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Abstract: Radical prostatectomy is the gold standard treatment for prostate cancer (PCa); however, it
does not always completely cure PCa, and patients often experience a recurrence of the disease. In
addition, the clinical and pathological parameters used to assess the prognosis and choose further
tactics for treating a patient are insufficiently informative and need to be supplemented with new
markers. In this study, we performed RNA-Seq of PCa tissue samples, aimed at identifying potential
prognostic markers at the level of gene expression and miRNAs associated with one of the key
signs of cancer aggressiveness—lymphatic dissemination. The relative expression of candidate
markers was validated by quantitative PCR, including an independent sample of patients based
on archival material. Statistically significant results, derived from an independent set of samples,
were confirmed for miR-148a-3p and miR-615-3p, as well as for the CST2, OCLN, and PCAT4 genes.
Considering the obtained validation data, we also analyzed the predictive value of models based
on various combinations of identified markers using algorithms based on machine learning. The
highest predictive potential was shown for the “CST2 + OCLN + pT” model (AUC = 0.863) based on
the CatBoost Classifier algorithm.

Keywords: prostate cancer; lymphatic dissemination; prognosis; markers; RNA-Seq; genes;
microRNAs; models; machine learning

1. Introduction

Prostate cancer (PCa) is one of the most common cancers in men worldwide; more
than one million new cases are diagnosed annually [1]. Prostate cancer is characterized by
high clinical heterogeneity, which is manifested by a different propensity for recurrence
of the disease, as well as the onset of progression after surgical treatment. The clinical
heterogeneity of PCa, in turn, is due to molecular heterogeneity—in the tumors of patients,
there are disorders that are accompanied by various changes in signaling pathways and
metabolic processes [2,3]. At the same time, for the development of aggressive forms of
PCa, the occurrence of only a few driver disorders is sufficient [4–6].

Despite a wide range of therapeutic approaches, the problem of choosing the tactics
for treating a patient after radical prostatectomy is quite acute, especially for the category of
patients with locally advanced PCa (LAPC). In addition to invasion of the prostatic capsule,
metastasis to regional lymph nodes is often observed in LAPC. In this case, as a rule, the
choice is between the immediate start of adjuvant hormone therapy or active monitoring of
the level of prostate-specific antigen (PSA) in the blood.

The choice of a therapeutic concept is based on determining the prognosis for the
patient, which, in turn, is based on such clinical and pathological parameters as the PSA
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level, the size of the primary tumor (stage T), and the Gleason score. Indeed, it is worth
noting the emergence of an improved classification of cancer cell differentiation based on
the Gleason score, a system developed by the ISUP (International Society of Uropathol-
ogists) [7]. The division into groups occurs between 1 and 5, depending on the Gleason
score, the method providing the most accurate stratification of tumors.

However, these indicators are not informative enough to identify a group of patients
with tumors that have high potential for progression, the development of an aggressive
phenotype, and metastasis [8,9]. Thus, reliable prognostic markers are needed, the use of
which, in combination with clinicopathological parameters, will help to reliably identify
an aggressive tumor phenotype and thus choose the best therapeutic approach for the
patient. One of the promising approaches in the search for prognostic markers may be
the analysis of the transcriptomic data of tumors [10–12]. Currently, several prognostic
expression panels of PCa markers based on tissue analysis have been identified, such as
Decipher and Oncotype DX Genomic Prostate Score (GPS).

The Decipher test measures the RNA expression levels of 22 different genes, selected
based on unique differential expression patterns in early metastasis [13]. The Decipher test
has shown high discrimination in the prediction of clinical metastases (AUC = 0.75–0.83)
and mortality from PCa (AUC = 0.78) in validation studies, significantly exceeding the
available clinicopathological characteristics (AUC = 0.69) [14]. The Oncotype DX panel
is a tissue biopsy-based genomic assay that measures the mRNA expression of 17 genes
responsible for tumor cell growth and survival [15]. At the development stage of this test,
we used the results of quantitative PCR, based on the archival material of tissue samples
obtained after the surgical treatment of patients with PCa in low- and intermediate-risk
groups. Based on validation studies, the Oncotype DX panel has been shown to be highly
correlated with the biochemical recurrence of PCa and a poor prognosis, highlighting its
predictive value for patients with PCa in low- and intermediate-risk groups.

