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Abstract: The progressive loss of skeletal muscle mass and concomitant reduction in contractile
strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely
associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that
can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic
surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively
improved our understanding of the molecular and cellular consequences of muscular atrophy and
associated fiber-type shifting during aging. This review outlines the mass spectrometric identification
of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as
potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow
transitions in individual human skeletal muscles during the aging process is most likely linked to a
preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent
animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting.
The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin
heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable
bioanalytical tools of fiber-type transitions during aging.
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1. Introduction

The loss of skeletal muscle mass and contractile strength can be induced by the lack
of suitable physical activity levels, extended periods of disuse or disease [1–3]. Acute
forms of skeletal muscle wasting are often observed during physical trauma and sepsis [4].
Many chronic conditions are also associated with muscular atrophy, including cancer
cachexia, congestive heart failure, diabetes mellitus, chronic obstructive pulmonary disease,
glucocorticoid-induced Cushing syndrome, malnutrition, long-lasting infections, acquired
immunodeficiency syndrome and kidney failure [5–7]. Chronic diseases triggering motor
neuron abnormalities, such as amyotrophic lateral sclerosis, are a major clinical cause of
muscular atrophy [8]. However, the most common form of contractile fiber wasting in
association with muscular atrophy is represented by systemic changes during sarcopenia
of old age [9–11].

Atrophying skeletal muscles are a major feature of the aging phenotype in humans [12],
and often the degree of contractile weakness is even more pronounced than the extent
of lost muscle mass [13–15]. Sarcopenia of old age is closely connected to frailty [16],
as well as an increased frequency of falls and fractures [17–19], resulting in a drastically
reduced quality of life in the elderly [20] that are affected by substantial skeletal muscle
wasting [21]. Reduced skeletal muscle tissue mass in conjunction with low gait speed
are typical indicators of sarcopenia [22], whereby the clinical definition of sarcopenia [23]

Int. J. Mol. Sci. 2023, 24, 2415. https://doi.org/10.3390/ijms24032415 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032415
https://doi.org/10.3390/ijms24032415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0923-7090
https://orcid.org/0000-0002-6266-4510
https://doi.org/10.3390/ijms24032415
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032415?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2415 2 of 47

relates to a significantly reduced percentage of muscle tissue quantity and/or quality
as compared to the mean determined in younger and healthy adults of similar ethnic
background and the same gender [24]. Variations in contractile strength due to aging
can be conveniently determined by a variety of performance tests that evaluate physical
parameters such as walking ability, gait speed, grip strength, standing capability and stair
climbing [25–27]. However, the histo-morphometric characterization of the aging human
musculature indicates significant differences in the degree of the structural decline in
individual skeletal muscles [28].

Thus, for a deeper mechanistic understanding of the aging process and frailty syn-
drome, it is crucial to study aging-related changes at the level of systems biology [29,30],
including the role of cellular stress, mitochondrial abnormalities, disturbed ion handling,
impaired protein metabolism and epigenetic changes that may adversely affect tissue in-
tegrity and thus cause disturbed bioenergetic pathways, abnormal proteostasis, hormonal
imbalances, impaired ion homeostasis and reduced neuromuscular activity [31–33]. The
degree to which reduced fitness and higher risk for disease acquisition in association with
somatic damage accumulation trigger cellular aging is intensely debated, versus the effects
of adaptive processes on the development of senescence [34–36]. Since a variety of factors
play a crucial role in promoting frailty, it is important to better understand the interplay
between the dysregulation of central biochemical pathways, cellular signaling cascades
and physiological systems [37]. This might lead to a more comprehensive idea of how a
combination of chronic inflammation, metabolic syndrome, visceral obesity, insulin resis-
tance, neurodegeneration and progressive skeletal muscle wasting negatively affects the
general health status of the elderly [38].

Of central importance for muscle biogerontology is the determination of proteome-
wide alterations in the aged organism [39,40] and the application of this biochemical
knowledge to improve the treatment of frailty and muscular atrophy [41–43]. Proteomics is
a key technology of modern biosciences [44] and crucial for advances in pharmacological
research and biotechnology [45], as well as biomarker discovery [46]. Mass spectrometry
is an ideal bioanalytical method for studying the molecular and cellular mechanisms that
underlie normal physiological and biochemical processes, adaptive responses to changed
functional demands and dysregulated mechanisms in the diseased state [47]. This includes
biomolecular investigations into the multi-factorial triggering mechanisms involved in the
general aging process of humans [48], and particularly frailty syndrome in the elderly [49].

This review summarizes the findings of major proteomic surveys of aged human skele-
tal muscles and relates them to the analysis of animal models of sarcopenia of old age. The
main focus is on the mass spectrometric identification of contractile proteins as potential
markers of muscle-fiber-type shifting [50–52]. Following an overview of proteomics as a
highly useful bioanalytical tool to study skeletal muscle biology, this article discusses how
biochemical and proteomic knowledge might be helpful to better understand the complex-
ity of the neuromuscular aging process. The outline of the methodological approaches
includes a description of the importance of two-dimensional gel electrophoresis for top-
down proteomics, various antibody-based techniques, sample preparation for proteomic
analysis, protein digestion for peptide mass spectrometry, key mass spectrometric methods,
data acquisition for mass spectrometry and recent developments in single-cell proteomics
and aptamer-based proteomics. The described biochemical surveys of fast versus slow
isoforms of myosin, actin, troponin and tropomyosin suggest that isoform switching of
these abundant muscle proteins is a suitable and robust process that can be utilized for
muscle-fiber typing during age-related muscular atrophy. The final section of this review
briefly summarizes the main factors that are involved in age-related muscular atrophy and
associated fast-to-slow fiber-type shifting, and describes recent progress in biomarker dis-
covery for monitoring muscle aging and the development of novel therapeutic approaches
to treat sarcopenia of old age.
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2. Proteomic Profiling of Skeletal Muscle Tissues
2.1. Proteomic Analysis Platforms and Associated Biochemical and Cell Biological Methodology

Following the establishment of the concept of the proteome [53] and mass-spectrometry-
based proteomics as a highly useful screening tool in the modern biosciences [54], there has
been a steady improvement of sample preparation, mass spectrometric instrumentation
and data analysis pipelines using both bottom-up [55–57] and top-down proteomic tech-
niques [58–60]. Importantly, modern biochemical analyses focus on the unifying concept
of dynamic proteoforms being the basic units of protein activity [61–63]. This has given
unprecedented insights into protein diversity and the role of proteins in cellular func-
tions [64], including skeletal muscle tissues [65–68]. Advances in the field of proteomics
now allow researchers to comprehensively study proteins expressed by an organism or
biological system associated with physiological and pathophysiological phenotypes [44].
High-throughput technologies and more precision-based methodologies are now available
to identify proteins and their modifications in complex samples [69–72]. This wide-ranging
approach provides a solid platform to understand protein function in a particular biological
pathway, and when perturbed, how this affects the biological system [73]. Consequently,
proteomics has major applications in medicine and drug development [45–47]. The inter-
national HUPO Project has made enormous progress in establishing and cataloguing the
highly dynamic human proteome [74–76], which forms the scientific basis of understanding
protein homeostasis at the level of systems biology [77–79].

2.1.1. Two-Dimensional Gel Electrophoresis

Two-dimensional gel electrophoresis (2D-GE) is a classic and commonly used method
for proteome analysis [80–82] and presents an ideal bioanalytical approach for optimum
protein separation prior to the systematic mass spectrometric profiling of proteoforms [61].
Although current proteomic analyses use mostly gel-free systems for the initial protein
separation step, 2D-GE has not been superseded by chromatographical techniques for
specialized applications in top-down proteomics [80,82]. 2D-GE is still a highly useful
protein separation method that plays a key role in many proteomics analysis pipelines that
focus on the identification and characterization of isolated and intact proteoforms [52,61].
The 2D-GE-based separation step is especially beneficial in the field of applied myology for
analyzing the highly diverse array of isoforms of contractile proteins [65–67]. The large-
scale survey of skeletal muscle proteins can be carried out under both native or denaturing
conditions [66], including the thorough separation of key contractile proteins [52]. In
the most frequently employed version of the 2D-GE technique, mixtures of proteins are
separated by charge (based on the isoelectric point, pI, of individual proteins) in the
first dimension, and by sodium dodecyl sulfate polyacrylamide slab gel electrophoresis
(SDS-PAGE), which discriminates proteins based on their molecular weight, in the second
dimension [83–85]. This approach can be used to separate several thousand different
proteins on one 2D-gel [86–88]. Of note, the recently described micro-needling of the
first-dimension gel can be used to considerably shorten the time requirements for the initial
isoelectric focusing step in 2D-GE [89].

Most 2D-GE approaches are based on the usage of high concentrations of sodium
dodecyl sulfate (SDS) for optimum solubilization of proteins in the second dimension [90,91],
but 2D-GE can also be carried out with combinations of alternative detergents to increase
the resolution of integral membrane proteins [92]. For example, a combination of the
cationic detergent named benzyldimethyl-n-hexadecylammonium chloride (BAC) in the
first dimension and SDS detergent in the second dimension is used for the BAC/SDS-
PAGE technique [93]. Two-dimensional blue native polyacrylamide gel electrophoresis,
usually referred to as BN-PAGE [94], separates proteins under native conditions [95] and is
frequently used to characterize large protein assemblies in mitochondria [96–98]. Natural
or modified differences between skeletal muscle protein species or protein complexes can
be conveniently examined by diagonal non-reducing/reducing 2D-GE following chemical
cross-linking [99–101]. Following 2D-GE, the next steps typically involve protein spot



Int. J. Mol. Sci. 2023, 24, 2415 4 of 47

visualization, using highly sensitive stains, such as Coomassie brilliant blue (CBB) [102],
that enable femtomole detection levels of gel-separated and intact proteoforms [103]. Other
routinely employed methods for protein spot visualization use silver staining or fluorescent
dyes such as SYPRO Ruby or Deep Purple [104–106].

This is then followed by protein spot abundance analysis and, finally, protein identifi-
cation by mass spectrometry [107]. In skeletal muscle proteomics, a variety of extremely
large myofibrillar and cytoskeletal proteins are difficult to separate by conventional 2D-GE.
This includes the giant proteins dystrophin, nebulin, obscurin and titin [108]. To overcome
this technical issue, additional analyses can be carried out with a technique complementary
to 2D-GE that uses 3–12% gradient 1D-GE in combination with LC-MS [109]. Findings
from GeLC-MS/MS can be blended with the results from proteomic surveys employing
2D-GE and can result in more comprehensive insights into the biochemical status of skeletal
muscle proteins in the 200–3500 kDa range [110]. Multidimensional protein identification
technology (MudPIT) can also be used in conjunction with 2D-GE. Since MudPIT is not
based on gel technology for protein separation [111], 2D liquid chromatography prior to
MS analysis can add additional proteomic data than might not be as easily assessable by
conventional gel electrophoresis [112].

