzymes to produce intermediates such as halogenated metabolite, which target
specific bacterial signaling and regulatory systems for preventing bacterial colonization or
biofilm development [10].

In nature, some marine algae can effectively prevent the attachment of microorganisms
by self-secreting a haloperoxidase [11,12]. This kind of haloperoxidase can catalyze the
oxidation of halides (Cl−, Br−, I−) with H2O2 to the corresponding hypohalous acid [13].
Inspired by this phenomenon, natural haloperoxidase and functional recombinant haloper-
oxidase, especially vanadium haloperoxidases (V-HPOs), are applied to paint as an additive,
which can effectively prevent the growth and attachment of microorganisms [14,15]. How-
ever, these natural and functional recombinant enzymes were restricted to large-scale
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application because of their high production costs, short-term stability, and specific reaction
conditions (pH and temperature) [16]. Exploring high-performance artificial V-HPOs mimic
enzymes is a useful strategy to replicate natural enzymes.

Attempts to mimic haloperoxidases reactions with synthetic enzymes have been suc-
cessful in catalytic activity [17]. Research on functional enzyme mimics has seen an upsurge
in recent years [10]. Several vanadium complexes [18,19] or V2O5 nanoparticles [16] have
been reported as mimicking V-HPOs, which display catalytic efficiency and selectivity
in oxidative halogenation reactions [20,21]. However, the vanadium compounds are mu-
tagenic, carcinogenic, and teratogenic [17]. It is an urgent need to develop efficient and
non-toxic materials to replace vanadium-based complexes. Inspired by catalyzing oxida-
tion/halogenation reaction of cerium oxide in organic synthesis, cerium-based materials
were reported to have haloperoxidase-like activity [22–26]. For example, cerium oxide
nanorods as haloperoxidase mimic have been used in antimicrobial membranes [23–25].
Cerium oxides present good catalytic performance, which is attributed to the self-structural
properties and environmental compatibility [25]. However, the extreme low abundance
of rare-earth metallic cerium on Earth limits its large-scale application. Doping is an effi-
cient strategy to reduce the usage amount of cerium and increase the utilization of cerium.
In our previous report, compared with cerium oxide, the same amount carbon-doped
cerium oxide exhibited better haloperoxidase mimicry for antimicrobial [26]. Therefore,
specific doping and complex can effectively reduce resource utilization and facilitate the
widespread application of cerium-based materials.

Herein, N-C/CeO2 composite was prepared and studied as haloperoxidase mimicry
for antibacterial, as shown in Scheme 1. N-C/CeO2 composite as a biomimetic catalyst
possesses haloperoxidase-like catalytic activity by catalyzing the bromination of phenol red
in the presence of H2O2 with a solution color changing from yellow to blue. Meanwhile,
it can possess antibacterial application by catalyzing the oxidation of Br− with H2O2
(without phenol red) to produce HBrO. The haloperoxidase activity of prepared material
and the factors affecting the mimicry activity, such as temperature and concentration
of catalysts, were studied. The kinetics of the catalytic reaction were investigated by
varying the concentration of one reactant while keeping the concentration of others constant.
Consequently, the stability and recyclability of N-C/CeO2 composite were proved through
the reutilization test. It can effectively catalyze the oxidative bromination of Br− and H2O2
to produce HBrO. The produced HBrO with a strong antibacterial activity was used to
resist microorganisms such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa),
and Staphylococcus aureus (S. aureus). The proposed high efficiency N-C/CeO2 artificial
enzyme mimic may represent a novel strategy to emulate a natural defense system for
restraining biofilm growth and bacterial colonization.
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2. Results and Discussion
2.1. Characterization