Previously, we conducted a study that included miRNA-Seq analysis of 44 PCa tissue sam-
ples with and without lymphatic dissemination (N1 group = 20 samples; N0 group = 24 samples),
as a result of which we identified a number of miRNAs, the expression of which could potentially
be associated with lymphatic dissemination [16]. In the present study, we performed RNA-Seq
profiling of an expanded sample of 73 PCa tissue samples from Russian patients and validated
the obtained results by quantitative PCR (qPCR). This study also included an independent
sample of 37 PCa tissue samples based on archival material. The obtained qPCR data for both
PCa samples were used to analyze the predictive value of models based on combinations of
candidate markers and clinicopathological parameters, using various machine learning algo-
rithms (Logistic Regression (LR; scikit-learn ver.1.1.3), Light Gradient Boosting Machine (LGBM;
ver.3.3.2), CatBoost (ver.1.0.6), Random Forest (scikit-learn ver.1.1.3) and XGBoost (ver.1.6.2)).
The results of the study can be used to develop an expression panel for assessing the metastatic
potential of high-risk PCa when choosing a therapeutic concept for a patient.

2. Results
2.1. Transcriptome Profile Associated with Lymphatic Dissemination

Based on the obtained RNA-Seq data, the differential expression (DE) of genes was
analyzed between groups of patients with and without lymphatic dissemination (N1 and
N0 groups, respectively). The list of obtained statistically significant DE genes (DEGs) is
presented in Table S1 (p value of the QLF/U tests < 0.05). A heat map of the gene expression
profile is shown in Figure 1.

Based on the obtained list of DEGs, pathway enrichment analysis was performed
based on the GSEA algorithm using the Reactome 2022 database (Table 1).

According to the results of the pathway enrichment analysis, in the case of tumor
samples of the N1 group, we predominantly observed the activation of the cell cycle and
translation pathways. It is also worth noting the decrease in the activity of the pathway—
"Fatty acid metabolism.”
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Exon Junction Complex (EJC)  
0.64 2.29 1 × 10−3 92 37 
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Figure 1. Heat map of the relative level of expression of 50 DEGs between groups N0 and N1
for Russian patients with LAPC. Cell colors correspond to the binary logarithm of the ratio of the
expression level in the current sample to the average level for all samples (for each gene).

2.2. Selection of Candidate Markers of Lymphatic Dissemination

One of the key objectives of this study was the identification of promising markers
of lymphatic dissemination. To solve this problem, the resulting list of DEGs was filtered
based on the following parameters: FDR U-test < 0.05; −1 < LogFC < 1; p value rs < 0.05.
As a result of the filtering, the following genes were selected that best match the specified
criteria: OCLN, F5, TBX1, CST2, RAB27A, PCAT4, and VGLL3 (Table 2).

Based on the previously obtained list of miRNAs associated with the N1 group, candi-
dates were also selected based on filtering by similar parameters [16]. As a result, the follow-
ing were selected: miR-148a-3p (Log2FC = −1.69; LogCPM = 18.6; FDR U test = 4 × 10−2;
p value rs = 4 × 10−2) and miR-615-3p (Log2FC = 1.32; LogCPM = 7.6; FDR U test = 9× 10−3;
p value rs = 8× 10−3).

After selecting a number of candidate markers, we evaluated their multicollinearity,
including those with clinical and pathological parameters—ISUP and pT stage. The analysis
of the correlation showed that there is no functional strong relationship between the markers
and that they can be jointly considered as part of the models (Figure 2).
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Table 1. Enriched biological pathways, according to the Reactome 2022 database, associated with
lymphatic dissemination in LAPC in a sample of Russian patients.

Pathway ID Pathway Name ES NES FDR Gene Set Size Matched Size

R-HSA-156842 Eukaryotic Translation Elongation 0.64 2.51 1 × 10−3 90 39
R-HSA-6791226 Major Pathway of rRNA Processing in Nucleolus and Cytosol 0.58 2.47 1 × 10−3 179 58
R-HSA-9633012 Response Of EIF2AK4 (GCN2) to Amino Acid Deficiency 0.62 2.41 1 × 10−3 98 41
R-HSA-72312 rRNA Processing 0.56 2.3 1 × 10−3 199 64

R-HSA-975956 Nonsense-Mediated Decay (NMD) Independent of Exon
Junction Complex (EJC) 0.64 2.29 1 × 10−3 92 37

R-HSA-156902 Peptide Chain Elongation 0.64 2.26 1 × 10−3 86 37
R-HSA-8868773 rRNA Processing in Nucleus and Cytosol 0.56 2.22 1 × 10−3 189 62
R-HSA-168273 Influenza Viral RNA Transcription and Replication 0.57 2.21 1 × 10−3 137 47
R-HSA-192823 Viral mRNA Translation 0.61 2.21 1 × 10−3 90 38
R-HSA-69278 Cell Cycle Mitotic 0.47 2.1 3 × 10−3 523 124
R-HSA-72689 Formation of a Pool of Free 40S Subunits 0.58 2.1 3 × 10−3 98 44