Despite the large number of diverse 2D-GE applications, one significant disadvantage
is related to the need to run large numbers of gels, each separating proteins from an
individual sample. This limitation was overcome by the development of the difference gel
electrophoresis (DIGE) approach [113–115]. This technique uses fluorescent cyanine dyes,
which are covalently bound to proteins within the samples before the 2D-GE separation
begins [116]. The dyes (CyDye Cy2, Cy3 and Cy5) are mass- and charge-matched, but
have distinct excitation and emission spectra, allowing for independent signals from
the differentially labelled protein populations to be captured [117]. Two different dyes
are available: for normal applications, minimal dyes (NHS ester dyes) are used to label
lysine residues, and for scarce amounts of sample, saturation dyes (maleimide dyes)
are used to label cysteine residues [118–120]. Within the DIGE experimental set-up, an
internal standard is used (conventionally CyDye Cy2 for minimal dyes and CyDye Cy3
for saturation dyes) [121]. The internal standard can be used to match and normalize the
protein quantities across samples [122].

Various software packages, including DeCyder, SameSpots and Dymension 3, can be
used for the determination of protein spot intensity [123–125]. The development of DIGE
introduced several advantages for using this research platform in protein analysis and has
been modified to also study native protein interactions and post-translational modifica-
tions [126–128]. Limitations still exist with respect to detecting/resolving low-abundant
and hydrophobic proteins, proteins with a molecular mass of <10 kDa or >150 kDa and
proteins with an extreme isoelectric point [129]. A significant area where protein separation
is based on 2D-GE is the analysis of proteoforms [61], i.e., different molecular forms of
a protein product of a single gene that are generated due to alternative mRNA splicing,
the activity of more than one promoter per protein-coding gene and/or post-translational
proteolysis [130]. As distinct proteoforms may increase or decrease in pathophysiological
conditions, the ability to distinguish and quantitate proteoforms is an important considera-
tion when designing an experimental approach [62].

2.1.2. Antibody-Based Methodology

Antibodies are perhaps the most frequently used and adapted detectors in biological
research, including applications in studies of protein expression, protein interactions,
cellular pathways and post-translational modifications (PTMs). Labelled antibodies are
a fundamental component of experimental procedures, including immunoblotting [131],
immunohistochemistry (IHC) [132], immunofluorescence microscopy (IFM) [133], enzyme-
linked immunosorbent assays (ELISA) [134], flow cytometry (FC) [135], fluorescence-
activated cell sorting (FACS) [136], mass cytometry (CyTOF) [137] and immunocapture
mass spectrometry [138], due to their target specificity and high affinity for specific epitopes.
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The most frequently used method to independently verify the mass spectrometric
detection of abundance changes in a distinct protein is immunoblotting [139], besides
using IHC/IFM methods [140] and enzyme assays [141,142] for the further characterization
of proteomic hits. Considerable technological advances have emerged in Western blot-
ting over the years [143]. This has revolved around the introduction of fluorescent-dye
conjugated secondary antibodies and the associated ability to multiplex. Using imaging
systems to capture the fluorescent signal, researchers can now develop chemiluminescent
or fluorescent blots at the bench side. Enhancements to chemiluminescent reagents have
made it possible to detect even femtogram amounts of protein, increasing the sensitivity of
this approach [139,143].

Traditional IHC is commonly used as a technique that assists pathologists in making
careful decisions regarding differential diagnosis, disease subtyping and designing per-
sonalized treatment plans [144], and plays a key role in the evaluation of skeletal muscle
biopsy specimens [145]. IHC and IFM techniques are also used for verification studies
in proteomics [133,140]. However, this methodological approach has several limitations,
including a high level of inter-observer variability amongst pathologists and the ability
to evaluate only one antigen per tissue section. As a result of these limitations, multi-
plex immunohistochemistry/immunofluorescence (mIHC/IF) technologies, which utilize
chromogen-based immuno-detection and antibody stripping chemistry, are now being
utilized in both research and clinical settings [146]. The benefits of this platform include
increased automation, tissue sparing and cost-effective analysis, as multiple biomarkers
can be evaluated on a single formalin-fixed, paraffin-embedded (FFPE) tissue slide [147].

Single-plex ELISA tests allow the sensitive and specific detection of various analytes
in complex biological samples, such as serum/plasma in clinical and research laboratories,
facilitating the diagnosis of diseases and identification of new therapeutic targets [134]. As
with recent developments in IHC-associated technologies, there is an increasing require-
ment for multiplex ELISAs that are capable of obtaining large amounts of data from a
limited amount of starting material [148]. Multiplex ELISAs have many advantages over
single-plex ELISAs, including increased efficiency, higher throughput and an increase in the
number of analytes detected and quantitated [149,150]. Typically, two types of multiplex
immunoassays are routinely used; namely, planar and suspension arrays [151]. In planar
microarrays, individual capture ligands are immobilized in a microarray format containing
potentially several hundred spots and incubated with sample, and then subsequent fluores-
cent or chemiluminescent signals are detected. In suspension assays, the capture ligands
are immobilized onto color-, shape-, or size-coded microspheres. These characteristics
are then used to identify the specific analytes that are captured on the bead surface, with
quantitation based on the detection of associated reporter molecules, including chemilumi-
nescent or fluorescent signals. Pereira et al. [152] used multiplex ELISAs to investigate oral
nutritional supplements enriched with protein, vitamin D and β-hydroxy β-methylbutyrate
compared to a control group in serum samples from malnourished sarcopenic older adults.
Sixteen biomarkers were found to be significantly changed in response to the supplement,
including a decrease in abundance for the inflammation-related ferritin and osteopontin,
and an increase in soluble receptors for cytokines, indicating decreased inflammation. To
increase the sensitivity of typical multiplex ELISAs, Proximity Extension Assay (PEA)
technology has been established. Specific proteins are targeted with a pair of antibodies
that are labelled with DNA oligonucleotides, which are hybridized and extended by a DNA
polymerase. The DNA barcode that is produced is amplified and quantified using real-time
polymerase chain reaction [153].

FC and FACS analysis are partner technologies in the cell analysis process. FC is used
for cell analysis and measuring protein expression or co-expression within a heterogeneous
population of cells [135]. FACS is used as a cell sorter and enrichment of a subset of cells
for subsequent analysis [136]. Recent improvements in FC and FACS have focused on
the extension of fluorescent labels (UV and IR range), and novel tandem dyes, allowing
for greater multiplexing capabilities. To determine the associations between % circulating
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osteoprogenitor (COP) cells and sarcopenia, Al Saedi et al. [154] used FC to quantify % COP
cells by using selective gating of CD45/osteocalcin (OCN) + cells. Their finding implicates
that high levels of % COP cells are associated with better skeletal muscle function when
investigating debilitating muscle aging as defined using the Sarcopenia Definitions and
Outcomes Consortium (SDOC) criteria [155].

CyTOF, or mass cytometry, uses molecularly tagged antibodies to detect and quanti-
tate specific cellular antigens, allowing for highly multiplexed assays [156]. Heavy-metal
isotopic tags, rather than fluorophores, are used to label antibodies, with an increasing
number of panels now available for use. Cells are incubated with a mixture of tagged anti-
bodies (non-radioactive heavy metal isotopes) and nebulized, with each droplet containing
an individual single cell, and subsequent ionization of the sample [157]. The liberated
cloud of ions is subjected to MS-based filtering which selects for the isotope-conjugated
probes. In the Time-of-Flight (TOF) chamber, the ions are separated by their mass-to-charge
ratio and converted into electrical signals, providing information on the abundance of the
specific tagged analytes [137]. CyTOF does suffer from several limitations, including the
reduced sensitivity of metal-isotope-tagged antibodies and the longer acquisition times
needed when using TOF–MS instruments. However, with these limitations being identified,
there is massive scope for advances in these areas that will contribute to increasing the
research possibilities of CyTOF in the future of skeletal muscle research [158–160]. Recently,
Porpiglia et al. [161] used CyTOF to study muscle stem cells (MuSCs) in the aged phenotype
and showed high CD47 expression levels, which might be associated with dysfunctional
MuSCs, and an impaired regenerative capacity.

In addition, the use of antibodies plays an important role in the affinity precipitation
of post-translationally modified peptides prior to MS analysis [162]. Peptides containing a
specific modification (such as phosphorylation, acetylation, methylation or ubiquitination),
are enriched from protease-digested lysates using an antibody against the specific modifi-
cation [163,164]. This approach facilitates the identification and quantitation of hundreds
to thousands of modified peptides in a single MS run.

2.1.3. Sample Preparation for Proteomic Analysis

The proteomic analysis of skeletal muscle samples is routinely performed with both
crude total extracts or subcellular fractions [165]. Subsets of organelles or enriched protein
complexes can be isolated by differential centrifugation, density gradient ultracentrifuga-
tion, affinity isolation methods or chemical crosslinking approaches [166–168]. Optimum
protein extraction for subsequent digestion and MS analysis can be carried out by a variety
of standardized sample preparation methods [169–171]. The filter-aided sample preparation
(FASP) technique is ideal for efficient buffer exchange and the removal of MS-incompatible
detergents [172]. For designing an optimized proteomic analysis pipeline, it is important to
take into account the biological properties of the starting material, such as individual cells,
complex tissues or biofluids, and whether a top-down or bottom-up proteomic approach
is needed for studying the proteins of interest [58]. Total protein extracts from tough
skeletal muscle tissue samples can be conveniently prepared by the FASP method [173]. An
alternative methodology for sample preparations is the In-StageTip (iST) technique [174].
In addition, single-pot solid-phase-enhanced sample preparation (SP3) [175] and its varia-
tion, named universal solid-phase protein preparation (USP3) [176], can be employed in
proteomic applications. If technical complications are encountered with cell or tissue lysis
prior to MS analysis [177], these issues can be addressed with recently developed pressure
cycling technology (PCT) [178]. In tissue proteomics, the quantification of hydrophobic
proteins by MS analysis can be particularly difficult [179–181]. Of note, for the proteomic
evaluation of large and highly complex protein assemblies, novel high-resolution native
MS techniques have been developed [182–184].
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2.1.4. Protein Digestion for Peptide Mass Spectrometry

The controlled and highly reproducible digestion of proteins for the production of
a distinct peptide population is an essential requirement for the successful proteomic
identification of specific proteoforms. Protein digestion can be carried out by various
approaches that differ in the presentation of the proteins of interest in solution, in a gel
matrix or on a membrane. One can therefore differentiate between in-solution [185,186],
in-gel [187,188] and on-membrane [189–191] digestion protocols. The most frequently used
protease in MS-based proteomics is trypsin [192], but alternative proteases can be used
alone or in combination for protein digestion [193–195]. A rapid in-gel digestion protocol
was recently designed for GeLC-MS/MS applications [196], which suits the systematic
proteomic detection of very large proteins that do not properly move into the second
dimension during 2D-GE [110]. An alternative method named BAC-gel dissolution to
digest PAGE-resolved objective proteins, BAC-DROP [197], uses the above-described BAC
detergent in gel systems, which enables swift solubilization by chemical reduction.

