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Abstract: Drug repositioning aims to discover novel clinical benefits of existing drugs, is an effective
way to develop drugs for complex diseases such as cancer and may facilitate the process of tradi-
tional drug development. Meanwhile, network-based computational biology approaches, which
allow the integration of information from different aspects to understand the relationships between
biomolecules, has been successfully applied to drug repurposing. In this work, we developed a new
strategy for network-based drug repositioning against cancer. Combining the mechanism of action
and clinical efficacy of the drugs, a cancer-related drug similarity network was constructed, and the
correlation score of each drug with a specific cancer was quantified. The top 5% of scoring drugs
were reviewed for stability and druggable potential to identify potential repositionable drugs. Of
the 11 potentially repurposable drugs for non-small cell lung cancer (NSCLC), 10 were confirmed
by clinical trial articles and databases. The targets of these drugs were significantly enriched in
cancer-related pathways and significantly associated with the prognosis of NSCLC. In light of the
successful application of our approach to colorectal cancer as well, it provides an effective clue and
valuable perspective for drug repurposing in cancer.

Keywords: NSCLC; drug repositioning; drug similarity network; Random Walk with Restart

1. Introduction

Cancer has become one of the most difficult diseases to overcome in the world today.
However, the discovery as well as development of new and effective anti-cancer drugs is a
time-consuming and expensive process with a high attrition rate [1,2]. Drug repositioning,
the process of finding new indications for approved drugs, has emerged as a powerful
alternative strategy for the development of novel anticancer drug candidates due to its
economical, efficient and risk-free nature [3,4].

Systems biology enables the study of whole system components formed by the inter-
actions between molecules, rather than just the characteristics of individual molecules [5,6].
This allows systems biology-based approaches to integrate and analyze different types of
large-scale biological datasets [7,8]. A series of systems biology-based approaches to drug
repositioning have been opened in the context of the ever-increasing volume of medical
data [3,9]. In recent years, the understanding of the molecular basis of cancer development,
progression and metastasis, as well as the mechanisms of treatment, has grown exponen-
tially [10–13]. At the same time, the increasing number of cancer bioinformatics tools, such
as network propagation algorithms, similarity metrics, and more, have been widely used
in systems biology-based cancer drug repurposing studies [14–16]. Networks are a key
feature in systems biology, providing the tractability and interpretability of interactions
between hundreds or even thousands of molecules and network-based approaches to drug
repositioning play an extraordinary role [17,18].
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Network medicine represents a concept and paradigm in modern biomedical research,
and its application to drug repositioning studies has become increasingly
popular [19–21]. Networks in drug repurposing studies are mainly constructed in terms
of drug or disease similarity as drug-disease association-centric and drug-centric [22–24].
The former uses known drug-disease relationships to construct relevant heterogeneous net-
works and employs methods, such as graph convolution, matrix factorization and matrix
completion, to predict new drug-disease associations [25–27]. Completing a heterogeneous
drug-disease network by drug and disease similarity metrics, Meng et al. proposed a
neural collaborative filtering approach based on neighborhood interaction to predict new
potential drugs for breast cancer and non-small cell lung cancer (NSCLC) [28]. Yang et al.
successfully identified possible new indications for Levodopa, Doxorubicin, Amantadine
and Flecainide by introducing bounded nuclear norm regularization methods into the
network [29]. In the heterogeneous drug-disease network, Shagahyegh et al. developed a
methodology based on an improved non-negative matrix factorization to excavate novel
drug-disease interactions and had been successfully carried out in breast cancer [30]. When
constructing a network centered on drug-disease interactions, there may be a significant
loss of network-specific information when the drug and/or disease relationships are mixed
indiscriminately in a heterogeneous network [22].

On the other hand, the drug-centric drug similarity networks rely on drug characteris-
tics such as structure, side effects and targets of action, which in turn guide the repositioning
of drugs [31,32]. Song et al. used spectral clustering to divide the integrated drug similarity
network into clusters and annotated each cluster with anatomical therapeutic chemical
(ATC) codes. Drug pairs with high similarity or drugs with unusual ATC codes in a given
cluster would have the potential for repositioning [33]. By developing a network centrality-
based drug prioritization method, Lucreţia selected azelaic acid as a possible antitumour
drug in a weighted drug similarity network [34]. These drug network-based approaches
have the potential to repurpose drugs to solve the high-investment-low-success dilemma
of new drug development [35,36]. Methods related to drug-centric networks are usually
constructed by considering only the characteristics of the drug itself to construct drug
similarity networks, lacking the consideration of disease pathogenesis.

The vast complexity of cancer phenotypes and genotypes is synthesized into an
outstanding conceptual framework in the form of the conceptualized “Hallmarks of Can-
cer” [37], and as more is known about the characteristics of cancer, it is desirable to
gain more insight into drug repurposing to help convert old drugs into cancer treatment
drugs [38]. The antihelminthic drug niclosamide induces anticancer effects by mediating
Wnt, STAT3 and NF-κB, signaling pathways that are hallmarks of cancer invasion and
metastasis [39–41]. Inflammation is a recognized hallmark of cancer for the progression of
malignancy. Aspirin triggered proresolving mediators resolvins and lipoxins that resulted
in inflammation inhibition and cancer regression stimulation [42,43].

