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Abstract: Brown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to
promote energy expenditure and ameliorate diverse metabolic complications. There is a general
interest in understanding the pleiotropic effects of metformin against metabolic complications. Ma-
jor electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the
Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of
metformin on regulating BAT thermogenic activity to ameliorate complications linked with obe-
sity. The summarized evidence suggests that metformin can reduce body weight, enhance insulin
sensitivity, and improve glucose metabolism by promoting BAT thermogenic activity in preclinical
models of obesity. Notably, this anti-diabetic agent can affect the expression of major thermogenic
transcriptional factors such as uncoupling protein 1 (UCP1), nuclear respiratory factor 1 (NRF1),
and peroxisome-proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) to improve
BAT mitochondrial function and promote energy expenditure. Interestingly, vital molecular mark-
ers involved in glucose metabolism and energy regulation such as AMP-activated protein kinase
(AMPK) and fibroblast growth factor 21 (FGF21) are similarly upregulated by metformin treatment
in preclinical models of obesity. The current review also discusses the clinical relevance of BAT and
thermogenesis as therapeutic targets. This review explored critical components including effective
dosage and appropriate intervention period, consistent with the beneficial effects of metformin
against obesity-associated complications.

Keywords: metformin; obesity; thermogenesis; brown adipose tissue; metabolism; therapeutic target

1. Introduction

Obesity persists as a serious global public health issue associated with the development
of adverse health outcomes [1]. Based on the body mass index (BMI) ≥ 30 kg/m2 as a
measure of obesity in humans, the World Health Organisation (WHO) reported that over
1.9 billion adults, approximately 39% of the adult population, were overweight by the year
2016 [2]. Obesity is broadly defined as a condition in which the intake of energy surpasses
its use, a process that normally drives excessive body fat accumulation, leading to impaired
metabolic function [3,4]. Arising metabolic anomalies are consistent with the development
of metabolic diseases, including insulin resistance, non-alcoholic fatty liver diseases, type 2
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diabetes (T2D), and cardiovascular diseases (CVDs) [3,4]. Evidently, adipose tissue has been
subject to increasing research to explore the pathological features of obesity and metabolic
syndrome [5,6]. As a result, comparative analysis of adipose tissue compartments or its
distribution within the body, including the effect of therapeutic drugs on adipose tissue
function, have become equally important [5–7].

Briefly, the two classical types of adipose tissue that have been characterized in the
human body are white adipose tissue and brown adipose tissue (BAT) [8]. In terms of
morphology and function, the former contains less mitochondria and unilocular lipid
droplet to store excess energy as fat, whereas BAT has multilocular lipid droplets and is
rich in mitochondria, which are equipped with uncoupling protein (UCP)-1 to uncouple
oxidative phosphorylation from ATP synthesis, thereby dissipating energy as heat via
a process known as thermogenesis [8]. In fact, physical activity has been linked with
physiological benefits against metabolic complications by targeting the adipose tissue,
thus promoting energy expenditure, as well as improving mitochondrial function, in part
by prompting a phenotypic switch from energy-storing white adipose tissue (WAT) to
thermogenic BAT [9–11]. Anyhow, the prevailing hypothesis suggests that promoting
the thermogenic activity of BAT or WAT browning is consistent with enhanced energy
expenditure, and this process could reverse some pathological features of metabolic syn-
drome [12–14]. Therefore, BAT has become an attractive target tissue to study obesity and
associated metabolic complications [15,16].

Metformin, a biguanide derivate, remains as the most-prescribed anti-diabetic drugs,
which is generally considered as a first-line pharmacotherapy in the treatment of T2D,
in particular for individuals who are overweight and obese [17]. Beyond its well-known
insulin-sensitizing and blood-glucose-lowering effects in in vitro and in vivo models of
T2D, metformin takes pleiotropic actions and exerts multiple health benefits against obesity,
cancers, liver diseases, cardiovascular disease, and renal diseases; this has been reviewed
elsewhere [18,19]. In many trials, metformin has been shown to reduce weight gain and
promote weight loss in obese subjects with or without T2D [20–23]. Accordingly, several
well-elaborated systematic reviews have provided an insight into the use of metformin for
weight management and the treatment of obesity [24–27]. However, the mechanisms of
the drug’s action are not completely understood. Metformin could exert its anti-obesity
effect through targeting and modulating adipose tissue function [28,29]. In obese mice,
metformin decreased body weight and improved the metabolic profile by suppressing
white adipocyte differentiation by affecting fibroblast growth factor 21 (FGF21), a key
metabolic hormone that improves lipolysis in WAT and prevents fat accumulation [30].
Subsequently, several well-designed studies have shown that metformin may prevent
weight gain in preclinical models of obesity by increasing the metabolic activity of BAT
in a manner that is dependent and independent of the distinct action of UCP1, which is a
molecular marker able to dissipate chemically bound energy as heat [31–34]. In line with
establishing whether BAT is a plausible target for the treatment of obesity in humans, the
current scoping review was conducted to further decipher and elaborate on the potential
therapeutic mechanisms linked with the anti-obesity effects of metformin.