2.1.5. Mass Spectrometric Analysis

The standardized detection of individual proteins in complex mixtures can be routinely
performed by MS-based peptide analysis using matrix assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF) [69,198,199] or liquid chromatography
tandem mass spectrometry (LC-MS/MS) [70–72,200]. A detailed protocol for LC-MS/MS
analysis has been recently published that includes a description of all materials, chemicals,
buffers, experimental steps, mass spectrometric parameters and bioinformatic software
tools needed for a successful proteomic study [201]. Untargeted quantitative proteomics
approaches using mass spectrometry are designed to provide a comprehensive unbiased
quantitation of the global proteome using label-free and/or labelling techniques [70–73].
Label-free quantitation of proteins analyzed by MS uses either integrated peak intensity
from the parent-ion mass analysis (MS1) or features from fragment-ion analysis (MS2),
including the use of spectral counts. Using next-generation mass spectrometry instru-
ments with high-resolution capabilities and enhanced sensitivity, peak intensity areas from
selected parent ions in MS1 can be detected, quantitated and combined with other protein-
associated peptides when comparing expression levels between samples [44–46]. When
using spectral counting, MS2 spectra, generated by peptide fragmentation, are summed
with the number of spectra matched to peptides from a specific protein and are then used
as a measure of protein abundance. In the field of sarcopenia research, as outlined in more
detail below, the label-free MS technique was used by Théron et al. [202] to profile the
proteome from vastus lateralis muscle samples obtained during surgery from mature and
older women. The comparison of protein profiling between these two cohorts identified 35
differentially expressed proteins during skeletal muscle aging, mainly associated with en-
ergy metabolism and contractile functionality [202], showing the usefulness of employing
label-free MS approaches in sarcopenia research.

A critical disadvantage of using a label-free approach is that all samples must be
measured independently and require significant instrument time in order to achieve a
comprehensive analysis of the proteome under investigation. Alternatively, quantitation
can be performed using stable heavy isotopes incorporated into proteins by metabolic or
chemical labelling protocols [203]. Tandem mass tags (TMT) [204], stable isotope labelling
by amino acids in cell culture (SILAC) [205], isobaric tags for relative and absolute quantita-
tion (iTRAQ) [206] and isotope-coded affinity tags (ICAT) [207] are labelling techniques that
are routinely used in research studies investigating the proteome under different conditions.
TMT labelling, an example of a chemical labelling methodology, is instrumental to quanti-
tative proteomics, especially as the multiplexing approach allows for greater throughput.
This enables quantitative analyses with a comprehensive proteome coverage [208].

Each mass-tagging reagent within a set (TMTpro enables multiplexing of up to 16
samples for protein identification and quantitation) has the same nominal mass and chem-
ical structure composed of an amine-reactive NHS-ester group, a spacer arm, and an
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MS/MS reporter. The intensity of the unique MS/MS reporter ions (different m/z), de-
tected using LC-MS/MS, is used to determine the amount that each peptide from the
labelled samples contributes to the selected parent mass, facilitating relative quantitation.
TMT-based proteomics has the advantage of higher quantitative accuracy, fewer missing
quantitative values among samples, and reduced sample run times on MS instruments.
TMT probes have been used in aging research to quantitate the proteome from young
versus old rats [209]. The comparative analysis of slow-twitching soleus muscles versus
fast-twitch extensor digitorum longus muscles revealed 78 and 174 proteins being differen-
tially expressed during aging, respectively, and were shown to be generally associated with
energy metabolism, oxidative stress, detoxification and transport [209].

SILAC is a quantitative proteomic approach using metabolic labels, which allows the
comparison of cultured cells (lysates/secretome) under different conditions [204]. Using
this approach, identification and quantitation of thousands of proteins can be performed
in a single experiment by combining differently labelled samples prior to analysis by
LC-MS/MS [210]. A standard SILAC experiment can be used to compare two or three
samples by labelling with a light label (standard media), medium label (media containing
2H4-lysine and 13C6-arginine) and a heavy label (media containing 15N2

13C6-lysine and
15N4

13C6-arginine) [211]. The complete incorporation of heavy amino acids during protein
turnover, in combination with the use of trypsin as the digestive enzyme, means that
peptides from the differentially labelled samples can be accurately quantified relative to
each other, based on the defined mass difference between the samples [212].

In skeletal muscle proteomics, SILAC was used to study differentiation, fiber damage
and fiber typing [213–215]. An interesting application of SILAC in combination with an
immunoaffinity protocol was the investigation of muscular atrophy in mice that were fed a
SILAC diet containing 13C6-lysine for 4, 7 or 11 days when comparing denervation-induced
changes after sciatic nerve section in the gastrocnemius muscle as compared to control
samples [216]. Ubiquitin remnant peptides (K-ε-GG) were profiled by immunoaffinity
enrichment, with results showing that >2100 diglycine remnants were identified, providing
an insight into the ubiquitination process during muscular atrophy [216].

Dynamic proteome profiling (DPP) with a deuterium label can be employed to deter-
mine time-dependent changes in peptide mass isotopomer abundances [217]. The DPP
technique was recently applied to study the relative abundance and fractional synthesis
rate of proteins in human muscle biopsy specimens [218], and during C2C12 myoblast
differentiation [219] and cellular aging [220]. As listed below, a study by Murphy et al. [221]
of obese and healthy men of old age, who underwent resistance training and caloric restric-
tion, determined the amount of newly synthesized skeletal muscle proteins via deuterated
water labeling.

Importantly, MS analyses combined with artificial intelligence (AI) are increasing the
potential for research and analysis of proteins in the field of proteomics [222]. The MS
approach has proven to be a pillar for quantitative studies in addition to the identification
of PTMs. Higher-plexing labelling reagents, in combination with advanced data acqui-
sition protocols using the next generation of instruments, provide data on hundreds of
thousands of protein isoforms in large sample cohorts. As datasets are becoming more
all-encompassing, the use of AI, along with Machine Learning (ML) and Deep Learning
(DL) algorithms, will become common features for analyzing the complex spectral data to
identify pathophysiological patterns for actionable biology.

2.1.6. Data Acquisition by Mass Spectrometry

Data acquisition by mass spectrometry can be performed using data-dependent acqui-
sition (DDA) [223], data-independent acquisition (DIA) [224] and targeted data acquisition
(TDA) [225]. The DDA analysis mode involves using the MS instrument to generate a
full-scan mass spectra (MS1), where the N most intense peptide ions (i.e., top 15) are
selected and MS/MS spectra acquired. This approach generates thousands of MS/MS
spectra that can be used for protein identification and subsequent quantitation. However,
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as the most abundant peptide ions are selected in the full scan, lower abundant peptide
ions are repeatedly excluded from selection, even when using filtering criteria such as
dynamic exclusion.

The DIA analysis mode involves using the MS instrument to direct the analysis on a
narrow mass window of precursors and acquiring MS/MS data from all precursors detected
within that window [226]. By stepping across the defined mass range using specific mass
windows, collected MS/MS data will be acquired from all detected precursors. This
strategy then uses highly specific fragment ion maps in a spectral library for qualitatively
and quantitatively analyzing DIA data sets [227]. Sequential window acquisition of all
theoretical mass spectra (SWATH-MS), as described by Gillet et al. [228], is a common
method to generate DIA data by dividing the mass range into small mass windows.

The verification phase of many proteomics investigations centers on confirming that
the abundances of target peptides are significantly different between sample cohorts by
using MS-derived quantitative measurements. Selected/Multiple-Reaction Monitoring
(SRM/MRM) or Parallel-Reaction Monitoring (PRM) are examples of approaches that can
be utilized, where precursor peptide ions are measured in predefined m/z and retention
time [229–231]. Stable-isotope-labelled, synthetic peptides are often spiked into the samples
of interest, a process that increases the overall accuracy of target peptide quantitation.

2.1.7. Single-Cell Proteomics

Within the last decade, single-cell RNA sequencing (scRNA-seq) has come to the fore
as an informative approach to decode tissue composition at the single-cell level and to
provide important mechanistic data about pathophysiological associated networks [232].
Protein abundance in single cells is often deduced from complementary analysis platforms
(scRNA-seq), as the ability to quantitate the proteome at a single-cell level has remained
challenging [233]. Initial approaches for quantitating proteins in single cells relied on
antibodies. Hence, these methods depend heavily on the availability of high-quality
antibodies, therefore limiting their impact in the analysis of many antigens [234]. However,
the use of MS/MS combined with LC-based separation is gaining traction with respect to
its application in the analysis of the single-cell proteome [235].

Notable breakthroughs in this area include the use of isobaric labelling for single-cell
proteomics, called Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) [236], and the
second-generation protocol called Single Cell ProtEomics (SCoPE2) [237]. Such protocols
permit cells from heterogeneous populations to be adapted into single-cell suspensions by
FACS or CellenONE [238,239]. CellenONE is a precision dispensing technology combined
with advanced image processing that delivers real-time and high-accuracy single cell
isolation and dispensing. The isolated single cells are lysed, proteins digested, and the
resultant peptides labelled with TMTs [240]. The different steps of this protocol can be
automated, allowing for reproducibility and scalability. Labelled peptides are mixed and
analyzed by MS/MS combined with LC [241].

Label-free analysis of individual cells does not require the use of TMTs, but their
throughput is lower than that of the labelling approach [242]. The use of TMTs and the
ability to multiplex ultimately increase the amount of peptides detected and quantitated by
MS, which is particularly important when analyzing small-diameter mono-nucleated cell
populations. However, the analysis of skeletal muscle fibers has some advantages, given
that these types of fibers are multi-nucleated single cells and relatively bulky compared to
other cell types. Individual muscle fibers contain on average a few micrograms of protein,
and their isolation by dissection is more straightforward than having to use FACS or Cel-
lenONE approaches. A recent manuscript by Murgia et al. [243] demonstrated the utility of
single-cell proteomics when comparing the proteome of type 2X fibers to that of type 1 and
2A fibers in young individuals. Their dataset contained more than 3800 proteins detected
by single-fiber proteomics, with approximately 10% of the identified proteins displaying a
statistically significant difference among the fiber types investigated. This approach has the
potential to increase our understanding of musculoskeletal tissue development and disease
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within individual muscle fibers [244]. The application of single-cell proteomics in muscle
aging is discussed below. Importantly, nanotechnology is increasingly used for optimum
sample preparation in single-cell proteomics, as discussed by Arias-Hidalgo et al. [245].

