
Citation: Zhao, J.; Yan, W.; Yang, Y.

DeepTP: A Deep Learning Model for

Thermophilic Protein Prediction. Int.

J. Mol. Sci. 2023, 24, 2217. https://

doi.org/10.3390/ijms24032217

Academic Editor: Hyotcherl Ihee

Received: 10 December 2022

Revised: 19 January 2023

Accepted: 19 January 2023

Published: 22 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

DeepTP: A Deep Learning Model for Thermophilic
Protein Prediction
Jianjun Zhao 1,2, Wenying Yan 3,4,5,* and Yang Yang 1,2,*

1 School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
3 Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of

Soochow University, Soochow University, Suzhou 215123, China
4 Center for Systems Biology, Soochow University, Suzhou 215123, China
5 Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development,

Suzhou 215123, China
* Correspondence: wyyan@suda.edu.cn (W.Y.); yyang@suda.edu.cn (Y.Y.)

Abstract: Thermophilic proteins have important value in the fields of biopharmaceuticals and enzyme
engineering. Most existing thermophilic protein prediction models are based on traditional machine
learning algorithms and do not fully utilize protein sequence information. To solve this problem, a
deep learning model based on self-attention and multiple-channel feature fusion was proposed to
predict thermophilic proteins, called DeepTP. First, a large new dataset consisting of 20,842 proteins
was constructed. Second, a convolutional neural network and bidirectional long short-term memory
network were used to extract the hidden features in protein sequences. Different weights were
then assigned to features through self-attention, and finally, biological features were integrated to
build a prediction model. In a performance comparison with existing methods, DeepTP had better
performance and scalability in an independent balanced test set and validation set, with AUC values
of 0.944 and 0.801, respectively. In the unbalanced test set, DeepTP had an average precision (AP) of
0.536. The tool is freely available.

Keywords: thermophilic proteins; self-attention; convolutional neural network; bidirectional long
short-term memory network; multiple-channel feature fusion

1. Introduction

The thermal stability of proteins refers to the ability of proteins to maintain their
unique chemical and spatial structures under high-temperature conditions. Protein engi-
neering and biotechnology research largely rely on the thermal stability of proteins [1,2].
Thermophiles can produce thermophilic proteins that survive for a long time under high-
temperature conditions without denaturation; some thermophilic proteins can even with-
stand 100 ◦C [3]. The high thermal stability of thermophilic proteins gives them outstanding
advantages in industrial production. An extracellular isothermal cutinase (KERAK-29)
was purified from thermophilic actinomycetes isolated from poultry compost, displaying
the advantages of high heat resistance and fast catalytic reaction rate [4]. Thermostatic
xylanases from thermophilic fungi have broad roles in food, feed, and the biotransformation
of lignocellulose [5]. Therefore, the predictive study of thermophilic proteins is not only
crucial for protein thermostability engineering, but it also has great value in practical fields
such as industrial production.

Distinguishing thermophilic and mesophilic proteins through biological experiments
is time-consuming, labor-intensive, and expensive. However, computational methods
can quickly and accurately identify thermophilic and mesophilic proteins from a large
amount of protein sequence information, which is an important topic in the field of protein
thermal stability.
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The thermal stability of proteins is closely related to biological characteristics such
as amino acid composition, hydrogen bonds, salt bridges, and disulfide bonds. It was
found that thermophilic proteins have more hydrophobic residues, charged residues, and
aromatic residues than mesophilic proteins [6]. The different contents of various dipeptides
and different types of hydrogen bonds also affect the thermal stability of proteins [7,8]. In
some experiments, salt bridges, disulfide bonds, and other factors were found to improve
thermal stability [9,10]. The biological characteristics of a protein are very important for
the prediction of thermophilic proteins.

Computational methods for thermophilic protein prediction are mostly based on tra-
ditional machine learning methods. In earlier studies based on fewer datasets, researchers
used the primary structure of protein sequences to obtain amino acid pairs, amino acid dis-
tribution, and basic features, and then used the logistic model tree algorithm, support vector
machines (SVMs), and other classical algorithms to predict thermophilic proteins [7,11]. In
recent years, researchers have expanded the thermophilic protein dataset. The amino acid
composition and dipeptide propensity score were obtained, and then a prediction model
called SCMTPP was constructed based on the scorecard method [12]. TMPpred [13] is a
thermophilic protein predictor based on SVM, which shifts the focus to locating the impor-
tant features affecting thermophilic proteins and analyzes an 188-dimensional feature set
through an improved ANOVA feature selection method, locating the seven most important
features. It was inferred that glycine, alanine, serine, and threonine are important factors
affecting thermophilic proteins. SAPPHIRE [14] used an ensemble learning approach to
predict thermophilic proteins, combining 12 feature encodings and 6 machine learning
algorithms to train 72 baseline models. These studies have achieved certain results in
predicting thermophilic proteins. However, they are all based on traditional machine
learning. The datasets used are relatively small, and the features are relatively simple. This
leaves a certain amount of room for improvement in accuracy and generalization.