The morphology and crystal structure of the synthesized composites were investigated
by SEM, TEM, and XRD. Figure 1A is the SEM image of the prepared N-C/CeO2 composite.
N-C/CeO2 composite presents a kind of sheet morphology, and the sheets branch off from
each other. The high-resolution TEM (HRTEM) image (Figure 1B) of N-C/CeO2 shows
clear lattice fringes with an interlayer distance of 0.32 nm, which can be indexed to the
(002) plane of CeO2. As shown in Figure 1C, the XRD pattern of N-C/CeO2 composite
shows typical peaks at around 28◦, 33◦, 47◦, and 56◦, corresponding to the (111), (200),
(220), and (311) planes of the cubic CeO2 (PDF#34-0394), respectively. The inset of Figure 1C
displays the crystal structure illustration of CeO2 with cubic space group (Fm3m). The
diffraction peaks are strong and sharp, implying that the N-C/CeO2 sample maintains
good crystallinity. In addition, XRD patterns of the other N-C/CeO2 composites are shown
in Figure S1. These results suggest that all of the XRD patterns of N-C/CeO2 composites
are nearly identical to the pure CeO2. Moreover, the loading of N-doped carbon did not
change the crystalline phase of the composites. As displayed in Figure 1D, the STEM
elemental mapping images reveal a uniform distribution of N, C, O, and Ce. This indicates
the high homogeneity of the synthesized N-C/CeO2 composite. To summarize, the doping
modification in the current study has not changed the morphology and crystal structure of
the N-C/CeO2 composites.
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Figure 1. (A) SEM image; (B) HRTEM image; (C) XRD pattern of N-C/CeO2 composite and the
standard PDF cards of CeO2, inset: crystal structure of CeO2; (D) STEM-mapping and XPS pattern of
N-C/CeO2 composite; (E) Ce 3d; (F) N 1s; (G) C 1s.

XPS was further employed to elucidate the electronic structure and chemical state
of N-C/CeO2. As shown in Figure 1E, the refined Ce 3d XPS spectrum is composed of
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multiple couples of peaks, corresponding to a mixture of Ce3+ and Ce4+ oxidation states.
Generally, cerium switches reversibly between its Ce(III) and Ce(IV) states owing to the
non-stoichiometric nature and multiple d-splitting of Ce element [27]. The Ce 3d XPS
peaks located at 885/904 eV can be assigned to Ce3+ states, while the peaks at 883/901 eV,
889/908 eV, and 898/916 eV are attributed to Ce4+ states [28]. According to the integrated
area, the N-C/CeO2 composite consisted of a major amount of Ce(IV) oxide (85.93%) and
small amount of Ce(III) oxide (14.08%), which is related to the lattice strain induced by Ce3+

and the presence of oxygen vacancies [29]. The O 1s XPS spectrum is given in Figure S2.
The O1s XPS spectrum displays typical peaks at 529.5 and 531.6 eV, which can be assigned
to the Ce4+-O and Ce3+-O bond, respectively. After high-temperature calcination, the
final N-C/CeO2 product also contains abundant nitrogen-doped carbon components. The
N 1s XPS spectrum (Figure 1F) of the N-C/CeO2 composite can be de-convoluted into
three species, corresponding to pyridinic N, pyrrolic N, and oxidized N, respectively [30].
Additionally, the C 1s XPS spectrum (Figure 1G) exhibits significant signals at 284.5, 285,
and 286 eV, which can be identified as C-C/C=O, C-N, and O-C=O/N-C=O functional
groups, respectively [31]. In Raman spectra (Figure S3), the pure CeO2 delivers typical
peaks at 460 cm−1 and 600/1170 cm−1, which can be assigned to the F2g vibration model
of the CeO2 and oxygen defects, respectively [32]. However, the N-C/CeO2 displays
additional Raman spectrum peaks at around 1680 and 2900 cm−1, corresponding to the
C-N band in the composite [33]. Meanwhile, N-C does not change the crystalline phase
of the composites, which is consistent with the results of XRD. The above results indicate
that the N-C/CeO2 composite contains ceric oxide and abundant N (O and C-)-functional
groups. These are crucial to the high homogeneity of the prepared composites.