The ATC classification system is a WHO multi-label categorization system that clas-
sifies drugs according to their therapeutic, pharmacological and chemical properties and
is the most widely recognized drug classification scheme available. Based on the assump-
tion that similar drugs will have similar medical indication areas, the ATC categorization
system has been widely used in drug repurposing studies [44]. ATC code and drug were
characterized by their similarity profiles and a drug-ATC code interaction network was
constructed. Drug ATC code prediction was considered as a binary classification problem,
applying a classifier to predict the unknown ATC codes of drugs [45]. Peng et al. predicted
new ATC codes for drugs by constructing substructure & target-drug-ATC networks [46].
All the above demonstrated that ATC code reflects the therapeutic effect of drugs well and
is an effective medium to evaluate the similarity of clinical treatment of drugs. The con-
struction of the drug similarity network by combining the therapeutic properties of drugs
characterized by ATC codes and the pathogenesis of diseases characterized by hallmarks
of cancer could effectively guide the repurposing of drugs.
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Here, we proposed an innovative strategy for the screening of repurposed drugs
for cancer by considering both the characteristics of the drug itself and the association
between the drug and the pathogenesis of the cancer. Based on the DrugBank database,
a cancer-related drug similarity network was constructed by integrating the functional
and clinical treatment similarities of the drugs. In the network, for a specific cancer, a
drug-cancer correlation score was developed and calculated for each drug. For the top
5% of drugs, a further comprehensive analysis of stability and druggable potential was
performed to screen potential repurposed drugs for the cancer. It would provide new ideas
for drug repositioning studies for cancer and provide a boost to the treatment of cancers.

2. Results
2.1. Cancer-Related Drug Similarity Network

In this study, the similarity between drugs was assessed by both their functional
and clinical therapeutic properties. First, 13,580 drugs were acquired from the DrugBank
database, and 5625 drugs, and their targets were derived after filtering for targets that did
not match the gene IDs in the hallmark gene set functional categories. The enrichment of
these drugs in each of the 50 hallmark gene sets was analyzed by the hypergeometric test
(see Methods section Functional similarity of the drugs), and a total of 3065 drugs were
detected to be significantly enriched in the corresponding hallmark gene set functional
categories. Within these, most of the drugs showed a smaller number of gene sets enriched
(Figure 1A). Over 60% of the drugs were enriched in more than one hallmark gene set, and
each drug was enriched in an average of two gene sets. The functional similarity between
drugs was measured by whether they were enriched in the same gene set. This resulted
in 629,214 similar drug pairs consisting of 3065 drugs. Among them, 83% of the drug
pairs shared one hallmark gene set, and the number of hallmark gene sets that could be
co-enriched between drugs was up to 8 (Figure 1B).

We found that 3150 of 13,580 drugs derived from the DrugBank database have ATC
codes. Of these, 73% had only 1 ATC code, and 15% had 2 ATC codes (Figure 1C). The
clinical therapeutic similarity between the 3150 drugs was measured based on the ATC
codes at levels 2, 3 and 4 (see Methods section Clinical therapeutic similarity of the drugs).
The 95th percentile of the empirical probability distribution function composed of all
similarity values was used to estimate the significance threshold with a value of 0.67
(Figure 1D). Made up of 1923 drugs with targets 181,893 similar drug pairs were determined
based on the clinical therapeutic similarity between the drugs.

Eventually, the cancer-related drug similarity network consisting of 4302 nodes and
807,391 edges was created, combining the functional and clinical therapeutic similarities
of the drugs by taking the union of detected drug pairs (Figure 1E). The network’s degree
ranged from 4 to 1612, with 5% of the nodes having a degree greater than 1000 and the
average degree of the nodes in the network being 375 (Figure 1F). It was shown that the
nodes in the cancer-related drug similarity network were closely connected. Of the 24
known therapeutic drugs (Supplementary Table S1) for NSCLC, 17 were similar to each
other (Figure 1F).
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Figure 1. Cancer-related drug similarity network. (A) Number of hallmark gene sets that the drug is 
enriched to. (B) Number of hallmark gene sets shared by drug pairs. (C) Percentage of drugs with 
corresponding number of ATC codes. (D) Empirical probability distribution of clinical therapeutic 
similarity values. The orange vertical line represents the 95th percentile of similarity data with a value 