R-HSA-975957 Nonsense-Mediated Decay (NMD) Enhanced by Exon
Junction Complex (EJC) 0.56 2.1 3 × 10−3 112 42

R-HSA-2408557 Selenocysteine Synthesis 0.61 2.12 3 × 10−3 90 38
R-HSA-72764 Eukaryotic Translation Termination 0.64 2.13 3 × 10−3 90 37

R-HSA-156827 L13a-mediated Translational Silencing of
Ceruloplasmin Expression 0.58 2.13 4 × 10−3 108 45

R-HSA-72737 Cap-dependent Translation Initiation 0.56 2.16 4 × 10−3 116 46
R-HSA-397014 Muscle Contraction −0.61 −2.21 4 × 10−3 196 30

R-HSA-2408522 Selenoamino Acid Metabolism 0.55 2.03 1 × 10−2 114 41
R-HSA-72706 GTP Hydrolysis and Joining of 60S Ribosomal Subunit 0.56 2.01 1 × 10−2 109 46

R-HSA-1640170 Cell Cycle 0.45 1.99 1 × 10−2 654 142
R-HSA-168255 Influenza Infection 0.53 1.96 2 × 10−2 157 51

R-HSA-9010553 Regulation of Expression of SLITs and ROBOs 0.52 1.98 2 × 10−2 167 55
R-HSA-68877 Mitotic Prometaphase 0.52 1.91 3 × 10−2 186 41

R-HSA-1799339 SRP-dependent Cotranslational Protein Targeting
to Membrane 0.49 1.87 3 × 10−2 108 43

R-HSA-68886 M Phase 0.44 1.89 3 × 10−2 380 86
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 0.54 1.88 3 × 10−2 106 30
R-HSA-500792 GPCR Ligand Binding 0.53 1.9 3 × 10−2 458 35

R-HSA-9711097 Cellular Response to Starvation 0.48 1.86 3 × 10−2 153 50
R-HSA-8953854 Metabolism of RNA 0.41 1.9 3 × 10−2 666 156
R-HSA-446652 Interleukin-1 Family Signaling 0.51 1.84 4 × 10−2 152 30
R-HSA-68882 Mitotic Anaphase 0.47 1.83 4 × 10−2 232 65
R-HSA-72766 Translation 0.44 1.84 4 × 10−2 281 76
R-HSA-69620 Cell Cycle Checkpoints 0.45 1.84 4 × 10−2 271 69

R-HSA-9754678 SARS-CoV-2 Modulates Host Translation Machinery 0.61 1.82 4 × 10−2 47 17

R-HSA-141444 Unattached Kinetochores Signal Amplification Via A MAD2
Inhibitory Signal 0.5 1.81 4 × 10−2 93 28

R-HSA-69618 Mitotic Spindle Checkpoint 0.48 1.81 4 × 10−2 110 36
R-HSA-8978868 Fatty Acid Metabolism −0.49 −1.95 4 × 10−2 173 32

R-HSA-72662 mRNA Activation Upon Binding of Cap-Binding Complex
and eIFs Subsequent Binding to 43S 0.53 1.8 4 × 10−2 58 20

Table 2. Differential expression of promising genes as markers of lymphatic dissemination based on
a sample of Russian patients with LAPC.

Gene ID Symbol Name Log2FC Log2CPM FDR (U Test) rs p (rs)

ENSG00000197822 OCLN Occludin 1.09 3.5 9 × 10−3 0.47 9 × 10−4

ENSG00000184058 TBX1 T-Box Transcription Factor 1 1.15 4.9 3 × 10−3 0.56 1 × 10−5

ENSG00000198734 F5 Coagulation Factor V 1.89 6 1 × 10−2 0.44 2 × 10−3

ENSG00000170369 CST2 Cystatin SA 1.71 2.7 1 × 10−2 0.47 9 × 10−4

ENSG00000069974 RAB27A Ras-Related Protein Rab-27A −1.17 6.5 5 × 10−3 −0.52 9 × 10−5

ENSG00000251321 PCAT4 Prostate Cancer-associated Transcript 4 −2.51 5.2 2 × 10−2 −0.4 9 × 10−3

ENSG00000206538 VGLL3 Vestigial-like Family Member 3 −2.16 5.1 3 × 10−2 −0.37 2 × 10−3

2.3. Validation of the Relative Expression of the Potential Markers by qPCR

Validation of the expression of promising markers was primarily carried out on a
previously sequenced sample of Russian patients with LAPC based on freshly frozen
surgical material (FFT samples).

As a result of the validation, it was shown that, based on the expression of all consid-
ered genes, a statistically significant difference between the studied groups was confirmed
(Figure 3a and Table 3). Next, we validated the relative expression of the selected genes in
an independent sample of Russian patients (FFPE samples).
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Table 3. The results of the relative expression of CST2, F5, OCLN, PCAT4, RAB27A, TBX1, and VGLL3
genes between groups N0 and N1 based on the U test.