2. Methods: Search Strategy, Study Eligibility Criteria, and Data Items

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
guidelines were followed to conduct this scoping review, and these are found at https://
www.prisma-statement.org/Extensions/ScopingReviews?AspxAutoDetectCookieSupport=1
(Supplementary Materials, accessed on 10 January 2023). The protocol for the current review
was not registered; however, well-established online databases such as The International
Prospective Register of Systematic Reviews (PROSPERO) were accessed and screened to
identify or eliminate any similar reviews being conducted. Briefly, a systematic search
was conducted by two independent reviewers, in consultation with an experienced librar-
ian, through major electronic databases and search engines such as PubMed/MEDLINE,
Google Scholar, and the Cochrane library to retrieve relevant studies on the impact of
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metformin on regulating BAT thermogenic activity to modulate complications linked with
obesity. The following search terms, including relevant synonyms, were applied: “met-
formin”, “brown adipose tissue”, and “obesity”. Studies reporting on other tissues other
than BAT were excluded, as demonstrate in Figure 1. To enhance the relevance of the
current manuscript, review papers were only screened for primary studies, whilst letters to
the editor were excluded. In this review, particular attention was given to the experimental
evidence highlighting the role of metformin in targeting BAT to combat obesity and its
sequelae. Thus, extracted data items (from relevant literature) include the experimental
model used, the dose and intervention period for metformin, as well as the main findings
for the intervention concerning its potential antiobesity effects.
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Figure 1. Schematic representation of the study’s selection procedure. In summary, after removing
duplicates, only 49 studies were screened; of these, 39 full-text articles were assessed for eligibility,
and only 21 articles met the inclusion criteria and are critically discussed with the current review.

3. The Significance of BAT and Thermogenesis as a Therapeutic Target

Brown adipose tissue (BAT), of which its primary function is to promote thermoge-
nesis upon cold exposure, is a distinct type of adipose tissue that is widely viewed as
a promising therapeutic target for obesity [35,36]. Initially, BAT was merely known to
exist in hibernating marmots, where it was described as “neither fat nor flesh” by Swiss
researchers [37]. More information was accumulated owing to the rediscovery of func-
tionally active BAT in adult humans by virtue of technological advancements in clinical
research using whole-body positron emission tomography [38–40]. As a result, harnessing
the capacity of BAT to consume energy via WAT browning or BAT activation has been
proposed as an ideal strategy to combat obesity [35,41–43]. The plausibility of this ap-
proach is driven by the unique capacity of BAT to increase energy expenditure and burn
excess fat via a process referred to as “thermogenesis”. Figure 2 highlights some of the
molecular mechanisms proposed to be involved in BAT activation, in part through the
interactions of various targets/subunits such as cyclic adenosine monophosphate-protein
kinase A (cAMP-PKA), peroxisome-proliferator-activated receptors (PPARs), PR domain
containing 16 (PRDM16), peroxisome-proliferator-activated receptor gamma coactivator
1-alpha (PGC1α), as well as UCP1 [44,45]. Among the variety of metabolic substrates that
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are utilized by BAT, glucose and fatty acids are considered important fuel sources [46]. In
fact, optimal uptake and utilization of these substrates can improve metabolic health [47,48].
For example, increased glucose uptake and non-esterified fatty acid turnover during acute
cold exposure in humans or in experimental models of obesity are consistent with BAT acti-
vation [49,50]. Mechanically, adrenergic stimulation of β3-AR can induce glucose uptake in
brown adipocytes via a glucose transporter (GLUT)-1 and GLUT4 [51]. On the other hand,
a study evaluating FA uptake in human supraclavicular BAT during cold exposure demon-
strated that basal and cold-induced FA uptake is impaired in obese subjects [52]. This
could be explained by the whitening and impaired recruitment of BAT in obesity [53,54].
In addition to sympathetic activation of the β3-AR and cAMP/PKA signaling pathway, the
5’ adenosine monophosphate-activated protein kinase (AMPK) pathway is a downstream
signaling pathway that also plays an important role in regulating substrate utilization
and energy metabolism [44]. This mechanism has been studied under the context of WAT
browning [55].