Figure 1. Cancer-related drug similarity network. (A) Number of hallmark gene sets that the drug is
enriched to. (B) Number of hallmark gene sets shared by drug pairs. (C) Percentage of drugs with
corresponding number of ATC codes. (D) Empirical probability distribution of clinical therapeutic
similarity values. The orange vertical line represents the 95th percentile of similarity data with a
value of 0.67. (E) Graph of the network (green nodes represent known treatments for NSCLC, the
color of the edge represents the source of similarity). (F) Density plot of node degrees in the network.
The carpet margin line represents the density of the distribution of data on the axes, and the red
vertical line represents the mean of all node degrees with a value of 375. Additionally, the similarity
plot between known therapeutic drugs of NSCLC is inserted, with bright green circles representing
having similarity.
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2.2. Stable Drug Candidates in Unweighted Pattern

In the cancer-related drug similarity network, the drug-cancer correlation scoring
method was used to recognize drug candidates. For NSCLC, under the unweighting
pattern, the transition probability was set to 1 if the drugs were similar to each other and
0 otherwise. The 24 known therapeutic drugs from the DrugBank database were selected
as a seed set to compute the drug-cancer correlation score of each drug in the network.

Here, the top 5% of drugs were regarded as having a similarity with the therapeutic
drugs of NSCLC by running the drug-cancer correlation scoring algorithm. The leave-one-
out cross validation was performed to calculate the recall rate of 24 known therapeutic
drugs of NSCLC; 18 of these drugs were recalled in the corresponding identified top 5% of
drugs with a recall rate of 0.75 (Figure 2A). Accordingly, the algorithm was workable with
the unweighting pattern, and the top 5% of drugs were more likely to be associated with
the treatment of NSCLC.

The top 5% of drugs identified varied in different seed set conditions. The delete-n-out
strategy (see Methods Section Identification of Stable Drug Candidates) was implemented
to screen for stable drug candidates against NSCLC by considering the drugs and their
numbers that formed the seed set. Starting from n = 1, the number of seeds was removed
in increasing order. When n = 12, the set of identified candidate drugs was no longer fully
included in the result of removing one less seed.

The 192 drugs (top 5%) were screened when all known therapeutic drugs were used
as seeds. For each specified number of seed deletions, multiple different sets of top drugs
were generated. Of them, 193–217 and 204–294 drugs were captured as the top 5% by the
delete-1-out and delete-12-out strategies, respectively (Figure 2B). Here, the frequency of
each drug was counted, and the 95th percentile of the frequency distribution was treated
as the threshold for drug candidate screening. For the delete-1-out and delete-12-out
strategies, 24 and 9999 were the frequency thresholds, respectively (Figure 2C). As the
deleted seeds gradually increased, the captured drug candidates progressively became
fewer. The 174 and 43 drug candidates were captured corresponding to the delete-1-out
and delete-12-out strategies. The final 43 drug candidates were defined as the stable drug
candidates screened in the unweighting pattern. Each of the 43 stable drug candidates
had a top ranking in all seed set conditions, with 98% of them ranking top 50 on average
(Figure 2D). It demonstrated that, in the unweighting pattern, the identified stable drug
candidates are not only stable but also have top rankings. These candidates have promise
as drugs with novel therapeutic potential for NSCLC.
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pattern. Where the average ranking is marked by a pink diamond and the median is marked with a 
black dot. In addition, the Venn diagram of the top 5% of drugs filtered with different number of seeds 
removed is inserted. 

2.3. Stable Drug Candidates in Weighted Pattern 
In the cancer-related drug similarity network constructed by integrating two similari-

ties, the difference in the contribution of the two similarities may affect the screening of po-
tentially repositionable drugs. Therefore, 54 weighted patterns reflecting different degrees 
of contribution were represented by applying the drug-cancer correlation scoring approach. 
For NSCLC, in each weighted pattern, the delete-n-out strategy was performed, and the 
intersection of the recognized drugs was selected. The overlap of all weighting patterns was 
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the 64% weighting patterns) or 0.71 (for the 36% weighting patterns) (Figure 3A). Totally, 
the drug-cancer correlation scoring method for NSCLC had high recall rates in both 
weighting and unweighting patterns, which indicated that the strategy was reasonable and 
feasible. 

Figure 2. Stable drug candidates in unweighted pattern. (A) The recall of the leave-one-out cross
validation. “

√
” means the drug was recalled in the top 5% of drugs, and “×” denotes that the drug

was not recalled. (B) Distribution of the number of the top 5% of drugs. “ALL” represents all known
therapeutic drugs as a seed set. (C) Frequency distribution. The orange dashed line shows the 95th
percentile of the distribution. (D) Distribution of the ranking for the stable drug candidates in the
unweighted pattern. Where the average ranking is marked by a pink diamond and the median is
marked with a black dot. In addition, the Venn diagram of the top 5% of drugs filtered with different
number of seeds removed is inserted.

2.3. Stable Drug Candidates in Weighted Pattern

In the cancer-related drug similarity network constructed by integrating two simi-
larities, the difference in the contribution of the two similarities may affect the screening
of potentially repositionable drugs. Therefore, 54 weighted patterns reflecting different
degrees of contribution were represented by applying the drug-cancer correlation scoring
approach. For NSCLC, in each weighted pattern, the delete-n-out strategy was performed,
and the intersection of the recognized drugs was selected. The overlap of all weighting
patterns was identified as stable drug candidates.