2.2. Haloperoxidase Mimicry Activity

To study the haloperoxidase mimicry activity of N-C/CeO2 composites, phenol red
(PR) was used as the color substrate. N-C/CeO2 composite, as the haloperoxidase mimicry,
can catalyze the bromination and PR in the presence of H2O2 with a solution color change
from yellow to blue. N-C/CeO2 composite (6:1) exhibits the best haloperoxidase mimicry
activity out of all of the N-C/CeO2 composites in Figure S4. Thus, this doping composite
was used throughout the study. As shown in Figure 2A, the absorbance spectra of the
solution were obtained in different reaction systems. No obvious absorption signals are
detected in the c blank system with the components of NH4Br + H2O + H2O2 + c. However,
there is an obvious peak at ~430 nm in systems a, b, and d, which belongs to the absorption
of PR. System e reveals a distinct absorbance at 590 nm, which is attributed to the product
bromophenol blue. The N-C/CeO2 composite can catalyze Br− and PR in the presence of
H2O2 to produce bromophenol blue. The corresponding color changes in different systems
are shown in Figure 2A (insert). The solution is colorless in system c and yellow in systems a,
b, and d. This yellow color comes from the color of dilute PR dye. The solution is blue only in
system e. It indicates that the N-C/CeO2 composite can catalyze Br− and PR in the presence
of H2O2 to produce a blue-color reaction and exhibit good haloperoxidase-like catalytic
activity. In addition, to further test the haloperoxidase-like activity of N-C/CeO2 composites,
the catalytic activities of N-C composites and pure CeO2 were investigated as controls in
Figure 2B. There is a faint peak at 590 nm of the N-C composite, which shows that the N-C
composite has a certain catalytic activity. N-C/CeO2 delivers a significant absorbance peak
at 590 nm, and its adsorption peak is higher absorbance than that of pure CeO2, indicating
the N dopants carbon as an electron donor atom can facilitate the catalytic activity of CeO2
to produce HBrO [10]. These above results indicate that the N-C/CeO2 composite possesses
excellent haloperoxidase-like activity higher than that of N-C composites and pure CeO2.
Therefore, the use of nitrogen-doped carbon as a substrate is beneficial to improve the
haloperoxidase-like catalytic activity of the N-C/CeO2 composite.
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Figure 2. (A) Absorbance spectra in different reaction systems: (a) H2O + PR + H2O2 + C, (b) NH4Br
+ PR + H2O + C, (c) NH4Br + H2O + H2O2 + C, (d) NH4Br + PR + H2O2 + H2O, and (e) NH4Br +
PR + H2O2 + C. C: N-C/CeO2. (B) Absorbance spectra of solutions catalyzed by N-C composites,
CeO2, and N-C/CeO2 composites. (C) Time-dependent UV–Vis spectra showing the kinetics of the
oxidative bromination of PR catalyzed by the N-C/CeO2 composite (40 min, 23–25 ◦C) and (D) point
plot of solutions catalyzed by the N-C/CeO2 composite at different temperatures.

In order to study the haloperoxidase-like properties of N-C/CeO2 composite, the
UV–Vis spectra of aqueous reaction were measured every 2 min within a total testing time
of 40 min. As shown in Figure 2C, the absorbance at 590 nm increases quickly at the early
time, while the increase of absorbance at 590 nm slows down after 30 min and tends to
be stable at 40 min. The formation rate of bromination product (Br4PR) was evaluated
by the accurate absorbance intensity of 590 nm, as displayed in Figure S5. These results
show that the N-C/CeO2 composite has the same haloperoxidase-like catalytic activity as
natural enzymes [34]. In general, the catalytic activity of artificial mimicry is associated
with the working temperature. The optimal temperature of the N-C/CeO2 composite
was investigated from 20 ◦C to 55 ◦C. The result shown in Figure 2D indicates that the
catalytic activities of the N-C/CeO2 composite were high at various temperatures. These
are only slightly affected by the temperature. Therefore, room temperature was chosen in
the following experiments.