Over the years, more research has been performed to identify the specific potent phar-
macological products that mimic the cold effects on BAT with minimal or no side effects.
For example, the semi-chronic treatment with selective β3-AR agonist CL316243 in rodents
did not achieve local transformation of WAT to a BAT-like phenotype without systemic
exposure. However, it remains to be established whether this observation was also relevant
for other β3-AR agonists and other species, especially humans [56]. To develop 3-AR
agonists for application in humans, mirabegron, a β3-AR agonist, was approved by the
United States Food and Drug Administration to treat overactive bladder and was found to
increase BAT glucose uptake and energy expenditure in healthy humans [57,58]. However,
this was accompanied by the adverse effect of increased blood pressure. Alternatively,
several plant-derived products, in particularly polyphenols, can influence BAT function and
recruitment via the AMPK pathway [59,60]. As reviewed by Zhang et al. [42], flavonoids
can promote BAT thermogenesis and induce WAT browning via the AMPK-PGC-1α/Sirt1
and PPAR-α/γ signaling pathways upon sympathetic nervous system activation, which
endorses the release of adrenaline and thyroid hormones. Moreover, resveratrol from the
class of polyphenolic compounds called stilbenes can directly activate AMPK to induce
beige adipocytes formation in WAT, resulting in enhanced glucose uptake and energy
consumption in mice [61]. Alternatively, physical exercise is another highly recommended
intervention strategy to mitigate and eradicate metabolic disease [10,11,62]. Acute exercise
has been shown to increase circulating FGF21 in both mice and humans [63], a cold-induced
endocrine activators of BAT function, which is mainly secreted in the liver, but also ex-
pressed and released in BAT during thermogenic activation [64]. FGF21 integrates several
metabolic pathways allowing the regulation of glucose levels and lipid metabolism, as well
as whole-body energy homeostasis [65,66]. A study by Liu et al. [67] demonstrated that
pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism
to reduce atherosclerosis via BAT activation and WAT browning. Recently, the therapeutic
potential of FGF21 has been evaluated with the development of recombinant FGF21 analogs.
Indeed, Kaufman et al. [68] reported that AKR-001, an Fc-FGF21 analogue, exerts a sus-
tained pharmacodynamic effect on insulin sensitivity and lipid metabolism in patients with
T2D. However, the clinical profile of AKR-001 requires further evaluation as a therapeutic
intervention for metabolic diseases.
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Figure 2. Illustration of the general mechanism of brown adipose tissue (BAT) activation and
recruitment, as well as the other molecular mechanisms involved. Briefly, cold exposure, exercise,
natural/pharmacological products, and other stimuli can activate sympathetic neurons innervating
BAT release norepinephrine (NE), which binds to β3-adrenergic receptors (β3-AR) converting ATP to
cyclic adenosine monophosphate (cAMP). Subsequently, cAMP activates protein kinase A (PKA),
which then activate hormone-sensitive lipase (HSL) to liberate fatty acids (FAs) from triacylglyceride
(TAG) stores through lipolysis, which in turn upregulate uncoupling protein 1 (UCP1) located
in the mitochondria. Subsequently, the uptake of circulating free fatty acids (FFAs) and glucose
contributes to the regeneration of intracellular triglyceride stores. Glucose is transported into the cell
by glucose transporters (GLUTs), while FFAs are transported via cluster of differentiation 36 (CD36).
On the other hand, activation of AM-activated protein kinase (AMPK) induces the complex of
adipogenic and thermogenic transcriptional factors such as NAD-dependent deacetylase sirtuin-1
(SIRT1), proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and transcriptional
factor PR domain containing 16 (PRDM16), which in turn increase UCP-1-driven thermogenesis and
energy expenditure.