Gene FC, FFT p Value (U Test), FFT FC, FFPE p Value (U Test), FFPE

PCAT4 ↓ 3.73 1 × 10−3 ↓ 1.64 4 × 10−2

OCLN ↑ 1.63 1 × 10−2 ↑ 1.77 4 × 10−2

F5 ↑ 2.46 6 × 10−3 ↓ 1.01 0.8
CST2 ↑ 3.89 4 × 10−3 ↑ 3.24 2 × 10−3

RAB27A ↓ 1.72 1 × 10−3 ↑ 1.05 0.6
TBX1 ↑ 2 1 × 10−2 ↑ 1.23 0.3

VGLL3 ↓ 3.5 6 × 10−3 ↑ 1.35 0.2

↑, increase in relative gene expression; ↓, decrease in relative gene expression.

Statistically significant results were obtained based on the relative expression of the
CST2, OCLN, and PCAT4 genes (Figure 3b and Table 3). The results of the calculations
of the average change in the relative expression of the genes between the studied groups,
performed based on the FFPE samples, showed the greatest decrease in expression in the
presence of lymphatic dissemination for the PCAT4 gene (a 1.64-fold decrease) and the
greatest increase in expression was shown for the CST2 gene (a 3.25-fold increase).

Next, we validated the relative expression of the selected promising miRNAs. In the
case of the FFT samples, a statistically significant difference between groups based on the
relative expression of miR-148a-3p and miR-615-3p was confirmed (Figure 4a and Table 4).
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Next, we validated the expression of miR-148a-3p and miR-615-3p in the FFPE samples.
According to the results obtained, based on the relative expression of these miRNAs, there
was also a statistically significant difference between the groups (Figure 4b).

In the case of miR-615-3p, we observed a 4.08-fold increase in expression in the case
of the FFT samples (p = 0.001) and a 2.23-fold increase in the case of the FFPE samples
(p = 0.04). The expression of miR-148a-3p was reduced in the N1 group by 1.5-fold in the
FFPE samples (p = 0.04) and 2.04-fold in the FFPE samples (p = 0.04).
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Table 4. The best models by AUC in each category of predictor combinations based on Logistic
Regression, LGBM, Catboost, Random Forest, and XGBoost algorithms.

Model Accuracy AUC F1 Sensitivity Specificity

Logistic Regression
CST2 + pT 0.65 0.79 0.72 0.39 0.89

ISUP + OCLN + pT 0.65 0.82 0.67 0.61 0.68
ISUP + PCAT4 + OCLN + pT 0.65 0.83 0.67 0.61 0.68

ISUP + PCAT4 + OCLN + miR148a + pT 0.65 0.83 0.67 0.61 0.68
ISUP + PCAT4 + CST2 + OCLN + miR148a + pT 0.65 0.83 0.67 0.61 0.68

LGBM
OCLN + pT 0.62 0.70 0.63 0.61 0.63

ISUP + OCLN + pT 0.73 0.76 0.74 0.72 0.74
ISUP + OCLN + miR148a + pT 0.73 0.81 0.74 0.72 0.74

ISUP + PCAT4 + CST2 + OCLN + pT 0.73 0.80 0.74 0.72 0.74
PCAT4 + CST2 + OCLN + miR148a + miR615 + pT 0.59 0.75 0.69 0.28 0.89

Catboost
miR615 + pT 0.68 0.71 0.74 0.44 0.89

CST2 + OCLN + pT 0.81 0.86 0.81 0.83 0.79
ISUP + OCLN + miR148a + pT 0.78 0.86 0.79 0.78 0.79

ISUP + PCAT4 + OCLN + miR148a + pT 0.70 0.82 0.70 0.72 0.68
ISUP + PCAT4 + CST2 + OCLN + miR148a + pT 0.70 0.80 0.72 0.67 0.68

Random Forest
ISUP + miR615 0.59 0.65 0.63 0.50 0.68

OCLN + miR615 + pT 0.70 0.76 0.73 0.61 0.79
ISUP + OCLN + miR615 + pT 0.68 0.77 0.73 0.50 0.84

PCAT4 + OCLN + miR148a + miR615 + pT 0.65 0.77 0.72 0.39 0.89
ISUP + PCAT4 + OCLN + miR148a + miR615 + pT 0.70 0.76 0.74 0.56 0.84

XGBoost
ISUP + miR615 0.57 0.63 0.60 0.50 0.63

OCLN + miR615 + pT 0.76 0.76 0.78 0.67 0.84
ISUP + OCLN + miR615 + pT 0.70 0.78 0.72 0.67 0.74

ISUP + OCLN + miR148a + miR615 + pT 0.68 0.76 0.71 0.56 0.79
ISUP + PCAT4 + OCLN + miR148a + miR615 + pT 0.68 0.76 0.71 0.56 0.79

2.4. Relative Expression of the Candidate Markers in Lymph Node Metastases

We also analyzed the relative expression of the candidate markers in lymph node
metastasis samples. Relative expression of CST2, OCLN, miR-148a-3p and miR-615-3p was
found in all PCa metastasis samples.