The recalls of the leave-one-out cross validation for all weighted patterns were 0.75
(for the 64% weighting patterns) or 0.71 (for the 36% weighting patterns) (Figure 3A).
Totally, the drug-cancer correlation scoring method for NSCLC had high recall rates in both
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weighting and unweighting patterns, which indicated that the strategy was reasonable
and feasible.
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Figure 3. Stable drug candidates in weighted pattern. (A) The recall of the leave-one-out cross
validation for each weighting pattern. (B) Distribution of the number of the top 5% of drugs.
(C) The proportion of 160 intersecting drugs to the drug candidates identified by each weighted pattern.
(D) Density curve of frequency thresholds under different weights by the delete-12-out strategy. Where
the frequency threshold histogram corresponding to each weight is inserted. (E,F) The number of
candidate drugs detected under different weights by the delete-n-out strategy. (G) Ranking distri-
bution of stable drug candidates in all weighted patterns. Where the average rank is identified by a
purple diamond.
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When all known therapeutic drugs were taken as the seed set, 192–216 drugs (top 5%)
were recognized through 54 weighting patterns (Figure 3B). The number of intersections
for the top 5% drugs is 160, and its proportion in each weighted pattern is 0.74 to 0.83
(Figure 3C). Since the drugs detected in different weighted patterns are variable, the overlap
of all patterns will be regarded as more possible candidates.

The delete-n-out strategy was implemented in each weighting pattern with a cutoff
condition of deleting 12 seeds; 193–217 drugs were recognized as the top 5% by delete-1-out
strategy in different weighting patterns, and 204 to 294 drugs were detected as the top 5%
through delete-12-out (Figure 3B). For each weighting pattern, the frequency counts of the
drugs in the multiple identified the top 5% of drugs by removing a specified number of
seeds were performed, and the 95th percentile of the frequency distribution was chosen
as the threshold for screening. The delete-1-out has a frequency threshold of 24 for all
54 weights, that is, for each weight, the top 5% of drugs that appeared consistently in all
seed sets were used as candidates. The frequency thresholds ranged from 9195–10,000 for
delete-12-out in different weighting patterns (Figure 3D); 162–201 and 32–101 drugs were
identified by implementing the delete-1-out and delete-12-out strategies in 54 weighting
patterns, respectively (Figure 3E,F). The drugs as the minimum set identified by performing
the delete-12-out strategy in each weighting pattern were defined as candidates for that
pattern. The final 20 candidates that served as the intersection of the candidates captured by
all weighting patterns were considered as stable drug candidates screened in the weighting
pattern (Figure 3G). Of the 20 stable drug candidates, 19 had an average ranking in the top
50 and 80% were in the top 30. In the weighting pattern, the identified drug candidates had
the top ranking and stability as those in the unweighting pattern.

2.4. Potential Repositionable Drugs for NSCLC

By analyzing the stable drug candidates under the unweighted and multiple weighting
patterns, 43 and 20 drugs were screened, respectively. The 19 shared drugs were treated as
initial predicted drugs (Figure 4A).

The druggability of the initial predicted drugs was evaluated to recognize potential
repositioned drugs for NSCLC. The gene effects of 94 NSCLC cell lines derived from the
genome-wide CRISPR knockout screens are stored in the DepMap database. Genes with
gene effect scores < −0.5 were accepted as essential for the survival of the cell line. Out of
53 targets of 19 initial predicted drugs, 11 genes were detected as druggable targets based
on whether the gene was necessary for the survival of at least one cell line (Figure 4B).
Genes PPAT, HSPA8 and EGFR were essential for the survival of 62, 35 and 16 NSCLC
cell lines, respectively (Figure 4C). Of these, EGFR was targeted by 4 drugs, ERBB2 was
targeted by 3 drugs and 6 survival-essential genes were targeted by 1 drug (Figure 4D).
Ultimately, 11 potential repurposable drugs for NSCLC targeting 11 druggable targets
were predicted.

The ranking of 11 potential repositioned drugs in unweighting and weighting pat-
terns was examined (Figure 4E). Overall, 11 potential repurposed drugs ranked top in all
conditions. The average rankings were all less than 51, with 91% of drugs ranked in the top
25 on average and 73% of drugs in the top 20.
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dence to verify their activity against NSCLC (Table 1). Panitumumab, a recombinant hu-
manized anti-EGFR monoclonal antibody, was found to have significant tumor suppressive 
effects in NSCLC cell lines in an in vitro study [47]. A randomized phase III study concluded 

Figure 4. Potential repositionable drugs for NSCLC. (A) The overlap of stable drug candidates
captured by weighted and unweighted patterns. (B) Distribution of survival-essential gene effect
scores in NSCLC cell lines. Cell lines with gene effect <−0.5 are indicated by highlighted dots.
(C) NSCLC cell lines corresponding to survival-essential genes. (D) Drugs targeting survival-essential
genes. (E) Ranked distribution of potential repurposed drugs across all conditions, with the mean of
the rank identified by the purple diamond.