Int. J. Mol. Sci. 2023, 24, 2445 6 of 13

2.3. Kinetics Constant Determination

The reaction kinetics of the N-C/CeO2 composite were further studied. The Michaelis–
Menten constant of substrates (H2O2, NH4Br, and PR) was measured by changing the
concentration of one substrate, while keeping all other concentrations constant. Then,
kinetics graphs (Figure 3) were obtained by the calculated initial velocity rates using kinetic
data according to Equations (2) and (3). For the N-C/CeO2 composite, Figure 3A (left)
shows the kinetic function as the concentration of the N-C/CeO2 composite, when the
concentrations of other substrates are fixed. The kinetic values are fitted nonlinearly (blue
line) according to the Michaelis–Menten equation, and the partial kinetic values are fitted
linearly (dark dashed line). The results show that the kinetic data fit perfectly with the
nonlinear fitting line based on the Michaelis–Menten equation. Thus, the N-C/CeO2 com-
posite complies with the Michaelis–Menten kinetic of natural enzymes. The middle graph
and the right graph in Figure 3A show the corresponding Lineweaver–Burk linearizations
and logarithmic correlations, respectively.
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The Michaelis–Menten constants (Km) and the maximal reaction rates (vmax) values of
all substrates (H2O2, NH4Br, and PR) calculated are shown in Table 1. The kinetic function,
corresponding Lineweaver–Burk linearizations, and logarithmic correlations of other sub-
strates, including H2O2, NH4Br, and PR, are treated with the similar method to that of the
N-C/CeO2 substrate (Figure 3B–D). The above results show that the N-C/CeO2 composite as
haloperoxidase mimicry matches with the catalytic reaction kinetics of natural enzymes.

Table 1. The Michaelis–Menten constant (Km) and maximal reaction rate (vmax) of N-C/CeO2 composites.

Substrates Km (µ·mol·L−1) vmax (µmol·L−1·min−1)

H2O2 (mmol·L−1) 0.246 0.669
NH4Br (mmol·L−1) 173 1.11

PR (mmol·L−1) 0.0130 2.48

The Michaelis–Menten constant of the N-C/CeO2 composite and vanadium bromoper-
oxidase (V-BPO) in the previous reports are summarized in Table 2. Compared with the
V-BPO biological sample, the prepared N-C/CeO2 composite delivers an obviously smaller
Km of H2O2 and bigger Km of bromide (NH4Br) [16,34]. Generally, Km indicates the affinity
between the substrate and catalyst. The lower Km value of H2O2 suggests that H2O2 has a
higher affinity for the surface of the N-C/CeO2 composite than V-BPO. The higher Km value
of Br− indicates that Br− has a lower affinity for the surface of the N-C/CeO2 composite.

Table 2. Comparison of the apparent Michaelis–Menten constant and maximal reaction rate between
the N-C/CeO2 composite and V-BPO.

Materials Substrates Km (µmol·L−1)

N-C/CeO2 composites H2O2 0.246
Br− 173

vanadium bromoperoxidase (V-BPO) H2O2 22.0
Br− 18.1

To evaluate the effect of bromide source on the catalytic reaction, KBr and NaBr are
used as control samples. Figure 4A shows the absorbance of the solution at 590 nm in
the presence of NH4Br, KBr, and NaBr, respectively. The solution absorbances are almost
identical for different bromide sources, meaning that the reaction is independent of the
bromide source. As the stability of the catalyst is essential for real applications, reutilization
tests of N-C/CeO2 composite are performed with the same concentration of PR, NH4Br,
and H2O2 at room temperature. After each reaction cycle, the N-C/CeO2 composite
is separated by centrifugation at 3020× g and washed with ultrapure water. Then, the
obtained N-C/CeO2 composite is treated again with PR, NH4Br, and H2O2 under identical
experimental conditions. As shown in Figure 4B, the absorbance at 590 nm stays almost
constant through ten cycles. This clearly illustrates that the activity of the N-C/CeO2
composite has not decreased. The above results suggest that the catalytic activity of the
N-C/CeO2 composite is independent of the bromide source, and it also exhibits high
catalytic stability.
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2.4. Antibacterial Test