2.1.8. Aptamer-Based Proteomics

Other proteomic-based platforms that are growing in popularity and number include
aptamer-based approaches [246]. Aptamers are single strands of oligonucleotides (either
ssDNA or ssRNA) that bind with high specificity and high affinity to preselected pro-
teins [247]. The range of the preselected protein panels is ever increasing, with one of the
leading aptamer-based proteomics platforms, SomaLogic, offering different protein panels
ranging from 1300 to over 7000 targets in as little as 55 mL of plasma or serum. Hathout
et al. [248] recently used the SomaLogic platform to identify 108 elevated and 70 decreased
proteins in dystrophic patients who were not yet treated with glucocorticoids compared to
age-matched healthy controls. High-throughput multiplexing techniques can be combined
with TMT technology to detect serum biomarkers that have been released from damaged
skeletal muscle fibers [249].

2.2. Proteomic Profiling of Fiber-Type Specification in Skeletal Muscles

Most individual skeletal muscles consist of a distinct mixture of fast-twitching, slow-
twitching and hybrid fibers [250–252], and this fiber-type composition can undergo sub-
stantial alterations during progressive muscle wasting [50,51,253]. Fiber-type specification
has traditionally been determined by histological, histochemical and immunohistolog-
ical staining procedures [132,254,255]. Recently, Kallabis et al. [215] described a novel
high-throughput proteomic workflow for myosin isoform profiling in single muscle fibers
based on the usage of a capillary LC-MS gradient in a 96-well format. This is an excellent
improvement of the fiber-type-specific screening of the skeletal muscle proteome. Over
the last two decades, the steady improvement of protein separation methodology and
mass spectrometric detection efficiency, in combination with enormous advances in bioin-
formatics, has resulted in the greatly enhanced coverage of the skeletal muscle protein
constituents [65–67,256].

A large number of proteomic markers are now available for the comprehensive pro-
filing of subcellular fractions from skeletal muscles [257]. Over 10,000 protein species
belonging to the core proteome of human and animal skeletal muscles have been identified
and characterized by mass spectrometry [258–263]. The proteomic profiling of differing
skeletal muscles with specific fiber-type distribution patterns has especially focused on
human vastus lateralis, deltoideus and trapezius muscles [264–266] and mouse gastrocnemius,
soleus and diaphragm muscles [267–269]. Comparative MS-based studies of mouse extensor
digitorum longus and soleus muscles [270–272], and tissue extracts from rodent gastrocnemius,
extensor digitorum longus, tibialis anterior and soleus muscles [273–276], have given compre-
hensive insights into the biochemical complexity of fiber-type-specific protein expression
patterns using single-fiber proteomics [277]. The study by Eggers et al. [276] utilized
immunolabeling of individual skeletal muscle fibers with antibodies to specific myosin
heavy chain isoforms followed by laser micro-dissection and MS analysis. The detailed
biochemical characterization of mouse muscle fibers by single-cell proteomics revealed an
in-depth profile of fiber-type-specific protein expression levels [276].

2.3. Composition of the Acto-Myosin Apparatus and Its Proteomic Profile

Skeletal muscle fibers are highly specialized cellular structures for the generation of
force and movement [278]. The sarcomeric components of the acto-myosin apparatus [279]
provide the molecular machinery for coordinated filament sliding during skeletal muscle
contractions [280]. Contractile proteins exist in a large number of isoforms [281] and can
be divided into groups of proteins that are mostly located in the thick myosin-containing
filament [282], the thin actin-containing filament [283], the M-line [284] and the Z-disk [285],
as well as auxiliary filamentous structures [286]. The sarcomere units have extensive
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intrinsic connections [287] and are embedded in the overall muscle structure by an extensive
cytoskeletal system linking them to organelles for energy supply and signaling mechanisms,
and to the costamers for force transmission [288]. Figure 1 provides an overview of the
contractile acto-myosin apparatus within the sarcomeric structure of skeletal muscles.
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Figure 1. Overview of the sarcomeric structure and the contractile acto-myosin apparatus of skeletal
muscle. The diagram to the left outlines the arrangements of the thick myosin-containing filament,
the half-sarcomere spanning titin filament and the actin/nebulin-containing thin filament in relation
to their positions within the A-band, the I-band, the H-zone, the M-line and the Z-disc structures
of the sarcomere. The diagram to the right shows the interactions between the head structure of
myosins and filamentous actin molecules that are involved in the crossbridge formation during
skeletal muscle contractions. Details of the subunit composition and isoform diversity of myosin
heavy chains, myosin light chains, myosin binding proteins, actins, tropomyosins and troponins are
given in Figure 2 below. Abbreviations used: ACT, actin; MLC, myosin light chain; MYBP, myosin
binding protein; MyHC, myosin heavy chain; TNC; troponin-C; TNI; troponin-I; TNT, troponin-T;
TPM, tropomyosin.

Slow versus fast isoforms of key sarcomeric proteins are displayed in Figure 2 below.
The abbreviations of specific muscle protein isoforms are listed at the end of the manuscript,
and are used throughout the text, Tables and Figures. The names of genes are exclusively
listed in italics to avoid confusion with abbreviated protein names.

In the thick filaments of skeletal muscles [282,287], the hexameric composition of the
major motor protein myosin consists of two myosin heavy chains (MyHCs) [289] and four
myosin light chains (MLCs) [290], which can be further subdivided into two phospho-
rylatable regulatory light chains and two non-phosphorylatable alkali light chains [291].
The main MyHC isoforms in human skeletal muscle are the slow type I isoform MyHC-1
(MYH7 gene), the fast type IIa isoform MyHC-2a (MYH2 gene) and the fast type IIx isoform
MyHC-2x (MYH1 gene) [250,252,292]. Another fast isoform of type IIb is named MyHC-
2b (MYH4 gene), and is present at high concentration only in small mammals, such as
mice, rats and rabbits [110]. Type IIb fibers with high levels of MyHC-2b are extremely
fast-contracting and quickly fatigable units that are usually not found in mature human
skeletal muscles [251]. In addition, MyHC-emb (MYH3 gene), MyHC-neo (MYH8 gene)
and six other MyHC isoforms, encoded by the genes MYH6, MYH7B, MYH13, MYH14,
MYH15 and MYH16, respectively, exist in embryonic/fetal muscles [293] and specialized
adult muscles, including masticatory, extraocular and laryngeal muscles, as well as muscle
spindles [294–296]. The recent proteomic profiling of extraocular muscles has also de-
tected, besides the long-established MyHC-13 isoform, MyHC-14 and MyHC-15 being
present in these highly specialized and mostly fast-twitching muscles [297]. The slow
and fast isoforms of MLC proteins are represented by slow/cardiac regulatory light chain
MLC-2s (MYL2 gene), fast regulatory light chain MLC-2f (MYL11 gene; with the previous
HGNC gene symbol MYLPF), slow essential light chain MLC-1s (with isoform MLC-1sb
encoded by the MYL3 gene; and MLC-1sa encoded by the MYL6B gene) and fast essen-
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tial light chain MLC-1/3f (with MLC-1 and MLC-3 being splicing products of the MYL1
gene) [289,291,298]. Myosin-binding proteins (MYBP) [299] are located at the thick filament
interface and are present as slow and fast isoforms, i.e., MYBP-C1 (slow myosin-binding
protein C1; encoded by the MYBPC1 gene) and MYBP-C2 (fast myosin-binding protein C2;
encoded by the MYBPC2 gene) [300–302].

Int. J. Mol. Sci. 2023, 24, 2415 13 of 47 
 

 

 

Figure 2. Summary of slow versus fast isoforms of key sarcomeric proteins. The diagrammatic 

presentation and color coding of individual contractile proteins is identical to the descriptions given 

in the overview of the sarcomeric structure and the contractile acto-myosin apparatus of skeletal 

muscle in Figure 1 above. Abbreviations used: ACT, actin; ELC, essential light chain; MYBP, myo-

sin-binding protein; MyHC, myosin heavy chain; MLC, myosin light chain; RLC, regulatory light 

chain; TNC; troponin-C; TNI; troponin-I; TNT, troponin-T; TPM, tropomyosin. 

As a representative example of how proteomics can be employed to routinely detect 

and characterize a large number of specific isoforms of contractile proteins, Table 1 lists 

the mass spectrometric identification of major sarcomeric proteins that are associated with 

the thick myosin filament, thin actin filament, the titin filament, the Z-disc and the M-line 

in diaphragm muscle [269,333]. The information presented includes the protein names 

and abbreviations of particular isoforms, their accession number, the name of the coding 

gene, percentage of sequence coverage, number of peptides and calculated molecular 

mass. As listed in Table 1, diaphragm muscles are characterized by the presence of MyHC-

1, MyHC-2x, MyHC-2b, MyHC-8, MLC-1/3, MLC-2 and MLC-3 in the thick filament, and 

muscle-type ACTA and various slow and fast isoforms of TPM, TNC, TNI and TNT in the 

thin filament. Abundant components in the Z-disc were established to include FLNC, 

TCAP, ACTN isoforms and MYOZ, and the M-line was shown to contain MYOM and 

OBSCN. The muscle protein that was recognized by the highest number of peptides is 

represented by the giant sarcomeric protein TTN [108]. A closely linked component of the 

titin filament was identified as the muscle ankyrin repeat protein MARP. 

  

Figure 2. Summary of slow versus fast isoforms of key sarcomeric proteins. The diagrammatic
presentation and color coding of individual contractile proteins is identical to the descriptions given
in the overview of the sarcomeric structure and the contractile acto-myosin apparatus of skeletal
muscle in Figure 1 above. Abbreviations used: ACT, actin; ELC, essential light chain; MYBP, myosin-
binding protein; MyHC, myosin heavy chain; MLC, myosin light chain; RLC, regulatory light chain;
TNC; troponin-C; TNI; troponin-I; TNT, troponin-T; TPM, tropomyosin.