4. An Overview of Metformin and Its Therapeutic Potential against
Metabolic Diseases

Metformin also known as 1,1-dimethylbiguanide hydrochloride is a widely prescribed
oral anti-diabetic drug, which was approved by the U.S. Food Drug Administration to be
used by adults and children aged >10 years [69]. Historically, metformin was first discov-
ered in the 1920s, its history was linked to the traditional herbal medicine found in Europe
known as Galega officinalis [69]. This herbal medicine was popular in the 1918s because
of its blood-glucose-lowering properties, and it was found to be rich in guanidine [69,70].
Some of the guanidine derivatives such as metformin were synthesized and used to treat
diabetes due to their glucose-lowering benefit in the 1920s and 1930s [69,71]. Among these
derivatives, metformin was considered weak, and its use was limited compared to the other
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biguanides. For this reason, metformin was then forgotten for years, until the time when
other biguanides (phenformin and buformin) were withdrawn from the market in the late
1970s due to their association with lactic acidosis, although they had more potent activities
than metformin [72,73]. Around the 1980s and early 1990s, an accumulative number of
studies demonstrated the efficient antihyperglycemic effects of metformin without overt
side effects including hypoglycemia and weight gain, and this resulted in the rescue of met-
formin and support for its clinical use [69,70,72,73]. After these ground-breaking studies,
metformin has remained the most widely prescribed drug for T2D with an excellent safety
and tolerability profile, and it has since been added to the World Health Organization’s list
of essential medicines in 2011 [74]. Over the years, metformin has gained more recognition,
not only as a blood-glucose-lowering agent, but because of its pleiotropic effects in modu-
lating diverse metabolic complications ranging from obesity, insulin resistance, myocardial
complications, liver steatosis, to polycystic ovary syndrome [18,75,76]. Although the mech-
anisms underlying these health benefits are complex and not completely understood, some
mechanisms by which metformin alleviates various metabolic disease have been proposed
(Figure 3). These include activation of AMPK, inhibition of the complex I mitochondrial
transport chain, and antagonizing glucagon-induced cAMP, which lead to the amelioration
of glycemic control. as extensively reviewed elsewhere [75,77–80].
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ferent metabolic diseases in conditions of metabolic syndrome. AMPK: AMP-activated protein kinase,
cAMP: cyclic adenosine monophosphate, FGF21: fibroblast growth factor 21, GLP-1R: glucagon-like
peptide 1 receptor, LDL: low-density lipoprotein.

According to Agius et al., 2020 [81], the AMPK signaling pathway is one of the
most extensively studied classical mechanism of metformin. Basically, AMPK is a cen-
tral regulator of energy homeostasis, and it is recognized as a major regulator of lipid
biosynthetic pathways due to its role in the phosphorylation and inactivation of key en-
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zymes such as acetyl-CoA carboxylase that play a pivotal role in the regulation of fatty
acid metabolism [82,83]. Several studies have proposed that the activation of AMPK by
metformin could be associated with its accumulation in the mitochondria because of its
positive charge at physiological pH, causing the effective modulation of the respiratory
chain, a process that, in turn, regulates a range of other related target proteins [81,82]. Al-
though the metformin-induced activation of AMPK is a well-documented mechanism [83],
it may not account for all the actions of the drug. There are many other AMPK-independent
mechanisms underlying the action of metformin [19,83]. For example, beyond its increas-
ingly reported cardioprotective effects [84–86], metformin displayed anti-obesity effects in
multipotent C3H10T1/2 MSC by exerting reciprocal control over the activities of osteogenic
transcription factor Runt-related transcription factor 2 and the adipogenic transcription
factor PPARγ, leading to the suppression of adipogenesis [87]. These effects appeared to be
independent of AMPK activation, but rather through the suppression of the mammalian
target of rapamycin (mTOR)/p70S6K (a mitogen-activated Ser/Thr protein kinase) signal-
ing pathway [88]. The anti-obesity effects of metformin have garnered more interest and
have been tested in human subjects [89,90], and some of the underlying mechanisms were
reviewed by Yerevanian and colleagues [27]. Accordingly, it has been strongly hypothe-
sized and confirmed that metformin could exert an anti-obesity effect via gut microbiome
modulation in various studies both in diabetic and non-diabetic human subjects and ani-
mals [22,91,92]. The amelioration of metabolic syndrome by metformin is associated with
reduced indices of low-grade inflammation independent of the gut microbiota [76]. Further
exploration of the mechanisms underlying the anti-obesity or weight-loss-inducing effects
of metformin is necessary to identify new pharmacologic targets for obesity and its sequelae.
In recent years, some research supported that BAT may be a target of metformin. Indeed,
emerging experimental evidence suggests that metformin can reduce body weight and
enhance energy expenditure via the activation of BAT or browning of WAT [29,31,93].