For NSCLC, among the 11 potential repositioned drugs, 10 drugs (90.91%) had ev-
idence to verify their activity against NSCLC (Table 1). Panitumumab, a recombinant
humanized anti-EGFR monoclonal antibody, was found to have significant tumor suppres-
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sive effects in NSCLC cell lines in an in vitro study [47]. A randomized phase III study
concluded that panitumumab in combination with erlotinib plus bevacizumab was an
efficient second-line treatment option for patients with NSCLC [48]. Neratinib binds to and
irreversibly inhibits EGFR and human epidermal receptor 2 (HER2), which patients with
specific EGFR mutant types of lung cancer may be sensitive to [49,50]. Neratinib also ex-
erted anti-proliferative effects on HER2-altered NSCLC cell lines and showed potent tumor
growth inhibitory activity in mouse xenograft models [51]. Although icotinib and olmutinib
were not marketed therapeutic drugs for NSCLC, they were documented in the DrugBank
database as being investigated for the treatment of NSCLC. The investigational drug ico-
tinib, a novel EGFR—tyrosine kinase inhibitor, has shown encouraging efficacy in patients
with advanced NSCLC who have failed previous chemotherapy. Olmutinib is a drug under
investigation for the treatment of metastatic T790M mutation-positive NSCLC. Dasatinib
inhibited migration and invasion and induced cell cycle arrest and partial apoptosis in
NSCLC cell lines [52]. Phase I/II studies have shown that dasatinib in combination with
erlotinib is safe and feasible for the treatment of NSCLC [53,54]. Trastuzumab emtansine
is an anti-HER2 antibody-drug conjugate that showed a signal of activity in patients with
HER2 overexpressing advanced NSCLC [55], and a phase II basket trial evaluated the activ-
ity of trastuzumab emtansine in patients with HER2 mutated NSCLC with a high response
rate [56]. In vitro experiments have shown that pertuzumab, a humanized anti-HER2 mon-
oclonal antibody, was effective against lung cancer cell growth by inhibiting HER2/HER3
signaling [57]. The triple combination of trastuzumab, pertuzumab and docetaxel was
feasible and effective for HER2-mutated pretreated advanced NSCLC patients in a phase II
study, with trastuzumab and pertuzumab being the repositionable drugs predicted in our
study [58]. Binimetinib plus carboplatin and pemetrexed chemotherapy for non-squamous
NSCLC in a phase I study with an investigator-assessed objective response rate of 50% [59].
An ongoing phase II PHAROS study would evaluate the antitumor activity/safety of
binimetinib plus encorafenib in patients with BRAFV600-mutated NSCLC [60]. The com-
bination of ruxolitinib and afatinib was observed modest clinical activity in patients with
EGFR-mutated NSCLC from a phase Ib study [61]. Although there is no direct evidence
that mitotane mediates the treatment of NSCLC, experiments have shown that its target,
FDX1, could mediate the metabolism of lung adenocarcinoma and affected prognosis [62].
Its other targets, ESR1, AR and PGR, were also associated with the prognosis of NSCLC and
AR was essential for the survival of NSCLC cell lines. In addition, the targets of mitotane
were enriched in cancer progression-related pathways.

Table 1. The potential repurposed drugs.

Average Rank Accession Number Drug Name Evidence

6 DB01269 Panitumumab [47,48]
8 DB11828 Neratinib [49–51]
8 DB11737 Icotinib DrugBank
9 DB13164 Olmutinib DrugBank
14 DB01254 Dasatinib [52–54]

21 DB05773 Trastuzumab
emtansine [55,56]

21 DB06366 Pertuzumab [57,58]
21 DB00072 Trastuzumab [58]
23 DB11967 Binimetinib [59,60]
24 DB08877 Ruxolitinib [61]
51 DB00648 Mitotane Unconfirmed