In the thin filament [303], the basic units that form helical actin (ACT) filaments are
alpha-actin-1 monomers of the skeletal muscle ACTA type (ACTA1 gene) or the cardiac
muscle ACTC type (ACTC1 gene) [304,305]. The Ca2+-dependent process of regulating
interactions between the MyHC heads and ACT filaments is provided by tropomyosin
(TPM) and the troponin (TN) complex [306,307]. Sarcomeric TPM molecules are alpha-1-
tropomyosin (TPM-1; encoded by the TPM1 gene), slow beta-tropomyosin (TPM-2; encoded
by the TPM2 gene) and muscle-type alpha-3-tropomyosin (TPM-3; encoded by the TPM3
gene) [308,309]. The alpha-4-tropomyosin isoform named TPM-4 (TPM4 gene) is a non-
sarcomeric cytoskeletal component [310]. The TN complex consists of the Ca2+-binding
subunit TNC, the TPM-interaction subunit TNT and the inhibitory subunit TNI [311]. All
three subunits exist in fast and slow isoforms and exist in various combinations in matured
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skeletal muscles [312]. This includes TNC-1, the slow/cardiac troponin TnC isoform
(TNNC1 gene), TNC-2, the skeletal muscle troponin TnC isoform (TNNC2 gene), TNT-1,
the slow muscle troponin TnT isoform (TNNT1 gene), TNT-3, the fast muscle troponin
TnT isoform (TNNT3 gene), TNI-1, the slow muscle troponin TnI isoform (TNNI1 gene)
and TNI-2, the fast muscle troponin TnI isoform (TNNI2 gene) [313]. In addition, the
cardiac isoforms TNNI3 and TNNT2 have been found in aged and denervated skeletal
muscles [314].

The Z-disk contains a large number of proteins, including filamin-C (FLNC; FLNC
gene), telethonin/titin-cap protein (TCAP; TCAP gene) and alpha-actinin (ACTN) with its
closely associated binding protein myozenin (MYOZ) [315,316]. They are excellent subcel-
lular markers of this crucial sarcomeric structure [285]. The major ACTN proteins found in
the Z-disc are the alpha-actinin-2 isoform ACTN-2 (ACTN2 gene) and the alpha-actinin-3
isoform ACTN-3 (ACTN3 gene) [317]. Interestingly, the ACTN3 genotype appears to be
linked to the maintenance of bone and skeletal muscle mass during aging [318]. MYOZ
isoforms that are present in skeletal muscles are MYOZ-1 (myozenin-1; previously named
FATZ-1; MYOZ1 gene), MYOZ-2 (myozenin-2; MYOZ2 gene) and MYOZ-3 (myozenin-3;
MYOZ3 gene) [319,320]. Excellent marker proteins of the M-line structure of the sarcom-
ere [321] are the myomesin (MYOM) proteins MYOM1 (myomesin-1; MYOM1 gene) and
MYOM-2 (myomesin-2; MYOM2 gene) [322,323], as well as obscurin (OBSCN; OBSCN
genes) [324,325]. The M-line-associated obscurin molecule belongs to the class of giant
muscle proteins [108]. Two other major sarcomeric components are also characterized
by extremely high molecular masses, i.e., the actin-binding protein nebulin (NEB; NEB
gene) of the thin filament [326,327] and the half-sarcomere spanning component titin (TNN;
TTN gene) [328,329] with multifunctional roles in lattice order, filament interactions and
the excitation–contraction–relaxation cycle [330,331]. Closely linked to titin is the muscle
ankyrin repeat protein MARP (ANKRD2 gene) [332].

As a representative example of how proteomics can be employed to routinely detect
and characterize a large number of specific isoforms of contractile proteins, Table 1 lists
the mass spectrometric identification of major sarcomeric proteins that are associated with
the thick myosin filament, thin actin filament, the titin filament, the Z-disc and the M-line
in diaphragm muscle [269,333]. The information presented includes the protein names
and abbreviations of particular isoforms, their accession number, the name of the coding
gene, percentage of sequence coverage, number of peptides and calculated molecular mass.
As listed in Table 1, diaphragm muscles are characterized by the presence of MyHC-1,
MyHC-2x, MyHC-2b, MyHC-8, MLC-1/3, MLC-2 and MLC-3 in the thick filament, and
muscle-type ACTA and various slow and fast isoforms of TPM, TNC, TNI and TNT in
the thin filament. Abundant components in the Z-disc were established to include FLNC,
TCAP, ACTN isoforms and MYOZ, and the M-line was shown to contain MYOM and
OBSCN. The muscle protein that was recognized by the highest number of peptides is
represented by the giant sarcomeric protein TTN [108]. A closely linked component of the
titin filament was identified as the muscle ankyrin repeat protein MARP.

Table 1. Proteomic profiling of key components involved in the contraction–relaxation cycle of mouse
diaphragm muscle *.

Contractile Protein Accession Number/Gene Coverage/Peptides Molecular Mass

Myosin heavy chains (MyHC)

MyHC-1, slow muscle (Myosin-7) Q91Z83/Myh7 57.7/139 222.7

MyHC-2x, fast muscle (Myosin-1) Q5SX40/MyH1 69.8/192 223.2

MyHC-2b, fast muscle (Myosin-4) Q5SX39/MyH4 66.0/174 222.7

MyHC-8, perinatal muscle (Myosin-8) P13542/MyH8 46.7/124 222.6
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Table 1. Cont.

Contractile Protein Accession Number/Gene Coverage/Peptides Molecular Mass

Myosin light chains (MLC)

MLC-1/3, skeletal muscle P05977/Myl1 84.0/19 20.6

MLC-2, skeletal muscle P97457/Mylpf 88.8 /19 18.9

MLC-2, cardiac muscle P51667/Myl2 75.3/12 18.9

MLC-3, skeletal muscle P09542/Myl3 78.4 /16 22.4

Myosin-binding proteins (MYBP)

MYBP-C2, fast-type Q5XKE0/Mybpc2 59.5/51 127.3

MYBP-H P70402/Mybph 25.3/7 52.6

Actin (ACT) filament

Alpha-Actin ACTA, skeletal muscle P68134/Acta1 68.2/25 42.0

F-ACT capping protein, subunit a-2 P47754/Capza2 54.9/10 32.9

F-ACT capping protein, subunit b P47757-2/Capzab 33.8/8 30.6

Tropomyosin (TPM) complex

TPM, alpha-1 chain P58771/Tpm1 77.8/37 32.7

TPM, beta chain P58774/Tpm2 76.1/38 32.8

TPM, alpha-3 chain P21107/Tpm 3 68.1/25 33.0

TPM, alpha-4 chain Q6IRU2/Tpm 4 37.9/9 28.5

Troponin (TN) complex

TNI-1, slow skeletal muscle Q9WUZ5/Tnni1 28.9/7 21.7

TNI-2, fast skeletal muscle P13412/Tnni2 44.0/9 21.3

TNT-1, slow skeletal muscle O88346-3/Tnnt1 28.4/8 30.0

TNT-3, fast skeletal muscle Q9QZ47-12/Tnnt3 40.2/13 28.3

TNC-1, slow/cardiac muscle P19123/Tnnc1 47.8/6 18.4

TNC-2, skeletal muscle P20801/Tnnc2 79.4/11 18.1

Z-disc complex

Filamin FLNC Q8VHX6-2/Flnc 42.0/71 287.2

Alpha-Actinin ACTN-2 Q9JI91/Actn2 68.3/50 103.8

Alpha-Actinin ACTN-3 O88990/Actn3 65.2/48 103.0

Telethonin TCAP O70548/Tcap 36.5/5 19.1

Myozenin MYOZ-1 Q9JK37/Myoz1 53.7/7 31.4

Myozenin MYOZ-2 Q9JJW5/Myoz2 58.3/12 29.7

Myozenin MYOZ-3 Q8R4E4/Myoz3 29.4/5 27.0

M-line complex

Myomesin MYOM-1 Q62234-2/Myom1 57.4/70 175.3

Myomesin MYOM-3 A2ABU4/Myom3 52.2/47 161.7

Obscurin OBSCN A2AAJ9/Obscn 31.5/135 965.8

Half-sarcomere-spanning titin filament

Titin TNN A2ASS6/Ttn 51.4/1284 3904.1

Muscle ankyrin repeat protein MARP Q9WV06/Ankrd2 26.2/7 36.7

* Mass spectrometric analyses of wild-type mouse diaphragm muscle specimens were carried out as previously
described in detail [201,269,333]. The table lists representative protein species that are present in the sarcomere of
skeletal muscle fibers.
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3. Proteomics of Age-Related Muscle Wasting
3.1. Pathobiological Hallmarks of Sarcopenia of Old Age

Skeletal muscle aging can be considered a fundamental biological process that occurs
in all humans of advanced age [334]. However, individual muscles in the same body age
differently [28,335] and considerable inter-individual differences exist in the extent and time
course of muscle tissue loss and decline in contractile strength [9,336]. Importantly, skeletal
muscle degeneration can be accompanied by progressive deterioration of myocardial
functions in the elderly, causing serious medical complications due to cardio-sarcopenia
syndrome [337]. Although sarcopenia of old age is due to multi-factorial mechanisms,
it is most likely that neurological changes during aging play a key role in the initiation
of muscular atrophy. The loss of spinal motor neurons appears to be associated with
the initial decline in the proper innervation of voluntary muscles. The damage of the
neuronal systems is exacerbated by a diminished capacity for reinnervation or patterns of
faulty reinnervation [338]. The tendency of fast-to-slow muscle fiber-type transitions in a
large number of aged human muscles was shown to be linked to a higher susceptibility
of faster-contracting fibers to muscular atrophy [50,51,339]. This higher vulnerability of
faster-twitching and mostly glycolytic fibers under atrophic conditions is closely related to
specific signaling pathways involving peroxisome proliferator-activated receptor gamma
coactivator PGC1-alpha and transforming growth factor TGF-beta [340].

Epidemiological studies of sarcopenia, assessed by both cross-sectional and longitudi-
nal investigations, indicate that everyday life of a large proportion of the population over
75 years of age is impaired by a certain degree of physical frailty and impaired skeletal
muscle functioning [341–347]. Worsening cofactors of age-related muscle wasting include
sarcopenia-independent chronic diseases and their extensive pharmacological therapy, as
well as chronic low-grade inflammation, insulin resistance, poor nutrition, extended bedrest
and the lack of appropriate physical activity levels [9,10,14,348,349]. Thus, to counteract the
age-dependent decline in skeletal muscle performance, optimized rehabilitation [350] and
appropriate physical exercise regimes, such as moderate resistance exercises [351–353], are
crucial to minimize oxidative stress and inflammation in sarcopenia [354,355]. Since older
adults exhibit a higher rate of protein turnover [356], and an apparent imbalance between
accelerated muscle protein breakdown and impaired levels of protein re-synthesis exists
in aged muscles [9–11], the resulting reduced levels of contractile components in older
individuals should be addressed by avoiding a poor diet quality [357–359] and instead
provide an adequate intake of high-quality protein in the elderly [360–363].