5. Results: Impact of Metformin on Energy Expenditure and BAT Activity
5.1. General Characteristics and Overview of Included Literature

Currently, diverse preclinical models are applied to investigate the pathophysiological
mechanisms of the disease or the therapeutic effects of drugs against obesity [94–96]. As
such, progressive analysis of the literature has been conducted to update the strengths and
limitations of some commonly explored experimental models of obesity. Indeed, from the
initial evidence that was published from the 1960s looking at body composition as a model
and estimation for obesity [97], there are now approximately “34,330” results that can be re-
trieved through a PubMed search, under the heading “experimental models of obesity” [94].
Notably, diet-induced obesity in animals or rodents appears to be the predominant system
to explore the pathological features of obesity, as reviewed elsewhere [98,99]. Exposing
mice or rats to an obesogenic diet has been associated with increased body weight, which
predominantly characterizes excessive fat accumulation or ectopic lipid accumulation,
which, depending on the composition of the diet or the time of exposure to this diet, may
occur together with other metabolic complications such as hyperglycemia, dyslipidemia,
and hormonal dysregulations [95,98]. Besides experimental models of diet-induced obesity,
gene-specific mutations have been another approach that has been explored to uncover the
therapeutic effects of drugs against T2D or metabolic syndrome. Certainly, Zucker rats, as
well as obese (ob/ob) and diabetic (db/db) mice have been progressively used in experiments
based on their characteristic features of spontaneously developing obesity or metabolic
complications such as hyperphagia, insulin resistance, impaired glucose tolerance, and
cardiovascular complications. The result section details the aforementioned preclinical
models, to explore the anti-obesity properties of metformin and its capacity to regulate
energy expenditure, in part by targeting the brown adipose tissue. In terms of quality
of evidence, all included preclinical studies could be trusted based on their design and
applied statistical analysis, which were appropriate.
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5.2. Evidence on the Short-Term Treatment Effects of Metformin

From the systematic search of the literature, evidence on the therapeutic effects of
metformin emerged as early as 1993 [100], showing that short-term (duration equivalent
to 2 weeks or less) treatment with metformin (320 mg/kg/day for 12 days) could reduce
body weight and cumulative food intake in obese Zucker rats. Although these effects were
positive, this study showed that metformin did not affect thermogenesis measured using
the binding of [3H] GDP to BAT mitochondria or the mRNA expression of UCPs within
BAT. Although evidence suggests that metformin could reduce food intake in another
genetic model of obesity (ob/ob mice), Kumar and colleagues [101] showed that metformin
(200 mg/kg/day for 10 days) did not affect serum glucose levels or the expression of
nitric oxide synthase in the BAT of obese mice. These findings showed that metformin can
partially affect body weight or reduce food intake; however, there are apparent limitations
in its therapeutic impact on regulating energy expenditure, or specifically the thermogenic
activity of BAT. The major limitation could be related to the very short treatment time
(≤12 days) or the fact that only a few parameters were used to measure the thermogenic
activity of BAT.

Nonetheless, follow-up studies by other groups on the short-term effects of metformin
showed positive results, especially on the modulation of the thermogenic activity of BAT.
For example, using SV40T-immortalized brown adipocytes from the FVB strain of mice,
Klein and colleagues [102] showed that directly treating these cells with metformin (500 µM
and 1 mM for 8 days) could dose dependently block leptin secretion while acutely stimulat-
ing mitogen-activated protein kinases (p44/p42 MAPK), the major pathway involved in
the survival signals that counteract cell death [103]. Furthermore, Hu and colleagues [104]
showed that, apart from preventing weight gain or the loss of BAT, metformin (300 mg/kg
for 2 weeks) could upregulate BAT genes involved in energy expenditure such as AMPK
and UCP3 and those cited in the regulation of lipid metabolism such as resistin, fatty acid
synthase, insulin-induced gene 2, CCAAT/enhancer binding protein alpha (C/EBPa), and
PPARγ in Sprague Dawley rats. Such findings were confirmed by others showing that
metformin is possibly taken up by BAT cells [31], and its short-term treatment (duration
equivalent to 2 weeks or less) is consistent with the enhanced cellular oxygen capacity of
BAT or the elevated expression of its thermogenic transcriptional factors such as Prdm16
and UCP1 in preclinical models of obesity [32,105], further implying that the anti-obesity
properties of metformin are likely modulated through its capacity to enhance BAT thermo-
genic activity.

5.3. Evidence on the Long-Term Treatment Effects of Metformin

Generate evidence gives an overview of preclinical studies on the long-term effects
of metformin, especially its capacity to affect obesity-related complications by regulating
energy expenditure and BAT. In fact, with evidence opposing the findings on the short-term
effects of metformin on Zucker rats [100], Savontaus and co-workers [106] showed that
this anti-diabetic drug (at 300 mg/kg/day for 3 weeks) could reduce body weight and
cumulative food intake in a similar model of obese Zucker rats. Thereafter, work from
other groups [33,107], using mice treated with metformin (at 200 mg/kg body weight/day
for 4 weeks), showed that this anti-diabetic drug could improve lipid profiles by reducing
plasma total cholesterol and triglyceride levels, while decreasing BAT mass and lipid
droplets. These positive effects were concomitant to enhanced BAT thermogenic activity,
which was modulated in part through the upregulation of UCP1 expression or AMPK
activation. Besides being major players in the regulation of energy expenditure through
interacting with other pathways [108,109], both UCP1 and AMPK are crucial in metabolism
and are increasingly recognized as therapeutic targets in protecting against metabolic
complications [110,111].