It was also found that in the metastasis samples, the expression of the CST2 gene was
statistically significantly reduced by an average of 3.5-fold compared to the primary tumor
samples (p = 0.002) (Figure 5a). In the case of the OCLN gene, in metastases, on the contrary,
an average 3.34-fold increase in expression (p = 0.02) was observed (Figure 5b).

When evaluating the expression of candidate microRNAs in metastasis samples, a
statistically significant increase in miR-615-3p expression was found—being, on average,
6.57-fold in comparison to primary tumor samples (p = 0.003) (Figure 5c). In the case of
miR-148a-3p, an average 2.16-fold increase in expression (p = 0.01) was also noted in the
metastatic samples (Figure 5d).

2.5. ROC–AUC Analysis of Models Based on Combinations of the Markers

We assessed the predictive value of the identified candidate markers in various combi-
nations (from single predictors to a model based on all seven predictors). Each combination
of predictors was evaluated based on five machine learning algorithms: Logistic Regression,
LGBM, Catboost, Random Forest, and XGBoost. The results of all predictor combinations
for the five algorithms are presented in Table S2.
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Based on the results obtained in each category of combinations, we selected the best
models in terms of the ROC–AUC value using the test data, which passed the threshold of
0.7 for the accuracy parameter in the training data (Table 4).

The model based on the combination of «CST2+ OCLN+ pT» predictors and the
CatBoost algorithm was chosen as the best one, characterized by the highest performance in
all parameters considered. According to the other considered machine learning algorithms,
we also observed high AUC values for this model (Table 5 and Figure 6).

Table 5. ROC analysis results for the «CST2+ OCLN+ pT» model based on the Logistic Regression,
LGBM, Catboost, Random Forest, and XGBoost algorithms.

Metrics Logistic Regression LGBM Catboost Random Forest XGBoost

Accuracy, Train 0.76 0.72 0.70 0.69 0.67
AUC, Train 0.84 0.88 0.98 1.00 1.00

F1, Train 0.70 0.63 0.63 0.62 0.61
Accuracy, Test 0.70 0.62 0.81 0.73 0.73

AUC, Test 0.73 0.74 0.86 0.80 0.81
F1, Test 0.74 0.65 0.81 0.72 0.74

Sensitivity, Test 0.56 0.56 0.83 0.78 0.72
Specificity, Test 0.84 0.68 0.79 0.68 0.74
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3. Discussion

In the present study, a comprehensive transcriptomic analysis of LAPC tissue samples in
a sample of Russian patients was carried out. This procedure aimed at identifying promising
candidate markers of early metastasis. Based on the obtained transcriptomic profile, the
biological pathways associated with lymphatic dissemination were first considered. The
results of the biological pathways analysis with high enrichment predominantly demonstrated
the activation of translational processes in tumor cells. This translational activity is likely to be
closely related to increased metabolism, directed at obtaining energy from various sources to
promote the epithelial–mesenchymal transition of tumor cells and metastasis.

Among all of the pathways identified, it is worth noting the decreased activation of
the “Fatty Acid Metabolism” pathway. It is known that malignant transformation of a
tumor depends on complex intercellular interactions, supported by a wide network of
physical and chemical mediators that make up the tumor microenvironment [17]. Recently,
various researchers have emphasized the key role of adipose tissue as a key component
in the progression of solid tumors [18]. The prostate gland is surrounded by periprostatic
adipose tissue, and extraprostatic expansion to adipose tissue is a widely recognized poor
prognostic factor in PCa and an important predictor of recurrence after treatment [19]. The
positive relationship between obesity and aggressive PCa, determined by an increase in
local and distant spread, also supports the role of adipose tissue in tumor progression [20].

Interactions between adipocytes and tumor cells in the tumor microenvironment can
create a metabolic symbiosis, leading to growth and metastasis. In combination with
glucose, fatty acids are also vital for the synthesis of membrane lipids in tumor cells, energy
production, and the synthesis of carcinogenesis-associated lipid-signaling molecules such as
lysophosphatidic acids [21–23]. As a result, tumor cells activate de novo fatty acid synthesis,
and elevated levels of fatty acid synthase are negatively correlated with prognosis [24].
Thus, in addition to synthesis, tumor cells can also use exogenous fatty acids as a source
of nutrition. Thus, our results also highlight the importance of lipid metabolism in the
progression of PCa.