Over 60% of NSCLCs express EGFR, which has become an important therapeutic
target for the treatment of these tumors [63]. 29% of all known therapeutic drugs target
EGFR. Of the predicted potential repurposed drugs, 4 target EGFR and all are single-target
drugs. This indicated that these drugs might have the potential to treat NSCLC. When
the expression or mutation of a gene is found to be associated with patient prognosis, this
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is typically taken as evidence that the gene is an important driver of disease progression.
Therefore, genes associated with prognosis are often considered as potential targets for
therapeutic development [64,65]. So we studied the prognostic value of the corresponding
36 targets of other 7 drugs in NSCLC through two online databases, KM Plotter [66] and
PrognoScan [67]. Log-rank p-values and univariate cox regression p-values were both
thresholded below 0.05 in KM Plotter and adjusted to cox p-values < 0.05 in PrognoScan.
All 7 drugs had targets (30 targets in total) shown to be significantly associated with NSCLC
overall survival (OS) in at least 3 independent datasets (Figure 5). The results of the survival
analysis suggested that the 7 drugs were promising for the treatment of NSCLC.
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The deregulation of pathway activity underlies many human diseases, and drugs
may aim to correct dysfunction through direct effects on the activity of specific proteins in
the relevant pathways [68]. Known therapeutic targets were mainly enriched in 4 types
of pathways: the NSCLC pathway, tumor progression-related pathways, cell process-
related pathways and immune-related pathways (Figure 6) [69]. Our predicted potential
repositioned drugs were also enriched in these categories of pathways. Among the 11
potential repurposed drugs, 9 were enriched in the NSCLC pathway (hsa05223) (Figure 6A)
and 11 were enriched in the “Proteoglycans in cancer (hsa05205)”, “VEGF signaling path-
way (hsa04370)”, etc. pathways involved in the development of cancer (Figure 6B). It is
well known that the abnormal regulation of cell processes is closely related to the occur-
rence of cancer. The 10 potential repurposable drugs were enriched in pathways related
to cellular processes, such as MAPK (hsa04010), PI3K-Akt (hsa04151), ErbB (hsa04012)
and other signaling pathways (Figure 6C). Dysregulation of immune status in the tu-
mor microenvironment plays an important role in cancer development and progression,
and immunotherapy has emerged as a powerful clinical strategy for the treatment of
cancer [70–72]. Among our predicted drugs, 7 were enriched in immune-related pathways,
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including the well-known PD-1 checkpoint pathway (hsa05235), where PD-1 inhibitors
have become one of the indispensable treatments for NSCLC (Figure 6D). From a functional
point of view, given that the potential repositionable drugs were enriched in the same
class of pathways as the known therapeutic drugs of NSCLC, they may have the same
therapeutic effect.
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3. Discussion

Drug repurposing has been widely recognized as a promising tool for accelerating
the drug discovery process, where network-based approaches are receiving increasing
attention [17]. Existing drug–drug network-based approaches usually consider only the
target, side effects and structure of the drug, without considering the clinical therapeutic
effects exhibited by the drug. In this paper, we proposed a new drug repositioning strategy
based on drug similarity network. Not only the clinical efficacy of the drug was considered,
but also the innovative combination with the pathogenesis of cancer. The scoring algorithm
developed enables global assessment of the correlation between drugs and specific cancers.
The implementation of the stability screening strategy allows to reduce the dependence
on the number of known therapeutic drugs for a cancer thus identifying drugs that are
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more likely to be associated with the cancer. Survival-essential genes may be promising
candidates for anticancer drug targets [73]. Therefore, using survival-essential genes as a
screening requirement may make the identified drugs more promising for repositioning to
specific cancers. The druggable potential review using survival-essential genes identified 11
potentially repositionable drugs for NSCLC, 10 of which were well confirmed. Particularly,
the survival-essential genes of NSCLC, EGFR, ERBB2 and SRC, are both targets of known
therapeutic drugs and potentially repositionable drugs. The drugs identified by our strategy
are expected to be repurposed in NSCLC.

To further explore the wide applicability of the drug repositioning strategy, we ap-
plied this approach to colorectal cancer (the whole set of findings was detailed in the
Supplementary Document S1). Seven of the nine potentially repurposable drugs were
supported by the corresponding literature (Supplementary Table S2). Survival analysis
showed that the targets of the potential repositionable drugs were significantly associated
with the prognosis of colorectal cancer (Supplementary Figure S1). The targets of potential
repositionable drugs and known therapeutics were mainly enriched in 3 categories of
pathways, including colorectal cancer pathway (hsa05210) (Supplementary Figure S2A),
tumor progression-related pathways (Supplementary Figure S2B) such as HIF-1 signaling
pathway (hsa04066), Choline metabolism in cancer (hsa05231), and Rap1 signaling pathway
(hsa04015), MAPK signaling pathway (hsa04010) and other cellular process-related path-
ways (Supplementary Figure S2C). It is worth noting that the network constructed from
a pan-cancer perspective has the potential to not only identify potentially repositionable
drugs against specific cancers, but also to capture drugs with broad antitumor activity.
For example, icotinib and neratinib were identified and confirmed in both NSCLC and
colorectal cancer.

Our strategy has some limitations. We utilized common hallmarks of cancer de-
velopment and progression to characterize drug mechanisms of action, and in addition,
multi-omics data such as genomics, proteomics and metabolomics of cancer could be used
to integrate cancer specificity to characterize drug mechanisms of action. On the other
hand, we considered the clinical therapeutic properties and mechanism of action of the
drugs to construct a drug similarity network. The constructed network could be extended
by considering the pathways of drug action, side effects, etc., which may make potentially
repositionable drugs more practical for clinical applications.

In conclusion, the potential repurposable drugs identified with our drug repurposing
strategy in a pan-cancer context were well confirmed. These drugs may offer new opportu-
nities for therapeutic interventions in NSCLC or colorectal cancer. The proposed strategy
has promising applications for drug repositioning in more types of cancer.