The presented evidence further elucidates other diverse therapeutic mechanisms by
which metformin can affect metabolic activity, in addition to promoting BAT thermogenic
activity in various preclinical models of obesity. For instance, studies [29,30,112,113]
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making use of obese mice treated with metformin (at 50–250 mg/kg/day) for at least
8 weeks showed that this anti-diabetic agent could improve glucose metabolism and
insulin sensitivity or hinder white adipocyte differentiation via the induction of fibroblast
growth factor (FGF) 21 or enhancing mRNA expression of perilipin 5 in BAT. On the other
hand, Karise and co-workers [34] showed that metformin treatment (at 250 mg/kg/day for
8 weeks) further stimulated FGF21 to enhance AMPK activity and improved mitochondrial
biogenesis within BAT, in part by upregulating the expression of nuclear respiratory factor
(NRF)1, transcription factor A, mitochondrial (TFAM), UCP1, and PGC1-α in obese mice.
While the significant role of transcriptional factors such as NRF1, UCP1, and PGC1-α
play an important role in promoting the thermogenic activity of BAT [114,115], available
evidence indicates that the therapeutic effects of metformin may extend to improving
glucose metabolism through the modulation of other factors such as FGF21 and perilipin
in preclinical models [116,117]. Overall, the evidence affirms that the therapeutic effects of
metformin (at 100–200 mg/kg/day) treatment for at least 4 weeks could improve glucose
homeostasis and the lipid profiles, while also reducing inflammatory features in BAT
such as macrophage infiltration, proinflammatory signaling and gene expression, and
increasing systemic energy expenditure and BAT activation in various preclinical models
of obesity [118–120].

6. Clinical Translation of Results

Preclinical models of obesity have become relevant to uncover the efficacy of diverse
drugs or bioactive compounds against metabolic diseases, especially when directly explor-
ing the implicated molecular mechanisms in response to drug treatment [94–96]. However,
the generated data must still be confirmed in well-organized clinical trials to better un-
derstand and confirm the therapeutic properties of these agents. In fact, organizations
such as the U.S. Food and Drug Administration, which are primarily responsible for ap-
proving the use of most therapeutic drugs in human subjects, have a set of guidelines
to follow before any therapeutic drug can be approved [121]. In addition to testing new
drugs on preclinical models, clinical trials provide an essential scientific foundation for the
further development of any therapeutic drug. Although metformin was long approved as
a remedy for diabetes [122], there is still a general interest in understanding its therapeutic
mechanisms, especially its acknowledged pleiotropic effects [19]. While it is acknowledged
that metformin can promote weight loss in obese patients or improve metabolic function
in subjects with metabolic syndrome, the implicated therapeutic mechanisms still need to
be resolved. Others have argued that these effects can be through effective modulation
of adipokines, leading to enhanced energy expenditure and improved insulin sensitivity
in obese patients with T2D [28,69,123,124]. There is currently limited evidence on the
implications of BAT regulation in subjects with obesity or patients with metabolic syn-
drome treated with metformin. Two clinical studies have been reported, with Srinivasa and
colleagues [125] showing that metformin (at 500–850 mg twice daily for 12 months) could
improve energy homoeostasis, in part by enhancing the expression of UCP1 and circulating
levels of FGF21 dorsocervical subcutaneous fat biopsies in HIV-infected patients presenting
metabolic complications. However, Oliveira and co-workers [93] showed that short-term
treatment with this anti-diabetic drug (at 1500 mg/day for 60 days) could not affect BAT
activity and plasma irisin levels in women with polycystic ovary syndrome. Consistent
with some preclinical evidence [100,101], it was further suggested that long-term treatment
with metformin is more effective than short-term treatment. Table 1 gives an overview of
preclinical evidence on the anti-obesity properties of metformin and its capacity to regulate
energy expenditure through brown adipose tissue. Apparently, such information must be
confirmed in well-designed clinical trials.
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Table 1. An overview of preclinical studies on the anti-obesity properties of metformin and its
capacity to regulate energy expenditure through brown adipose tissue.