N-C/CeO2 composites have good haloperoxidase mimicry activity by catalyzing the
bromination of organic signaling compounds. Therefore, N-C/CeO2 composites can catalyze
the reaction of H2O2 and Br− to produce HBrO. In order to investigate the antibacterial
property of N-C/CeO2 composites as haloperoxidase mimicry, N-C/CeO2 composites are
applied onto the titanium plates’ surfaces and antibacterial tests are conducted. As shown
in Figure 5A, the bare titanium plate/N-C/CeO2 composites modified titanium plates are
exposed to P. aeruginosa suspensions at 37 ◦C for 4 h. Bacterial cell density and adhesion is
further evaluated by fluorescence microscopy. As a control, a dense P. aeruginosa population is
observed on the bare titanium plates surfaces in the absence of N-C/CeO2 composites in the
medium without H2O2 and Br− (Figure 5A, left column “Blank”). The same experimental set
up is conducted without adding the substrates H2O2 and Br− in P. aeruginosa suspensions. In
this case, high P. aeruginosa adhesion/density is also observed on the N-C/CeO2 modified
titanium plates (Figure 5A, middle column). In contrast, the absence of P. aeruginosa adhesion is
detected on the N-C/CeO2 composites modified titanium plates in the presence of substrates
H2O2 and Br− (Figure 5A right column “N-C/CeO2 + Br− + H2O2”). The above results
indicate that the system of “N-C/CeO2 + Br− + H2O2” exhibits the best antibacterial
adhesion property. As shown in Figure S6, the proposed catalytic reaction with the prepared
N-C/CeO2 catalyst can also work to suppress the microbial adhesion of E. coli and S. aureus.
As shown in Figure 5B, the blank sample without adding N-C/CeO2 catalyst and Br−

reveals abundant P. aeruginosa colonies on the entire plate. Figure 5C displays the plate
treated with only N-C/CeO2 catalyst (without Br− and H2O2), and Figure 5D reveals the
plate photo treated with all components of the catalytic condition (with N-C/CeO2, Br−,
and H2O2). The sample with the addition of only the N-C/CeO2 catalyst exhibits a reduced
number of P. aeruginosa colonies, implying that the N-C/CeO2 composite itself has weak
antibacterial activity (Figure 5C). However, almost no P. aeruginosa colonies are detected on
the plate of Figure 5D because of the generation of HBrO. These above results demonstrate
that the N-C/CeO2 composite itself has weak antibacterial activity, while the N-C/CeO2
composites can catalyze the reaction of Br− and H2O2 to produce HBrO, which plays a
major role in antibacterial properties. In addition, the antibacterial properties of N-C/CeO2
as haloperoxidase mimicry were compared with the previously reported CeO2-based
materials, as shown in Table S1. N-C/CeO2 presents lower bacterial attachment on the
titanium plates than other CeO2-based materials for E. coli, which indicates that they have
good antibacterial adhesion properties. This provides a novel way to prevent biofouling
and attachment to marine facilities. Therefore, N-C/CeO2 composites as haloperoxidase
mimics have excellent bromination activity, and the produced hypobromous acid exhibits
superb antibacterial activity.
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3. Methods
3.1. Reagents and Apparatus

Cerium(III) nitrate hexahydrate (Ce(NO3)3•6H2O) was purchased from Aladdin Chemi-
cal Reagent Co., Ltd. (Shanghai, China). Phenol red (PR), melamine, ammonium bromide,
NaCl, KCl, Na2HPO4, KH2PO4, acetic acid, and hydrogen peroxide solution (30%) were
purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Cell stain-
ing kit (K2081) was purchased from APExBIO (Houston, TX, USA). All the reagents and
chemicals were used without further purification. All aqueous solutions were prepared
with ultra-pure water (18.2 MΩ·cm) throughout this experiment. Phosphate buffered saline
(PBS, 0.1 mmol·L−1) was prepared with 8.0 g·L−1 NaCl, 0.2 g·L−1 KCl, 1.44 g·L−1 Na2HPO4,
and 0.44 g·L−1 KH2PO4 in ultra-pure water. Then, the pH of the solution is regulated to 7.0
by NaOH solution. PBS (0.1 mmol·L−1, 7.0) was used in the whole experiment. The aqueous
standard solutions of H2O2 were stored in the dark because of their photosensitivity.