Furthermore, based on the obtained transcriptomic profile, we searched for promising
candidate markers based on gene expression. As a result of the validation, we confirmed the
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statistical significance of the expression of the PCAT4, OCLN and CST2 genes in lymphatic
dissemination in an independent sample.

The PCAT4 (prostate cancer associated transcript 4; PCAN1; GDEP) gene is charac-
terized by high tissue specificity for prostate tissue, but there are no published data on
the biological function of this gene. According to the data obtained, we saw a significant
decrease in the expression of this gene in the N1 group.

The OCLN (occludin) gene encodes the occludin protein, which belongs to tight junc-
tion proteins. Tight junctions are one of the key components in tumor metastasis, as tumor
cells must pass through a series of barriers to successfully metastasize to secondary le-
sions [25]. OCLN is widely expressed in tissues and cells with tight junctions and is a
membrane protein with four trans-membrane domains [26]. According to the literature,
high expression of OCLN has been found in lung cancer, and when OCLN was knocked
down in cell lines of lung cancer (A549, NCL-H1650, SPC-A1, HCC827, NCI-H1299, and
MSTO-211H), inhibition of cell proliferation was observed in vitro and in vivo. In addition,
OCLN knockdown promoted apoptosis of lung cancer cell lines and reduced their ability
to invade, on the basis of which the role of OCLN as a tumor promoter and prometastatic
factor was shown for the first time [27]. Based on our data, for the first time, an asso-
ciation between increased expression of the OCLN gene and the presence of lymphatic
dissemination in LAPC was shown.

The CST2 (cystatin SA) gene is a member of the cystatin family. Based on several stud-
ies, it has been shown that high expression of this gene is associated with the development
of carcinogenesis. In breast cancer, increased expression of the CST2 gene has been shown
to be associated with tumor cell proliferation, movement, and adhesion [28]. Based on
our data, we observed an association between increased expression of the CST2 gene and
lymphatic dissemination in LAPC.

In addition, we also validated previously identified promising markers based on
miRNA expression, specifically miR-615-3p and miR-148a-3p, which also confirmed their
association with lymphatic dissemination in the case of an independent sample of LAPC.

Aberrant expression of miR-615-3p has been described in many forms of cancer, in-
cluding PCa, where overexpression of miR-615-3p has been observed in the most aggressive
forms [29–31]. Experiments on cell lines of various types of cancer have shown that miR-
615-3p overexpression supports cell proliferation and migration [29,30]. Functional studies
performed on PCa cell lines have shown that miR-615-3p promotes proliferation, apoptosis,
and migration of the PC3M cell line in vitro, indicating that miR-615-3p is an important
oncogenic microRNA in PCa [31].

miR-148a-3p is one of the most highly expressed miRNAs in PCa tissues, as well as the
most dominant in PCa metastasis [32]. High-grade tumors have been shown to exhibit reduced
levels of miR-148a-3 expression. miR-148a expression has also been shown to be downregulated
in docetaxel-resistant variants of PCa cell lines, including PC-3 and DU145, and downregulation
of miR-148a has been observed in PCa with a risk of biochemical recurrence [33].

Evaluation of the expression of these candidate markers in samples of affected lymph
nodes showed a further linear increase in the expression of the OCLN gene and miR-615-3p,
as well as increased expression of miR-148a-3p. It can be assumed that the increased
expression of these markers is not only associated with lymphatic dissemination in LAPC,
but also supports the formation of secondary tumor foci.

We assessed the prognostic significance of PCAT4, OCLN, CST2, miR-615-3p, and
miR-148a-3p for various combinations of predictors, both with each other and with such
clinicopathological parameters as ISUP and pT. We considered the main metrics for models
based on five machine learning algorithms for a classification problem.

The “CST2 + OCLN + pT” model, based on the CatBoost algorithm, had the highest
metrics. In addition to the highest AUC (0.863), this model also had the highest sensitivity
(SE = 0.83), specificity (SP = 0.79), and accuracy (AC = 0.81) of an independent sample of
archival material. The parameters of this model based on other algorithms also differed in
the highest rates (AUC = 0.73–0.81; SE = 0.56–0.78; SP = 0.68–0.84; AC = 0.62–0.73). Thus,
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the model we identified based on the predictor combination of «CST2 + OCLN + pT» had
the highest prognostic potential for determining lymphatic dissemination in LAPC, both
based on freshly frozen surgical material and, in the case of archival material, based on
FFPE blocks.