Recent publications have critically examined the diverse and multi-factorial aspects of
aging and sarcopenia, including senescence-related changes linked to abnormal metabolic
pathways [364], mitochondrial dysfunctions [365–371], the role of reactive oxygen species
and disrupted redox signaling [372–375], abnormal calcium handling [376], functional
changes in neuromuscular transmission [377], altered myokine and myomitokine
signaling [369,378], the role of miRNAs in the decline of proteostasis [379,380], anabolic
resistance and impaired muscle protein metabolism [381–383], adipocyte crosstalk in aged
skeletal muscle and sarcopenic obesity [384,385], immune system alterations, chronic inflam-
mation and immune–metabolic dysfunction associated with oxidative stress [33,366,386–388],
the role of telomere length during aged fiber regeneration [389], the interplay between
sarcopenia, frailty and cognitive impairments in the elderly [390], cardio-sarcopenia syn-
drome [337] and the influence of nutrition on the aging phenotype [391]. The finding
that the satellite cell pool is preferentially affected in fast type II fibers in the elderly [392]
has established the idea that stem cell exhaustion is majorly involved in sarcopenia and
possibly even facilitates age-associated fast-to-slow transitions [393]. Thus, the reduction in
muscle-specific stem cells appears to play a key role in the impaired regenerative capacity
of aged fibers [394–396]. This phenomenon underlines the enormous complexity of the
molecular and cellular mechanisms that are associated with skeletal muscle aging.
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3.2. Proteomics of Aged Skeletal Muscle

Biomarker discoveries using omics-type surveys are crucial to improve the monitoring
of impaired physiological functioning, altered energy metabolism and chronic inflammation
in aged muscle [397], and to advance the diagnosis, prognosis and therapeutic monitoring
of frailty syndrome and sarcopenia in the aging population [398–400], whereby proteomics
plays a key role in detecting and characterizing novel marker candidates [48,49]. In the con-
text of aging and alterations in contractile proteins, human skeletal muscles were extensively
studied using both top-down/gel-based approaches versus bottom-up/peptide-centric
analyses [202,221,401–414]. Changes in particular isoforms of skeletal muscle proteins
during the aging process can give detailed insights into molecular and cellular mecha-
nisms that underlie sarcopenia of old age. Although individual skeletal muscles exhibit
differing degrees of susceptibility to aging-induced muscular atrophy [28], proteomics has
confirmed the previous findings from biochemical, cell-biological and histological studies
that suggest a general trend of fast-to-slow transitions in senescent muscles [50,415,416] and
concomitant alterations in glycolytic and mitochondrial pathways [39,417]. This includes a
stepwise transition from faster isoforms of MyHC, MLC, ACT, TPM, TNC, TNI and TNT
to their slower counterparts. Of note, the recent proteomic profiling of single fibers from
human vastus lateralis muscle of young adults has given a comprehensive overview of fiber-
related differences in protein isoform expression patterns [243]. These types of proteomic
catalogs can be highly useful as reference databanks for studying proteome-wide changes
during aging.

Table 2 lists major MS-based investigations with a bioanalytical focus on protein
changes in contractile proteins during human skeletal muscle aging [202,221,401–414].
The listings of individual proteomic investigations summarize the analyzed muscle spec-
imens, the age range of samples, the bioanalytical approach and the detected proteome-
wide alterations with a focus on the contractile apparatus. Since considerable phys-
iological and biochemical differences exist between untrained versus trained skeletal
muscles [68,418–420], contractile fiber aging has also been studied in select master
athletes [421,422] in addition to the below-listed studies on neuromuscular changes in
the general and mostly untrained population. Major proteomics surveys of aged human
muscles that did not focus on the contractile apparatus include investigations into the role
of mitochondrial abnormalities [423] and molecular chaperones [424], as well as metabolic
changes due to oxidatively modified proteins in satellite cells [425].

Table 2. List of major mass-spectrometry-based proteomic profiling studies focusing on contractile
proteins in aged human skeletal muscle tissue.

Specimens Bioanalytical Approach Proteomic Changes References

Vastus lateralis
(20–25 years versus 70–76

years)

2D-DIGE, ESI-MS/MS, Pro-Q
Diamond, PAGE analysis of

MyHC isoforms

Increase in MLC-2s, ACTC and
MyHC-I; decrease in MLC2f,
TNT-3, TPM-3 and MyHC-2x;

shift in phosphorylated MLC-2f to
MLC-2s isoforms

Gelfi et al. [401]

Vastus lateralis
(47–62 years versus 76–82

years)
2D-DIGE, MALDI-TOF, IB Increase in ACTC; decrease in

ACTA, MLC-2, TNT-1 and TNC-1
Staunton et al. [402],

Ohlendieck [403]

Vastus lateralis
(53 years mean age versus 78

years mean age)

Soluble proteins, LC-MS/MS,
IB

Increase in MARP/ANKRD2;
decreases in MLC-1/3, MyHC-2x

and TTN
Théron et al. [202]

Vastus lateralis
(48–61 years versus 76–82

years post-menopausal
women)

2D-GE (CBB), LC-MS/MS, IB

Increase in MARP/ANKRD2,
MLC-1/3f, ACTA, TNT-3 and

MYOZ-1; decreases in MLC2s and
TNN

Gueugneau et al. [404]
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Table 2. Cont.

Specimens Bioanalytical Approach Proteomic Changes References

Rectus abdominis
(0–12 years versus 52–76

years)

Oxi-proteome analysis,
2D-GE, protein carbonyl

immuno detection

Detection of age-related
carbonylation of MyHC-1,

MYBP-C1 and TNT-1
Dos Santos et al. [405]

Vastus lateralis
(18–30 years versus >55 years;

trained and untrained)

LC-MS/MS, SRM, PAGE
analysis of MyHC isoforms

Increase in MyHC-1; decrease in
MyHC-2a; establishment of

quantitative differences in myosin
light chain composition

Cobley et al. [406]

Vastus lateralis
(22–27 years versus 65–75

years)

Single-muscle-fiber
proteomics, LC-MS/MS

Differential effects on fast versus
slow fibers based on MyHC-1,

MyHC-2a and MyHC-2x
distribution analysis; increase in
chaperones of MyHC and ACTA

Murgia et al. [407]

Quadriceps muscle (66–80
years) of healthy versus

cancer patients

LC-ESI-MS/MS, SWATH MS,
IFM, IB

Differential expression of
MyHC-1, MyHC-2a and

MyHC-2x in healthy elderly
versus cancer patients with or

without weight loss

Ebhardt et al. [408]

Vastus lateralis
(23 years mean age versus 71

years mean age)

2D-GE (CBB), Pro-Q Diamond,
MALDI-TOF MS, PAGE

analysis of MyHC isoforms, IB

Increase in MyHC-1; decrease in
MyHC-2a and MyHC-2x;

myosin/actin ratio not affected;
differential effects on expression

of TNT-3, ACTA and ACTC
proteoforms

Brocca et al. [409]

Vastus lateralis
(Obese and healthy older men
of average age 66 undergoing
resistance training and energy

restriction)

LC-MS/MS, deuterated water
labeling of newly synthesized

skeletal muscle proteins

Determination of synthesis rate of
myofibrillar proteins (MyHC,

MLC, ACTA, TPM, TNC, TNT,
TNI)

Murphy et al. [221]

Vastus lateralis
(range of individuals from 20

to 87 years of age)
TMT, LC-MS/MS

Decrease in MYBP-H; switch from
MyHC-2x/MyHC-2a to MyHC-1;

differential effects on TNT-3,
TPM-1 and MYOZ-2 expression

Ubaida-Mohien et al.
[410,411]

Vastus lateralis
(25 years mean age versus 62

years mean age)

LC-MS/MS, PAGE analysis of
MyHC isoforms

Reduced acto-myosin abundance;
decrease in ACTA and MYBP-H;

increase in ACTC and TNT-1
Vann et al. [412]

Vastus lateralis
(21 years mean age versus 73

years mean age)
2D-GE (CBB), LC-MS/MS, IB

Increase in TNT-1 and MARP;
decrease in ACTA, TNT-3 and

MYOZ-1
Gueugneau et al. [413]

Vastus lateralis
(25 years mean age versus 67

years mean age)
iTRAQ, LC-MS/MS Decrease in ACTA and FLNC Deane et al. [414]

Top-down proteomics using routine 2D-GE or fluorescent 2D-DIGE is an ideal bioana-
lytical approach for the efficient separation of contractile proteins below 150 kDa [122], such
as fast and slow isoforms of MLC, TPM, TNC, TNI, TNT and ACT [52,66]. Human skeletal
muscles usually contain a mixture of slow-twitching fibers, which are characterized by high
levels of oxidative metabolism, and faster-twitching fibers with glycolytic-oxidative or mostly
glycolytic metabolism [250], in addition to various hybrid fibers [426]. Mass spectrometric
analyses of separated 2D spots clearly confirmed shifts from fast protein isoforms to their
slower protein counterparts [401–405,409,413], which agrees with the general tendency of
fast-to-slow transitions during skeletal muscle aging [50,51,253,339]. These findings could be
complemented with bottom-up strategies and LC-MS/MS analyses to study contractile
proteins of higher molecular mass, such as MyHC and TNN [202,221,406–408,410–412].
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In analogy to shifts towards faster isoforms of TPM and subunits of the TN complex,
LC-based studies confirmed transitions from MyHC-2 isoforms towards MyHC-1. In
addition, the application of iTRAQ demonstrated decreases in ACTA and FLNC [414].
Single-muscle-fiber proteomics showed differential effects on fast versus slow fibers based
on the mass spectrometric detection of MyHC-1, MyHC-2a and MyHC-2x distribution
patterns [407]. Overall, the findings from the proteomic analysis of aged human muscles,
focusing mostly on the vastus lateralis muscle, agree with the higher susceptibility of fast
fibers to atrophic changes [202,221,401–414] and support the cell biological concept of
fast-twitching fibers being affected prior to slower fiber population during skeletal muscle
aging [416].