The rapid development of deep learning technology has played a positive role in
promoting the development of bioinformatics. Ahmed et al. [15] was the first to use deep
learning technology to predict thermophilic proteins and proposed a thermophilic protein
prediction model called iThermo. Combining the biological features of seven groups of
protein sequences, a multilayer perceptron (MLP) was used to distinguish thermophilic
proteins from mesophilic proteins.

Although the iThermo model uses a deep learning model, it only uses sequence-
derived biological features and ignores information about the protein sequence itself. To
extract the rich information contained in the protein sequence, this paper proposes a multi-
channel thermophilic protein prediction model based on the self-attention mechanism,
called DeepTP, which combines the hidden feature information of the protein sequence itself
and sequence-derived biological features to predict thermophilic proteins. The method uses
a convolutional neural network (CNN) to extract key local information from the protein
sequence and then uses a bidirectional long short-term memory network (BiLSTM) to
extract long-range dependent features. The key information of the protein sequence is
then weighted by the self-attention mechanism. Finally, thermophilic protein prediction
is achieved by MLP. Experimental results show that DeepTP performed better than other
comparable methods on test and validation sets.

2. Results
2.1. Cross-Validation Performance of DeepTP

To build a model that could accurately identify thermophilic and mesophilic pro-
teins, 797 features of six groups (amino acid composition [AAC], dipeptide composition
[DPC], composition-transition distribution [CTD], quasi-sequence order descriptor [QSO],
pseudo-amino acid composition [PAAC], and amphipathic pseudo-amino acid composi-
tion [APAAC]) of proteins were extracted. However, irrelevant and redundant features
can affect model prediction performance. To overcome this problem, we combined the
Light Gradient Boosted Machine (LightGBM) algorithm and recursive feature elimination
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algorithm based on cross-validation (RFECV) to select the features. The details of feature
selection are described in Section 4.2. This reduced the number of features to 205. Subse-
quently, the performance of the model with 205 selected features was compared to that of
the model with all features. The cross-validation performance of the models is shown in
Table 1. The model using all features achieved an ACC of 0.872, MCC of 0.743, and AUC of
0.942, while the model using selected features achieved an ACC of 0.871, MCC of 0.742, and
AUC of 0.943. In terms of performance, the model using all features was slightly better than
the model using selected features. In terms of training time, the selected-features model
needed 68,691 s, which was approximately 76% of the time needed by the all-features
model. Therefore, the predictor using the selected features (205 features), named DeepTP,
was chosen because a smaller number of features meant better coverage of the space of
possible combinations and reduced the training time overhead.

Table 1. 10-fold cross-validation performance in training set.

Evaluation Indicators With All 797 Features With 205 Selected Features
(DeepTP)

PPV 0.876 ± 0.012 0.870 ± 0.016
NPV 0.868 ± 0.011 0.873 ± 0.012
SEN 0.866 ± 0.013 0.873 ± 0.010
SPE 0.878 ± 0.009 0.869 ± 0.014
ACC 0.872 ± 0.007 0.871 ± 0.007
MCC 0.743 ± 0.014 0.742 ± 0.013
AUC 0.942 ± 0.004 0.943 ± 0.004

TIME (s) 90,042 68,691
The number is mean ± standard deviation.

2.2. Performance Comparison of DeepTP with Other Methods in the Independent Test Set and
Validation Set

In recent years, existing tools for predicting thermophilic proteins have included
TMPpred, SCMTPP, iThermo, and SAPPHIRE. We compared the performance of DeepTP
with the above tools in an independent balanced test set, independent unbalanced test set,
and validation set.