4. Materials and Methods
4.1. Data Sets

Information on the drugs and their targets, as well as the ATC codes of the drugs, were
derived from the DrugBank database (https://go.drugbank.com/; version 5.1.8, released
on 3 January 2021) [74]. Hallmark gene set functional categories for cancer were curated
from the Molecular Signature Database (MSigdb; http://software.broadinstitute.org/gsea/
msigdb; version 7.4, released on 2 April 2021) resource, consisting of 50 gene sets involving
4383 genes [75]. The Cancer Dependency Map portal (DepMap; https://depmap.org/
portal/; version 21Q4, released on 3 November 2021) integrates CRISPR knockout screens
published from Broad’s Achilles and Sanger’s SCORE projects, from which gene effect
scores for cancer cell lines were derived. Negative scores represent that knockout genes
inhibit cell growth, whereas positive scores represent those promote growth.

4.2. Methods

In order to explore and investigate in depth the issue of drug repurposing in cancer and
to screen potential drug candidates for the treatment of a specific cancer, we implemented
an integrated repurposable drug screening strategy (Figure 7). The cancer-related drug

https://go.drugbank.com/
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
https://depmap.org/portal/
https://depmap.org/portal/
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similarity network was constructed by assessing the functional and clinical therapeutic
similarity of drugs based on the hallmark gene sets and the ATC codes of the drugs. For
a specific cancer, a new algorithm was developed to evaluate the drug-cancer correlation
score for each drug in the network, and the stability of the top-ranked drugs was further
examined, which resulted in stable drug candidates. Finally, the stable drug candidates
were analyzed for the druggable potential to identify repurposable drugs for cancer.
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network. Step 2, the correlation score of each drug with a specific cancer is calculated by using the
known therapeutic drugs for the cancer as a seed set. The stability of the top 5% of drugs is examined
by removing seeds in a stepwise increasing number. Step 3, the druggable potential of the shared
stable drug candidates recognized in different weighting patterns is reviewed to identify potentially
repositionable drugs for the cancer.
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4.2.1. Cancer-RELATED Drug Similarity Network Construction

For cancers, given that the pathogenesis is characterized by the instability of its hall-
mark genes, the therapeutic mechanism for cancer may be to correct the dysfunctional
state of the disease by enriching the targets of its therapeutic drugs to hallmark gene set
functional categories. Based on this assumption, we computed the functional similarity
between drugs based on hallmark gene sets in which the drugs were enriched. In addi-
tion, the ATC system is an internationally accepted drug classification system based on
therapeutics and chemistry, reflecting both the pharmacological and therapeutic effects
of drugs. Therefore, the clinical therapeutic similarity between drugs could be estimated
with the ATC codes. Finally, an integrated drug–drug similarity network related to cancer
pathogenesis was constructed by combining similar drug pairs recognized based on the
functional and clinical treatment similarities of the drugs.

Functional Similarity of the Drugs

Functional similarity between drugs was calculated based on the hallmark gene sets.
A hypergeometric test analysis was performed on the drug dx to enrich its targets into gene
set h of the 50 hallmark gene sets for cancers:

Ph(dx) = 1−∑F−1
f=0

(
M
f

)(
Q−M
q− f

)
(

Q
q

) (1)

where Q is the total number of genes in 50 hallmark gene sets (Q = 4383), q is the count of
targets of drug dx contained in 50 hallmark gene sets, M is the number of genes in gene
set h and F is the count of targets of dx included in h. A 50-dimensional vector H(dx)
was used to represent the enrichment of drug dx in the 50 hallmark gene sets where dx
was considered to be enriched in h if Ph(dx) ≤ 0.05 and was marked as 1 in the vector;
otherwise, it was marked as 0. The functional similarity Shallmark(di, dl) of drug di and drug
dl was then estimated using the Jaccard index Jaccard(H(di), H(dl)) of H(di) and H(dl):

Shallmark(di, dl) =

{
1, i f Jaccard(H(di), H(dl)) 6= 0
0, otherwise

(2)

If Shallmark(di, dl) is equal to 1, the two drugs are considered similar; otherwise, they
are dissimilar.

Clinical Therapeutic Similarity of the Drugs

The ATC classification system is divided into five levels representing increasingly
finer drug categories, in which levels 2, 3 and 4 codes stand for the therapeutic and
pharmacological information of drugs [46]. Here, the clinical therapeutic similarity between
drugs was estimated based on the 2nd-, 3rd- and 4th-level ATC codes. The kth level drug
therapeutic similarity (Sk) between drug di and drug dl is defined as follows:

Sk(di, dl) =
ATCk(di) ∩ ATCk(dl)

ATCk(di) ∪ ATCk(dl)
(3)

where ATCk(dx) represents all ATC codes at the kth level of drug dx. The score SATC(di, dl)
is used to define the therapeutic similarity between drug di and drug dl :

SATC(di, dl) =
∑k=4

k=2 Sk(di, dl)

3
(4)

The value of SATC(di, dl) ranges from 0 to 1. The closer the value is to 1, the more
clinical therapeutic similar the two drugs are. The significance threshold was then estimated
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based on the empirical probability distribution function (Pdf) of the similarity data among
all drugs with ATC codes. If the similarity between drugs is not below this threshold, they
are considered similar.