In analogy to the above-listed studies on human skeletal muscles, the analysis of
various animal muscles revealed similar tendencies of fast-to-slow transitions during fiber
aging. For example, the mass spectrometric profiling of the aging vastus lateralis muscle
from African green vervet monkeys (Chlorocebus aethiops sabaeus) confirmed decreases
in fast MyHC isoforms during age-related muscular atrophy [427]. Most aged animal
studies were carried out with small rodents [39,428–430]. Interesting new model systems
used in aging research are Drosophila, zebrafish and nematodes [431–434]. Following
initial optimization experiments [435,436], several proteomic investigations of animal
models focused on the analysis of mitochondria [437–442], the matrisome [443,444], the
cellular stress response [445], calpain-interacting proteins [446] and key post-translational
modifications [447], such as glycosylation [448], phosphorylation [449], carbonylation [450]
and nitration [451–455] in aged muscles. General alterations in the senescent skeletal muscle
proteome, including abundance changes and isoform switching of contractile proteins, were
examined in a large number of MS-based surveys using both the well-established rat model
of sarcopenia [209,405,456–473] and aging mouse muscles [474–486]. The gel-based analysis
of aging rat gastrocnemius muscle clearly identified decreases in MyHC-2b, MLC-2f and
TPM-1 as compared to increases in MyHC-1, MLC-2s and ACTC [456–464]. In particular,
MLC-2s appears to be majorly affected both in its abundance and phosphorylation pattern
during skeletal muscle aging [461,466], making it an excellent biomarker candidate of
fiber-type switching.

As illustrated in the representative findings on abundance changes in Ca2+-regulatory
components and contractile proteins in Figure 3, MS-based proteomics is an excellent bio-
analytical tool to establish decreases in important Ca2+-handling proteins that are involved
in cellular signaling pathways and the regulation of excitation–contraction coupling. This
includes subunits of the dihydropyridine receptor L-type Ca2+-channel of the transverse
tubules, the ryanodine receptor Ca2+-release channel of the triad junction, the luminal
Ca2+-binding protein calsequestrin of the terminal cisternae region within the sarcoplasmic
reticulum and the structural protein triadin [487–489]. Thus, a key mechanism involved
in skeletal muscle aging appears to be a certain degree of pathophysiological uncoupling
between sarcolemmal excitation and the initiation of acto-myosin sliding that mediates
fiber contraction [376,490–492], combined with a reduced association between Ca2+-release
units and aged mitochondria [493]. Disturbed Ca2+-homeostasis may be involved in al-
tered myocyte signaling in the context of fiber-type specification, which is supported by
proteomic data that indicate a general tendency of fast-to-slow transitions at the level of
isoform switching of contractile proteins [50].
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Figure 3. Representative example of the mass-spectrometry-based proteomic analysis of skeletal
muscle aging. Shown are crucial regulatory proteins of excitation–contraction coupling and Ca2+-
homeostasis (dihydropyridine receptor L-type Ca2+-channel, ryanodine receptor Ca2+-release chan-
nel, calsequestrin and triadin) and sarcomeric proteins (titin, troponin, myosin light chain and myosin
heavy chain). Mass spectrometric analyses of young versus aged wild-type mouse diaphragm muscle
specimens were carried out as previously described in detail [201,269,333].

4. Age-Related Muscular Atrophy, Biomarker Discovery and Therapeutic Approaches
4.1. Mechanisms of Age-Related Muscular Atrophy

Research over the last few decades has clearly established that the molecular and
cellular mechanisms of aging are highly complex [30–32] and specifically affect the skeletal
musculature [9–11]. The multi-factorial processes that are associated with age-related
muscular atrophy and sarcopenia of old age include:

• Progressive neurodegeneration: loss of neuromuscular junction integrity; degeneration
of motor neurons and resulting denervation; faulty patterns of reinnervation; loss of
entire motor units;

• Excitation–contraction uncoupling at the level of the transverse tubules, triad junction
and sarcoplasmic reticulum;

• Impaired calcium homeostasis;
• Abnormal mitochondrial functioning;
• Fast-to-slow transitions due to increased susceptibility of fast fibers to atrophy;
• Tendency of bioenergetic glycolytic-to-oxidative shifting;
• Increased cellular stress due to proteotoxic abnormalities;
• Abnormal protein turnover and synthesis causing dysregulated proteostasis;
• Hormonal imbalance and disturbed cellular signaling;
• Visceral obesity causing abnormal muscle-fat-axis signaling;
• Metabolic syndrome and insulin resistance;
• Increased levels of reactive myofibrosis triggering loss of fiber elasticity;
• Chronic low-level sterile inflammation;
• Reduced regenerative capacity due to satellite cell exhaustion;
• Epigenetic changes.
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Figure 4 summarizes crucial aspects of muscle aging, including the preferential sus-
ceptibility of fast type II fibers to age-related degeneration, which causes a general shift to
slower-twitching fiber populations in most senescent skeletal muscles.
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Figure 4. Overview of the multi-factorial changes during human skeletal muscle aging. The higher
susceptibility of fast-twitching type II fibers causes a tendency of fast-to-slow transitions in senescent
muscles. This is reflected by a switch from fast myosin heavy chain isoforms (MyHC-2a, MyHC-2x)
to slower counterparts (MyHC-1) during skeletal muscle aging.

4.2. Biomarker Discovery for the Improved Evaluation of Sarcopenia of Old Age

In order to improve the differential diagnosis of pre-, mild or severe sarcopenia [9–11],
the establishment of reliable and robust biomarkers of frailty and skeletal muscle wasting is
crucial [29,49]. Suitable markers can be measured by physical performance assessments [25–27],
imaging technology [22,28] and/or biochemical assays [494]. A novel imaging marker
system is the ultrasound sarcopenic index (USI), which can determine the loss of skele-
tal muscle mass in association with sarcopenia in a practical and relatively inexpensive
way [495]. Ideally, abundance changes in protein biomarkers of sarcopenia should be
easily measurable with high levels of specificity and sensitivity [496,497], as well as not
being majorly affected by gender, ethnicity, co-morbidities, exposure to pharmacological
agents and unrelated therapeutic treatments [498]. To avoid potential complications due to
elaborate tissue biopsy procedures, the development of non-invasive disease indicators is
favorable [499]. A recent meta-analysis of proteomic studies by Stalmach et al. [500], using
a gene ontology-driven approach, suggests that it is advantageous to integrate MS data
sets from both muscle tissue samples and suitable biofluids to gain more comprehensive
insights into atrophying changes in the human skeletal muscle proteome.

This gives non-invasive biomarker investigations of biological fluids, such as serum,
saliva or urine, a central role in aging research [501–503]. The serum of both older humans
suffering from sarcopenia [504–507] and senescent mice [508] were shown to exhibit dif-
ferential changes in common markers that are associated with inflammation, remodeling
of the extracellular matrix and mitochondrial functions [398]. This suggests the potential
usage of pro-inflammatory cytokines, growth factors, differentiation factors and leaked
mitochondrial proteins as suitable biofluid markers to evaluate the degree of skeletal mus-
cle aging [400]. The regulatory factor myostatin and insulin growth factor IGF-1 show
considerable potential to be useful as gender-specific markers of low skeletal muscle mass
and frailty [509]. Ideally, proteomic findings are correlated to the results from systematic
transcriptomic and metabolomic studies of sarcopenia [510–512].
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Promising biofluid protein markers of sarcopenia are the carboxy-terminal fragment
of agrin (CAF) [513–516] and the brain-derived neurotrophic factor [517–519]. The proteo-
glycan agrin is closely associated with the sarcolemmal dystrophin/utrophin-glycoprotein
complex that is involved in the cytoskeletal stabilization of the neuromuscular junction [520].
The loss of neuromuscular junction integrity appears to play a key role in muscular
atrophy [377,521] including sarcopenia of old age [522]. The activity of the synapse-specific
protease neuro-trypsin [523], and agrin cleavage, are clearly related to the age-dependent
degeneration of the neuromuscular junction [513]. The remodeling of aged motor units
in turn is linked to the preferential denervation of fast-twitching and mostly glycolytic
type II fibers, and faulty patterns of reinnervation by smaller motor neurons that establish
slower-contracting type I motor units [524–526].

The age-related fiber-type shifting and accompanying changes in MyHC isoforms [527]
can only generate lower maximum force levels in senescent skeletal muscles as compared
to young and adult muscle systems. These alterations in the overall composition of motor
units probably plays a central role in the gradual loss of skeletal muscle strength during
aging [528]. This makes circulating CAF a potential biofluid biomarker of motor unit
changes in sarcopenia, in conjunction with fast-to-slow fiber-type shifting in aged muscle
tissues, as outlined in Figure 5.
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Figure 5. Agrin as a potential serum biomarker of skeletal muscle aging. Shown is the linkage
between the disintegration of the neuromuscular junction during skeletal muscle aging and resulting
preferential loss of neurotransmission to fast type II fibers. A potential biomarker candidate of
this process is the release of carboxy-terminal agrin fragments (CAF) that can be measured in the
serum (sCAF) of patients suffering from sarcopenia of old age. At the neuromuscular junction,
the proteoglycan agrin associates with the dystroglycan complex (alpha/beta-DG), which forms an
integral part of the sub-sarcolemmal utrophin/dystrophin lattice and its associated proteins (DAPs)
at the post-synaptic membrane. During skeletal muscle aging, the integrity of the neuromuscular
junction is lost, and agrin is proteolytically cleaved by the enzyme neuro-trypsin. This results in the
production of distinct agrin fragments that can be conveniently detected in a minimally invasive way
in suitable biofluids.
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4.3. Therapeutic Approaches to Counteract Age-Related Muscular Atrophy

Aging-associated processes lead to a general decline of health status, a higher risk of
disease and drastically reduced physical fitness. It is crucial to take multi-system derange-
ments into consideration when designing novel therapeutic approaches to treat individual
age-related ailments, such as sarcopenia. Frailty syndrome can result in a diminished
quality of life and even loss of independence in the case of severe and chronic muscle
wasting. General recommendations to support healthy aging include the positive influence
of a healthy and balanced diet, sufficient sleep, regular relaxation, proper physical exercise,
calm breathing patterns, regular social interactions and a positive view of life [529–532].
Thus, promoting a healthy lifestyle should include countermeasures against sarcopenia of
old age to avoid the premature loss of physical strength and skeletal muscle mass. However,
a crucial issue for the elderly is proper access to advanced strength training equipment
and the realistic implementation of health-promoting support structures, especially during
pandemics. During the current COVID-19 crisis, the aged population has only limited
access to gyms, parks, recreational facilities and rehabilitation services, causing long-term
negative effects on muscle health [533–535], and this situation has to be urgently addressed
to promote healthy aging. In addition, the treatment of acute sarcopenia in patients with or
without COVID-19 infection has been complicated by the restricted access to health services
during the pandemic [536–539], and the increased application of mechanical ventilation and
complications during ventilator weaning has caused considerable side effects, including
skeletal muscle wasting [540].