Author, Year Experimental Model and Metformin Dose Main Findings

Short-term effects of metformin (treatment duration equivalent to 2 weeks or less)

Rouru et al.,
1993 [100]

Obese Zucker rats treated with metformin
(dissolved in drinking water) at
320 mg/kg/day for 12 days

Reduced body weight and cumulative food intake; however,
did not affect thermogenesis, measured using the binding of
[3H]GDP to BAT mitochondria and the expression of
uncoupling protein mRNA in brown adipose tissue (BAT).

Kumar et al.,
2001 [101]

Genetically modified obese (ob/ob) mice
treated with metformin (subcutaneously) at
200 mg/kg/day for 10 days

Reduced food intake, but did not affect serum glucose levels.
Metformin did not affect the expression of nitric oxide synthase
in the BAT of obese mice.

Klein et al.,
2004 [102]

SV40T-immortalized brown adipocytes from
the FVB strain of mice were treated with
metformin (500 µM and 1 mM) for 8 days

Dose dependently reduced leptin secretion without affecting
adipocyte differentiation. Metformin also acutely stimulated
p44/p42 MAP kinase and inhibited leptin secretion in a
dose-dependent manner in BAT.

Hu et al.,
2014 [104]

Olanzapine-induced weigh gain in Sprague
Dawley rats treated with metformin
(oral gavage) at 300 mg/kg for 2 weeks

Prevented weight gain and loss of BAT. Mechanistically,
metformin upregulated BAT genes involved in energy
expenditure such as AMP-activated protein kinase (AMPK) and
uncoupling protein (UCP)3 and those cited in the regulation of
lipid metabolism such as resistin, fatty acid synthase,
insulin-induced gene 2, CCAAT/enhancer binding protein
alpha (C/EBPa), and peroxisome-proliferator-activated receptor
gamma (PPARγ)

Yang et al.,
2016 [105]

Newborn offspring of C57BL/6 mice fed a
high-fat diet (HFD) and injected
intraperitoneally with metformin at
250 mg/kg for 15 consecutive days

Rescued obesity-induced suppression of brown adipogenesis
and thermogenesis. Metformin also activated AMPKα and
upregulated the expression of PR domain containing 16
(Prdm16) in BAT.

Tokubuchi
et al., 2017 [32]

Sprague Dawley rats were treated with
metformin (dissolved in drinking water) at
2.5 mg/mL for 2 weeks

Increased plasma levels of lactate and pyruvate. Metformin also
significantly reduced visceral fat mass, upregulated fat
oxidation-related enzyme in the liver, UCP1 in BAT, and UCP3
in the skeletal muscle.

Breining et al.,
2018 [31]

Organic cation transporter (Oct)1/2−/− mice
on an FVB background received
[11C]-metformin (0.2–1.0 GBq) containing
0.1–0.5 µg/mL metformin for 60 min,
whereas, brown adipocytes of human origin
were treated with metformin (0, 0.1 or
0.5 mM) for 24 h

Metformin was taken up in murine interscapular BAT depots,
and this was associated with increased expression of UCP1.
Notably, metformin reduced cellular oxygen consumption in
human brown adipocyte cells.

Long-term effects of metformin (treatment duration equivalent to >2 weeks)

Savontaus
et al., 1998
[106]

Obese Zucker rats treated with metformin
(dissolved in drinking water) at
300 mg/kg/day for 3 weeks

Reduced weight gain, as well as food and water intake;
however, did not affect mRNA expressions of UCP1, UCP2, or
UCP3 in BAT. The observed effect of metformin on the
expression of UCPs was when combined with β3-adrenoceptor
agonist (BRL 35135) when administered at 0.5 mg/kg/day.

Geerling et al.,
2014 [107]

E3L. CETP mice fed a Western-type diet
supplemented with 200 mg/kg body
weight/day (0.2%, w/w) metformin for
4 weeks

Lowered plasma total cholesterol and triglyceride levels, in
addition to reducing BAT mass and lipid droplet. This effect
was linked to increases in AMP-activated protein kinase a1
(AMPKa1) expression and activity, including hormone-sensitive
lipase and mitochondrial respiratory chain complexes in BAT.

Liang et al.,
2016 [33]

Offspring of C57/BL mice fed an HFD and
treated with metformin (dissolved in saline)
at 200 mg/kg for 21 days

Decreased serotonin concentration and promoted BAT
thermogenic activity by upregulating the expression of UCP1.
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Table 1. Cont.