4.2.2. Drug-Cancer Correlation Scoring

For a specific cancer, a new algorithm was designed for the global assessment of
drug-cancer correlations in the cancer-related drug similarity network. The probability of
each node was defined as the drug-cancer correlation score and used as a measure of how
similar the node was to known therapeutic drugs. More specifically, Random Walk with
Restart was performed in the network using the known therapeutic drugs for a cancer as
the seed set, and after the seed set is propagated through, all nodes (the node representative
drug in this study) in the network are ordered by the probability of arriving at the seed set
by random walk. Accordingly, the drug-cancer correlation score for drugs in the network
was defined as St+1:

St+1 = (1− r)WSt + rS0 (5)

where restart probability r taken as 0.7, St is a vector where its i-th element represents the
probability of a random walker being at node i at time t, S0 is the initial vector whose seed
nodes were given equal probability with the sum of their probabilities of 1 while the other
nodes were set to 0. W is the column normalized transition probability matrix consisting
of transition probability wij (from node i to node j). To reflect the importance of the two
sources of similarity, the transition probability is measured by assigning weights. Thus, the
wij can be described as follows:

wij =

{
0 or 1, i f unweighted
αA + βB, i f weighted

(6)

In the unweighting pattern, wij is 1 if the two nodes are similar and 0 otherwise, and
in the weighting pattern, A, B denote the functional and clinical treatment similarity of the
drug, and α, β represent weighting coefficients for all combinations of integer values from
1 to 9 (the simplest ratio is taken if the α, β ratio is the same). A total of 54 combinations
of weighting coefficients to be evaluated. The algorithm is considered to have converged
when the difference between St+1 and St (as measured by the L1 paradigm) is less than
10−10. The higher the drug-cancer correlation score of a drug, the higher the similarity to
the seed set.

4.2.3. Identification of Stable Drug Candidates

Both the drug-cancer correlation score and its ranking changed with the seed set. To
identify stable drug candidates, we proposed a stability screening strategy by separately
calculating the drug-cancer correlation scores for different seed sets formed by stepwise
seed removal.

We implemented a strategy called delete-n-out (n is the number of seeds removed)
by gradually eliminating seeds until the drug was unstable after frequency screening
(Figure 7). More specifically, in the network, the number of deleted seeds grew from 1 to n
in increasing order. With a given number of seeds removed, the drug-cancer correlation
score was computed and ranked separately in descending order for each node in all different
seed sets, and the top 5% of nodes were selected as potentially relevant for cancer treatment.
The frequencies of the top 5% of nodes were then counted, and the 95th percentile of the
frequency distribution was used as the lower bound to obtain the corresponding set of
drug candidates. The candidate drug sets were recognized after comparing the removal
of a different number of seeds. When the candidate drug set discriminated by removing
one more seed that was completely included in the current candidate drug set, the process
continued; otherwise, the deletion was stopped. In particular, when the number of seed
combinations to be removed by the delete-n-out method was too large and very time-
consuming due to the sheer number, we used the result of 10,000 randomizations as the
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candidate drug detected in that case. The ultimate set of identified drug candidates was
used as the stable drug candidates. The pseudo-code for the entire stable drug candidate
identification process is shown in Figure 8.
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4.2.4. Potential Repositionable Drug Screening

A two-step screening modality was proposed to identify potential repurposable drugs
for a specific cancer. The first step was to evaluate the stable drug candidates identified by
unweighted and different weighting patterns and used the intersection as initial predicted
drugs Dp:

Dp = Dunweighted ∩ Dweighted (7)

where Dunweighted represents the stable drug candidates derived without weighting, and
Dweighted is the candidates filtered with weighting, consisting of the intersection of the
stable drug candidates screened in different weighting patterns:

Dweighted = ∩j=54
j=1 Cm(j) (8)

where Cm(j) is the stable drug candidates recognized at the j-th weighting pattern (see
section Identification of stable drug candidates).
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The next procedure was to assess the capability of the initial predicted drugs. The
selection of potential targets for cancer can be achieved using the CRISPR knockout screens,
and gene effects represent the impact of knocked out genes on the survival of cancer cell
lines [76]. Typically, the cut-off value will be set to –0.5 for gene effect scores indicating the
significant depletion of cell lines [77]. Thus, the possible druggable targets G for the cancer
I is described as:

G(I) = {g|score(g) ≤ −0.5, score(g) ∈ Scores(g)} (9)

where Scores(g) is the set of gene effect scores resulting from knocking out gene g in the cell
lines of cancer I. Ultimately, potential repositionable drugs DR for the cancer I were the
initial predicted drugs whose targets were included in the druggable targets G(I):

DR =
{

D|T(D) ∩ G(I) 6= ∅ and D ∈ Dp
}

(10)

where T(D) represents the target set of drug D.
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