Therapeutic approaches to attenuate the impact of age-related skeletal muscle degener-
ation include non-pharmacological interventions, such as lifestyle changes that incorporate
regular and appropriate resistance training [351–353,541,542], and optimized dietary con-
siderations, including a protein-rich diet and the frequent ingestion of small portions of
high-quality food [358–360]. Nutritional combinations of Vitamin D, leucine-enriched pro-
tein supplements and whey protein were shown to have some effects on building skeletal
muscle mass and improve physical functionality of the neuromuscular system [543–546].
The combination of mixed types of regular physical exercise with a balanced diet and
nutritional supplementation appears to be the most suitable multi-component interven-
tion strategy to minimize the effects of sarcopenia and avoid mobility disability in older
adults [547,548]. A protein-rich diet, combined with high levels of physical activity, should
both stimulate muscle protein synthesis and thus prevent impaired proteostasis in senes-
cent fibers, and have generally positive effects on metabolism, bioenergetics and hormonal
balance. At advanced age, combining a low-intensity form of home-based resistance exer-
cise with proper nutrition and a multi-ingredient supplementation seems to be the most
effective way to treat sarcopenia.

Regular exercise has a profound effect on the skeletal muscle proteome [68,354,419]
and muscle fiber-type diversification [549–551]. In particular, resistance exercise aimed
at improving the contractile strength of aged skeletal muscles is generally associated
with alterations in myofiber size, muscle re-innervation, fiber-type-specific myonuclear
adaptations, mitochondrial remodeling and fiber-type shifting [552–557]. Since the age-
related loss of skeletal muscle mass is mostly due to a drastic reduction in the size of
fast-twitching type II fibers [50,51,339,416,558], it is encouraging that resistance exercise
specifically results in the hypertrophy of type II muscle fibers, although it does not appear
to affect patterns of fiber-type grouping in aged muscles [559]. Distinct changes in MyHC
isoform expression patterns are usually exemplified by reduced MyHC-1 and increased
MyHC-2x levels [554].

Current pharmacological trials to treat sarcopenia focus on the potential suitability
of various agents, including appetite stimulants, protein anabolic agents, growth hor-
mones, anabolic steroids, androgenic steroids, androgenic receptor modulators, angiotensin-
converting enzyme inhibitors, troponin activators, select receptor blockers and myostatin
inhibitors [15,560–563]. Interesting therapeutic options to treat sarcopenia are also pro-
vided by interference with atrophy–hypertrophy signaling pathways [564–568]. The above
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outlined degradation of agrin by neuro-trypsin at the neuromuscular junction [513–515]
also presents a potential therapeutic target to address abnormal innervation patterns in
aged skeletal muscles by employing agrin replacement therapy [516]. One of the most
interesting biomedical approaches to treat sarcopenia is myostatin therapy.

Myostatin is a secreted myogenic factor that acts as a negative regulator of skele-
tal muscle growth. It belongs to the transforming growth factor TGF-beta family of
proteins and functions by inhibiting the phosphorylation of Akt protein kinase within
the insulin-like growth factor 1–phosphatidylinositol-3-kinase–serine/threonine protein
kinase PKB–mammalian target of rapamycin (IGF-1/PI3K/Akt/mTOR) signaling
pathway [569]. Consequently, the inhibition of a negative regulator might result in a
positive effect on skeletal muscle growth. This can be supported by (i) natural mecha-
nisms, such as physical exercise, (ii) dietary supplements and nutraceutical agents and/or
(iii) pharmacological/biotechnological intervention with myostatin inhibitors [570–572],
including antibody-based therapy [573]. The rebalancing of muscular atrophy versus hy-
pertrophy by a growth-promoting process could modulate the aging process and have a
positive effect on physical fitness and neuromuscular function [574].

Ideally, the above-described therapeutic approaches to improve general skeletal mus-
cle strength would especially target the fast-twitching fiber population that is mostly
susceptible to muscular atrophy in the elderly [50,339,558]. Figure 6 provides a summary
of current therapeutic options to treat sarcopenia of old age. For a critical assessment of
current pharmacological strategies to halt or reverse age-related muscular atrophy, see the
recent review articles by Cho et al. [15], Kim et al. [561] and Huang et al. [563].
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5. Conclusions

The proteomic analysis of muscular atrophy in association with sarcopenia has de-
tected distinct changes in a variety of protein families. Alterations in aging skeletal muscles
include proteins involved in fiber contraction and relaxation, the regulation of excitation–
contraction coupling, ion homeostasis, energy metabolism, maintenance of the cytoskeleton,
the extracellular matrix and the cellular stress response. Skeletal muscle aging was shown
to be linked to a tendency of fast-to-slow transitions and increased oxidative bioenerget-
ics, as well as myofibrotic changes and a drastic increase in the expression of molecular
chaperones. These proteomic findings support the concept of extensive degenerative and
adaptive responses in the skeletal musculature due to sarcopenia of old age. Indepen-
dently verified transcriptomic and proteomic markers of fiber-type shifting and metabolic
modifications can now be used as indicators of molecular and cellular changes in both
aging human skeletal muscles and animal models of sarcopenia. In the future, it will be of
interest to study proteome-wide differences between age-related skeletal muscle wasting
and other types of muscular atrophy caused by a variety of diverse triggering factors, such
as denervation following motor nerve crush or spinal cord injury, prolonged bedrest in
association with chronic disease, inappropriate levels of neuromuscular loading during
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plaster cast immobilization or prolonged exposure to microgravity. Since skeletal muscle
performance deteriorates following extended periods of microgravity [3,575,576], which
has been studied by proteomics [577], it has been suggested that certain aspects of neuro-
muscular alterations during prolonged spaceflights resemble changes in sarcopenia [578].
This opens new possibilities to study accelerated types of muscle-related stress and the
molecular and cellular factors involved in muscular atrophy by the exposure of muscle
cells to microgravity [579]. The detailed comparison of proteomic and systems bioinfor-
matic data of different forms of muscular atrophy can be helpful to dissect the signaling
mechanisms and disturbed biochemical, physiological and cellular processes that lead to
diverse forms of muscle wasting.
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ACTA Alpha-actin-1, skeletal muscle
ACTC Alpha-actin-1, cardiac muscle
ACTN-2 Alpha-actinin-2
ACTN-3 Alpha-actinin-3
AI Artificial intelligence
BAC Benzyldimethyl-n-hexadecylammonium chloride
BAC-DROP BAC-gel dissolution to digest PAGE-resolved objective proteins
BN Blue native
CAF Carboxy-terminal fragment of agrin
CBB Coomassie brilliant blue
CyTOF Mass cytometry
DAPs Dystrophin-associated proteins
DDA Data-dependent acquisition
DG Dystroglycan
DIA Data-independent acquisition
DIGE Difference gel electrophoresis
DL Deep learning
ELISA Enzyme-linked immunosorbent assays
ESI Electrospray ionization
FACS Fluorescence-activated cell sorting
FASP Filter-aided sample preparation
FC Flow cytometry
FFPE Formalin-fixed, paraffin-embedded
GE Gel electrophoresis
GeLC-MS/MS Gel electrophoresis liquid chromatography mass spectrometry
IB Immunoblotting
ICAT Isotope-coded affinity tags
IFM Immunofluorescence microscopy
IHC Immunohistochemistry
iST In-StageTip
iTRAQ Isobaric tags for relative and absolute quantitation
LC Liquid chromatography
MALDI Matrix-assisted laser desorption/ionization
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MARP Muscle ankyrin repeat protein (ANKRD-2)
mIHC/IF Multiplex immunohistochemistry/immunofluorescence
ML Machine learning
MLC-2f Myosin light chain, fast, regulatory (MYL-11)
MLC-2s Myosin light chain, slow/cardiac, regulatory (MYL-2)
MLC-1/3f Myosin light chain, fast, essential (MLC-1 and MLC-3)
MLC-1s Myosin light chain, slow, essential (MLC-1sa and MLC-1sb)
MS Mass spectrometry
MS/MS Tandem mass spectrometry
MudPIT Multidimensional protein identification technology
MuSCs Muscle stem cells
MYBP-C1 Myosin-binding protein C1, slow
MYBP-C2 Myosin-binding protein C2, fast
MyHC-1 Myosin heavy chain, slow type-I (Myosin-7)
MyHC-2a Myosin heavy chain, fast type-IIA (Myosin-2)
MyHC-2b Myosin heavy chain, fast type-IIB (Myosin-4)
MyHC-2x Myosin heavy chain, fast type-IIX (Myosin-1)
MyHC-6 Myosin heavy chain MYH-6 (Myosin-6)
MyHC-7B Myosin heavy chain MYH-7B (Myosin-7B)
MyHC-13 Myosin heavy chain MYH-13, extraocular muscle (Myosin-13)
MyHC-14 Myosin heavy chain MYH-14 (Myosin-14)
MyHC-15 Myosin heavy chain MYH-15 (Myoisn-15)
MyHC-16 Myosin heavy chain MYH-16 (Myosin-16)
MyHC-emb Myosin heavy chain, embryonic muscle, MyHC-3 (Myosin-3),
MyHC-neo Myosin heavy chain, perinatal muscle, MyHC-8 (Myosin-8)
MYOM-1 Myomesin-1
MYOM-2 Myomesin-2
MYOZ-1 Myozenin-1
MYOZ-2 Myozenin-2
MYOZ-3 Myozenin-3
nAChR Nicotinic acetylcholine receptor
NEB Nebulin
OBSCN Obscurin
PAGE Polyacrylamide gel electrophoresis
PCT Pressure-cycling technology
PRM Parallel Reaction Monitoring
PTM Post-translational modification
sCAF Serum carboxy-terminal fragment of agrin
SCoPE-MS Single Cell ProtEomics by Mass Spectrometry
SCoPE2 Second-generation protocol called Single Cell ProtEomics
SDOC Sarcopenia Definitions and Outcomes Consortium
SDS Sodium dodecyl sulfate
SILAC Stable isotope labelling by amino acids in cell culture
SP3 Single-pot solid-phase-enhanced sample preparation
SRM/MRM Selected/Multiple Reaction Monitoring
SWATH-MS Sequential window acquisition of all theoretical mass spectra
TCAP Telethonin/titin-cap
TDA Targeted data acquisition
TMT Tandem mass tag
TNC-1 Troponin TnC, slow/cardiac
TNC-2 Troponin TnC, skeletal muscle
TNI-1 Troponin TnI, slow muscle
TNI-2 Troponin TnI, fast muscle
TNT-1 Troponin TnT, slow muscle



Int. J. Mol. Sci. 2023, 24, 2415 26 of 47

TNT-3 Troponin TnT, fast muscle
TOF Time-of-flight
TPM-1 Alpha-1-tropomyosin
TPM-2 Beta-tropomyosin, slow muscle
TPM-3 Alpha-3-tropomyosin, muscle
TPM-4 Alpha-4-tropomyosin, cytoskeletal
TTN Titin
USP3 Universal solid-phase protein preparation
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