4. Materials and Methods
4.1. Material

The present study included 73 samples of freshly frozen LAPC tissues, obtained as
a result of radical prostatectomy with extended pelvic lymphadenectomy, a procedure
performed on the basis of the research of National Medical Research Center for Radiology
of the Ministry of Health of the Russian Federation.

The main criteria for sample inclusion in the study were the following: tumor type
adenocarcinoma, LAPC (pT3a/3b), no neoadjuvant therapy, known lymph node status
(N0/N1), and a negative resection margin for samples with stage N0. The sample of FFT
samples was divided into groups, both with and without lymphatic dissemination (groups
N1 n = 31 and N0 n = 42, respectively).

As an independent sample, 37 FFPE LAPC tissue samples were used, obtained as a result
of radical prostatectomy with extended pelvic lymphadenectomy on the basis of the A.V.
Vishnevsky National Medical Research Center for Surgery of the Ministry of Health of Russia.
The sample was also divided into groups N1 (n = 19) and N0 (n = 18). Samples of affected
regional lymph nodes were also included in the study of patients from group N1 (n = 14).

All samples of tumor tissues were characterized in the pathological anatomical de-
partments of the respective medical institutions, on the basis of which the material was
obtained, and they were found to contain at least 70% of tumor cells. The main clinical and
pathological characteristics of patients are presented in Table 6.

Table 6. Clinicopathological characteristics of LAPC specimens from two cohorts of Russian patients.

FFT Samples FFPE Samples

Group N0 N1 N0 N1
Age 46–77 (63) 41–73 (63) 56–75 (65) 51–72 (65)

pT3a stage 29 7 8 2
pT3b stage 13 24 10 17

ISUP group 1 5 2 5 1
ISUP group 2 17 2 4 5
ISUP group 3 12 11 4 2
ISUP group 4 5 5 4 2
ISUP group 5 3 11 1 9
PSA, ng/ml 3.4–27.6 (14.81) 5.49–44 (14.28) 7.7–46 (14.6) 4–20 (12.9)

4.2. Methods
4.2.1. Isolation of Total RNA from Tissue Samples

Samples of fresh frozen tumor tissues were preliminarily homogenized using a MagNA
Lyser device (Roche, Basel, Switzerland). Subsequent total RNA isolation was performed
using the MagNA Pure Compact RNA Kit (Roche) on the MagNA Pure Compact System
(Roche) according to the manufacturer’s protocol. For FFPE samples of tumor tissues and
lymph nodes, total RNA isolation was performed using the High Pure FFPET RNA Isolation
Kit (Roche) according to the manufacturer’s protocol. The concentration of isolated total
RNA was assessed on a Quibit 4.0 fluorimeter (Thermo Fisher Scientific, Waltham, MA,
USA) using the Qubit RNA BR Assay Kit (Thermo Fisher Scientific).

4.2.2. Library Preparation and High Throughput Sequencing

For the obtained samples of total RNA, the quality was assessed on the Agilent Bioana-
lyzer 2100 instrument (gilent Technologies, Santa Clara, CA, USA) using the Agilent RNA
6000 Nano Kit (Agilent Technologies) in accordance with the manufacturer’s protocol. For the
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subsequent preparation of mRNA libraries, tumor tissue samples with a RIN value of at least 7
were used. Sample preparation of mRNA libraries was performed using the TruSeq Stranded
mRNA Kit (Illumina, San Diego, CA, USA) in accordance with the manufacturer’s protocol.
The concentration of the resulting libraries was measured on a Quibit 4.0 fluorimeter using the
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). The quality of the resulting libraries
was assessed on an Agilent Bioanalyzer 2100 instrument using the Agilent High Sensitivity
DNA Kit (Thermo Fisher Scientific) in accordance with the manufacturer’s protocol. The size
of the resulting mRNA library was ~260 bp. High-throughput sequencing of mRNA libraries
was performed on a NextSeq 500 System (Illumina) using NextSeq 500/550 High Output
Kit v2.5 (Illumina) in 75 bp single-ended read mode. As a result of the sequencing, at least
14 million reads were obtained for each sample.