Author, Year Experimental Model and Metformin Dose Main Findings

Kim et al.,
2016 [30]

C57BL/6 mice fed an HFD and treated with
metformin (oral gavage) at 10 mg/kg or
50 mg/kg for 14 weeks

Improved glucose metabolism and suppressed white adipocyte
differentiation via induction of fibroblast growth factor (FGF) 21
in the liver and in white adipocytes.

Mehdi et al.,
2018 [112]

C57BL/6 J mice treated with metformin
(oral gavage) at 250 mg/kg/day for 45 days

Significantly increased the mRNA expression of perilipin 5
in BAT.

Kim et al.,
2018 [113]

Collagen-induced arthritis DBA/1J mice
treated with metformin (oral gavage) at
50 mg/kg for 13 weeks

Displayed a small normalizing effect on the metabolic profile of
obese mice. In addition, metformin promoted BAT
differentiation while increasing the production of pAMPKα and
fibroblast growth factor 21 (FGF21).

Karise et al.,
2019 [34]

C57Bl/6 mice fed a HFD and treated with
metformin (oral gavage) at 250 mg/kg/day
for 8 weeks

Increased BAT content and function, as shown by an increase in
adipocyte proliferation and differentiation. Metformin further
promoted the activation of AMPK and enhanced thermogenic
markers (UCP1 and PGC1-α) through adrenergic stimuli and
FGF21. Metformin also improved mitochondrial biogenesis in
BAT by upregulating nuclear respiratory factor (NRF) 1 and
transcription factor A, mitochondrial (TFAM).

Yuan et al.,
2019 [29]

C57BL/6J mice fed and treated with
metformin (oral gavage) at 200 mg/kg/day
for 8 weeks

Improved the body weight and insulin sensitivity, while
affecting differential expression of 3486 proteins in BAT that
were mainly assigned to the pathways of EIF2 signaling and
mitochondrial dysfunction. Furthermore, carnitine
palmitoyltransferase (CPT)1b and CPT2 in BAT were
downregulated by metformin significantly.

Abdel-Rehim
et al., 2019
[118]

Sprague Dawley rats fed an HFD and treated
with metformin (oral gavage) at
200 mg/kg/day for 4 weeks

Improved glucose homeostasis and lipid profile parameters.
Metformin also significantly reduced the expression of
SREBP-1c, which regulates lipid synthesis in BAT.

Stojnic et al.,
2021 [119]

C57BL/6J mice fed an HFD and metformin
(dissolved in drinking water) at
100 mg/kg/day for 4 weeks

Improved glucose control and insulin sensitivity. Treatment did
not affect energy intake, but increased systemic energy
expenditure and BAT activation

Pescador et al.,
2021 [120]

C75BL/6J mice fed HFD and treated with
metformin (oral gavage) at 100 mg/kg/day
for 6 weeks

Reduced inflammatory features in BAT such as macrophage
infiltration, proinflammatory signaling, and gene expression
and restored the response to cold exposure. Furthermore,
suppressed a HIF1α-dependent pro-inflammatory program that
was likely responsible for a secondary beneficial effect on
insulin-mediated glucose uptake and β-adrenergic responses
in BAT.

7. Conclusions and Future Perspective

The evidence summarized in Table 1 affirms that metformin displays anti-obesity prop-
erties and has the capacity to reduce body weight and modulate glucose metabolism, in
part by targeting BAT to improve mitochondrial function and promote energy expenditure
in various preclinical models of obesity (Figure 4). In terms of molecular markers, activation
or enhanced expression of AMPK and FGF21, together with effective regulation of thermo-
genic markers such as UCP1, NRF1, and PGC1α within BAT appear to be the predominant
mechanisms by which metformin exerts its therapeutic effects. Notably, consistent results
are achieved whether metformin is administered through oral gavage in drinking water
or supplemented in diet, with effective doses ranging from 50–300 mg/kg/day (in both
mice and rats), for an approximate period of 4 weeks. Preliminary data suggest that this
biguanide class of drugs can improve energy homoeostasis, in part by enhancing the ex-
pression of thermogenic factors such as UCP1 and FGF21 in dorsocervical subcutaneous
fat biopsies [125]. However, the summarized literature is not without limitations. Firstly,
although preclinical studies provide an important platform to elucidate or understand the
potential therapeutic mechanisms for any drug (including metformin), such information
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still needs to be confirmed in larger and well-organized clinical trials. Thus, additional
studies are required to confirm these therapeutic effects. Information relevant to how
metformin performs in comparison or in combination with other potential drug agents
such as natural products that are known to be rich in antioxidants and anti-inflammatory
activities is also of interest and remains to be explored.
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