The morphology and structure investigation of the synthesized N-C/CeO2 compos-
ites were carried out by scanning electron microscopy (SEM, Reguas, Japan). The phase
structures of these electrodeposits were determined using X-ray diffraction (XRD, Rigaku
D/max-Ultima IV, Tokyo, Japan). The fine structures of these samples were further in-
vestigated by transmission electron microscopy TEM (JEM 2100F, Tokyo, Japan). The
heteroatoms and functional groups were determined by X-ray photoelectron spectroscopy
XPS (Escalab K-alpha 250Xi). The Raman spectra were collected on Renishaw MZ20-FC
Raman microscope. The absorption spectra of UV–Vis and absorbance-time were measured
with an UV–Vis spectrophotometer (UV–Vis, U-3900 HITACHI, Tokyo, Japan). Observation
of bacteria was performed using a fluorescence microscopy (BX-51 with image software of
Cellsens, Olympus, Japan) after staining with K2081 kit, as previously described [35].

3.2. Synthesis of N-C/CeO2 Composites

Herein, 3.0 g melamine and different amounts of Ce(NO3)3•6H2O were dissolved
into 40 mL acetic acid and 40 mL ultra-pure water. The obtained solutions were mixed by
ultrasonication for 30 min and transferred into a stainless-steel vessel. The hydrothermal
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reaction was carried out at 120 ◦C for 12 h. Thereafter, the solvent was removed from the
product by the freezing drying process using vacuum equipment. The resultant materials
were annealed at 520 ◦C for 4 h at a ramp rate of 5 ◦C·min−1 in the air. Different N-C/CeO2
composites were obtained by varying the mass ratio of melamine and Ce(NO3)3•6H2O
(6:1, 3:1, 2:1, 1:1, 1:2).

3.3. Haloperoxidase-like Activity of N-C/CeO2 Composites

The haloperoxidase-like activity of the synthesized N-C/CeO2 composites was an-
alyzed using an optical absorption spectroscopy. The reaction scheme was as follows:
N-C/CeO2 composite catalyzes the oxidative bromination H2O2 and Br− in the presence
of PR, resulting in the color change from yellow to blue. The 950 µL mixed solutions
(containing 28 µmol·L−1 PR, 69.4 mmol·L−1 NH4Br, 830 µmol·L−1 H2O2, and 50 µg·mL−1

N-C/CeO2 composites) reacted at room temperature for 40 min. Afterwards, the absorption
was measured by UV–Vis spectroscopy. As a control, the absorption spectra of mixtures
were measured when one of the substrates was absent in all mixtures. The amount of
the added reagent was quantified. In addition, the optimal reaction conditions such as
temperature, H2O2 concentration, and N-C/CeO2 composite concentration were tested by
changing one reaction condition while leaving other conditions unchanged. Three replicate
experiments were performed.

3.4. Determination of Kinetic Constant

The kinetic constants were carried out in time course mode of UV–Vis by fixing the
wavelength at 590 nm [20]. The absorbance of mixed solutions was measured by changing
the concentration of one reactant while keeping others constant in kinetic tests. In order
to obtain the optimal concentration of all reactants, each measurement was carried out at
590 nm for 40 min. In addition, kinetic parameters were calculated based on the slopes
(dA590nm/dt), which were kept constant over 5 min. The kinetic constants (Michaelis–
Menten constant Km and the maximum reaction velocity vmax) were obtained using the
Linewaver–Burk linearization (Equation (1)) [36,37].

1/v = Km/vmax[C] + 1/vmax (1)

where v is the initial velocity and C is the concentration of substrate. In order to evaluate
the Km and vmax, v was calculated. In our experiments, the product Br4PR was used as a
measure of the reaction rate to obtain the initial reaction rate (Equation (2)).

v = d[Br4PR]/dt (2)

The Br4PR concentration was obtained according to the Lambert–Beer law [25]
(Equation (3)).