4.2.3. Bioinformatics Data Analysis

For the obtained RNA-Seq data in the fastqc format, quality assessment was per-
formed using the FastqQC and MultiQC programs (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/, accessed on 10 May 2022). The Trimmomatic tool was used to
remove adapter sequences from RNA-Seq data, which was followed by mapping to the
reference genome (GRCh38 assembly) using the STAR tool [34,35]. FeatureCounts (Subread
package v.1.6.4, Parkville, Australia) was used to calculate the read counts per gene [36].
The analysis of differential gene expression was performed in the R statistical environ-
ment using the edgeR package [37]. The TMM (Trimmed Mean of M-values) method was
used to normalize the data. In the analysis of differential gene expression, the following
quasi-likelihood F-test (QLF test) and the non-parametric Mann–Whitney test were applied
(U-test). The Benjamini–Hochberg correction was applied to calculate the false positive
rate (FDR). Spearman’s rank correlation coefficients (rs) were calculated between N0 and
N1groups. Differences in the level of gene expression were considered statistically signifi-
cant at test p values < 0.05. The visualization of heat maps of transcriptome profiles was
performed using the ggplot2 package [38]. Biological pathway enrichment analysis based
on RNA-Seq data was performed based on the GSEA algorithm using the Reactome 2022
database. The results were considered significant at FDR < 0.05.

4.2.4. Quantitative PCR (qPCR)

cDNA samples were obtained from the mRNA template using Mint reverse tran-
scriptase and oligo(dT) primer (20 µM) according to the protocol of the manufacturer
(Evrogen, Moscow, Russia). cDNA was obtained from the miRNA template using the
TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific) according to
the manufacturer’s protocol. qPCR was performed in three technical replicates on an
Applied Biosystems 7500 instrument (Thermo Fisher Scientific). The HPRT1 gene was
used as a reference gene for analysis of relative mRNA expression. The sequences of
primers used to validate markers based on mRNA expression are shown in Table 7. When
validating microRNAs, miR-28-3p was used as a control. For the detection of control and
target miRNAs, commercial sets of primers and probes, all contained on the TaqManTM
Advanced miRNA Assay (Thermo Fisher Scientific), were used: 477814_mir (miR-148a-3p),
478175_mir (miR-615-3p), 477999_mir (miR-28-3p). The level of relative expression of genes
and microRNA for each study group was calculated by the ∆Ct method. Visualization and
statistical analysis of expression results were performed using paired Wilcoxon tests in
Jupyter Notebook, Python (ver. 3.6).

4.2.5. Model Analysis

Based on the qPCR results, we used five algorithms for supervised machine learning,
including Logistic Regression (LR), Light Gradient Boosting Machine (LGBM), CatBoost,
Random Forest and XGBoost. These methods were implemented using scikit-learn, light-
gbm, catboost, xgboost libraries in Jupyter Notebook, Python (ver. 3.6). The presence of
lymphatic dissemination was used as a target. FFT samples were used as the train set, FFPE
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samples were used as the test set. The models were trained using cross-validation (cv = 5).
Receiver operating characteristics (ROC) curves were used to compare the performance of
these five algorithms.

Table 7. Primer sequences for detection of marker gene expression by qPCR.

Gene Primer Sequence (5′→3′) Product Size, bp

HPRT1 F: CGAGATGTGATGAAGGAGATGG 98
R: TTGATGTAATCCAGCAGGTCAG

F5 F: TCTTACCTTGACCACACATTCC 99
R: TCCACTGTCCTCACTGATACT

PCAT4 F: GGATTCGCAAGAGAACACAATC 111
R: CATCACAAACCGGCCAATATC

OCLN F: GGTTCACTTCTCCCAGTCTTTC 96
R:AGACACAATCAACAGGGTTAGG

RAB27A F: CATGCCTGGGATCTTCTCTATG 111
R: CCGGATGCTTTATTCGTAGGT

TBX1 F: CGACAACGGCCACATTATTC 100
R: CTCGGCATATTTCTCGCTATCT

CST2 F: AGGAGGACAGGATAATCGAGG 84
R: TGATGACAAAGTGAAGGGCAC

VGLL3 F: CTCTCAAGCCAGCGGAATAG 102
R: GACCTGGAAGTCAGGATGAAC

5. Conclusions

We performed RNA-Seq profiling of 73 LAPC tissue samples, obtained from radical
prostatectomy, with extended lymphectomy. Using bioinformatics analysis, enriched
biological pathways associated with lymphatic dissemination in LAPC were identified
in a sample of Russian patients, a group which can be further studied in the search for
new potential therapeutic targets. Moreover, based on the bioinformatics analysis, we
identified a number of genes and microRNAs, the expression of which can be considered
potential prognostic markers. As a result of the validation of candidate markers by qPCR
on an independent sample of patients, statistically significant results were confirmed for
the PCAT4, OCLN, and CST2 genes, as well as miR-615-3p and miR-148a-3p. Based on the
qPCR data obtained, we analyzed the prognostic significance of various combinations of
these candidate markers, including those with the clinicopathological parameters ISUP
and pT, using various machine learning algorithms. As a result, we showed that the model,
based on the combination of «CST2 + OCLN + pT», was characterized by the highest
predictive value (AUC = 0.863) for determining lymphatic dissemination, both on samples
of freshly frozen PCa tissues and on samples of archival material.
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