[Br4PR] = A590/dεBr4PR (3)

where εBr4PR is the extinction coefficient of Br4PR and its value is 72,200 L·mol−1·cm−1.
In addition, in order to test the dependence on the Br− source, some Br-salts such as

KBr, NaBr, and NH4Br served as the Br− source in the mixture reaction solutions. The
reutilization test of N-C/CeO2 composite was carried out in ten recycles with N-C/CeO2,
PR, NH4Br, and H2O2.

3.5. Bacterial Adhesion Tests

For bacterial adhesion tests, P. aeruginosa (Gram-negative, typical marine bacterium,
risk group 2 organism) as a model bacteria was grown in Luria Broth (LB) medium with
shaking at 160 rpm and 37 ◦C for 12 h. The cell concentration of P. aeruginosa in the medium
was calculated using the plate colony counting method [38]. Here, 107 colony-forming
units (cfu) mL−1 P. aeruginosa were separately obtained by centrifugation. These cells were
resuspended in 0.1 mmol·L−1 PBS to obtain a cell concentration of 107 cfu·mL−1. Multiple
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sets of 10 mL of this PBS cell suspension solutions were placed into 50 mL inoculation tubes
and used for later bacterial adhesion tests.

Titanium plates (Ti, 0.1 × 1 × 1 cm3), with/without N-C/CeO2 composite, were
placed into the above bacterial solution and cultivated with agitation at 37 ◦C for 4 h in
different systems: (1) Ti without Br− and H2O2 (blank), (2) modified Ti without Br− and
H2O2 (N-C/CeO2), and (3) modified Ti with Br− and H2O2 (N-C/CeO2 + Br− + H2O2).
Three replicate experiments were performed per system. Afterwards, Ti was stained
using a staining kit (K2081) for 15 min in the dark. Excess stain was gently removed by
sterile PBS. The stained samples were examined by fluorescence microscopy. Bacterial
solutions containing the same concentration of N-C/CeO2 composite, Br−, and H2O2 were
cultured on an agar plate at 37 ◦C for 24 h. Three parallel agar plates were painted for
each bacterial solution. As a control, PBS bacteria solutions containing the N-C/CeO2
composite were cultured under the same conditions. Three parallel experiments were
performed. E. coli (Gram-negative) and S. aureus (Gram-positive) were also studied using
the same experimental method. These above results show that the N-C/CeO2 composite as
haloperoxidase mimicry presents good antibacterial activity.

4. Conclusions

In summary, the N-C/CeO2 composite was successfully synthesized using melamine
as a carbon and nitrogen source. The N-C/CeO2 composite can effectively catalyze the oxi-
dation of H2O2 with bromination of organic signaling compounds to produce a blue-color
reaction, and presents excellent intrinsic haloperoxidase mimicry activity. The catalytic
activity of the N-C/CeO2 composite is influenced by the substrate concentration and al-
most not influenced by temperature. The N-C/CeO2 composite as haloperoxidase mimicry
can catalyze the reaction process of H2O2, Br−, and PR, which complied with the typical
Michaelis–Menton kinetics process. The N-C/CeO2 composite shows good catalytic stabil-
ity and recyclability in multiple reaction cycles. In the absence of phenol red, the produced
HBrO catalyzed by N-C/CeO2 composites presents good antibacterial activity against
the model bacteria, especially P. aeruginosa. The N-doped carbon/CeO2 composite as a
biomimetic catalyst for antibacterial application is a novel and efficient “green” strategy
to emulate and utilize a natural defense system for preventing bacterial colonization and
biofilm growth. However, the catalytic activity of the N-doped carbon/CeO2 composite is
mainly attributed to the action of CeO2, and the formation mechanism of the halogenated
reactive oxygen species needs to be further improved. This work introduces a stable, green,
and environment-friendly biomimetic material for antibacterial applications.
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www.mdpi.com/article/10.3390/ijms24032445/s1, Additional information including XRD pattern,
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