The performance of DeepTP and other tools in the balanced test set is shown in
Table 2. The comprehensive performance of DeepTP was better, with an ACC of 0.873
and MCC of 0.746. Figure 1a shows the ROC curves of each model on the independent
balanced test set, where the AUC of the DeepTP model was 0.944. The results returned on
TMPpred’s prediction website did not contain predicted scores, and therefore, AUC values
could not be calculated. This shows that DeepTP has higher accuracy and generalization
capability than the other tools. SAPPHIRE is an ensemble learning model that achieved
the second-best performance in the balanced test set. Table 2 shows that the PPV and
SPE of SAPPHIRE were 0.911 and 0.930, respectively, but that the NPV and SEN were
only 0.763 and 0.711, respectively. This shows that SAPPHIRE was more biased toward
negative samples when predicting thermophilic proteins. However, the comprehensive
performance of SAPPHIRE was lower than that of DeepTP, specifically, 5.2%, 8.9%, and
4.0% lower ACC, MCC, and AUC values than the DeepTP model, respectively. SCMTPP is
a scorecard method (SCM)-based approach that uses the dipeptide composition of proteins
with a 400-dimensional feature set. It also has the problem that its predictions are more
biased toward negative samples.
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Table 2. Performance comparison of different methods in the independent balanced test set.

Evaluation TMPpred SCMTPP iThermo SAPPHIRE DeepTP

PPV 0.731 0.864 0.817 0.911 0.887
NPV 0.689 0.704 0.768 0.763 0.860
SEN 0.659 0.621 0.749 0.711 0.854
SPE 0.758 0.902 0.832 0.930 0.891
ACC 0.708 0.761 0.791 0.821 0.873
MCC 0.418 0.545 0.583 0.657 0.746
AUC - 0.846 0.868 0.904 0.944
AP - 0.857 0.867 0.916 0.946
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TMPpred is a method based on traditional machine learning (support vector machines).
It uses only seven features and its dataset is small, which may lead to its poor predictive
performance on balanced tests. iThermo uses a deep learning (MLP) method, which showed
worse performance than the DeepTP model, with 8.2%, 16.3%, and 7.6% lower ACC, MCC,
and AUC values than the DeepTP model, respectively.

In nature, there are far more mesophilic than thermophilic proteins. Therefore, in
order to simulate this realistic situation, we next compared the performance of DeepTP
with other tools in an unbalanced test set, which included 1800 mesophilic proteins and
30 thermophilic proteins. As shown in Figure 2 and Supplementary Table S1, SAPPHIRE
had the highest performance, with PPV = 0.155, SPE = 0.933, ACC = 0.930, and MCC = 0.316,
and DeepTP achieved better AP = 0.536, NPV = 0.997, and SEN = 0.833. The results
demonstrated that DeepTP had better performance on the positive samples (thermophilic
proteins), while SAPPHIRE had better performance on the negative samples (mesophilic
proteins) in the unbalanced test set.

Overall, DeepTP performed better than other comparison tools in predicting ther-
mophilic proteins in the above independent test sets. To further evaluate the performance
of DeepTP publicly, the dataset provided by TMPpred on its website was obtained as a
validation set, and one protein included in the training set was removed. A validation set
containing 206 protein sequences was finally obtained. Five methods were compared on
the validation set. The final performance of each method on the validation set is shown in
Supplementary Table S2. Figure 1b shows the ROC curves of each model on the validation
set, where the AUC of the DeepTP model was 0.801, which was highest on this almost
balanced validation set. Altogether, DeepTP outperformed other comparable methods in
both test and validation set.
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Since DeepTP only used the sequence information, another aspect of concern is the perfor-
mance of DeepTP on homologous proteins, especially homologous mesophilic/thermophilic
pairs. Hence, we also evaluated the performance on a homologous test set, which contained
100 thermophilic proteins and 100 mesophilic proteins with similarity higher than 40%. As
shown in Supplementary Table S3 and Figure S2, DeepTP had the highest ACC (0.830),
MCC (0.671), AUC (0.909), and AP (0.906) among the tools.

CNN and BiLSTM can be used to learn the features implicit in the protein sequence
itself, after which the self-attention mechanism can be used to extract key features, fuse
them with the biological features of the protein, and use the fused features to predict
thermophilic proteins. This enables more important information to be obtained from the
protein sequence and improves thermophilic protein prediction performance.

2.3. Algorithm Comparison

To verify the role of the various modules in the DeepTP model, three comparative
experiments were designed to analyze the effects of these modules on model performance.

Comparison 1. Validate the effect of the two encoding modes on thermophilic
protein prediction.

Three models were constructed using only the amino acid composition encoding
mode, using only the amino acid physicochemical property encoding mode, and using
both encoding modes. As can be seen from Figure 3a and Supplementary Table S4, when
the amino acid composition encoding mode or the amino acid physicochemical property
encoding mode was used alone, the ACC values of the model were 0.859 and 0.791, and
the MCC values were 0.719 and 0.586, respectively. When the two encoding modes were
combined, the ACC of the model was 0.862 and the MCC was 0.728. Combining the
two encoding modes was more advantageous than a single encoding, indicating that the
combined encoding method brought about a certain improvement in thermophilic protein
prediction performance.
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Comparison 2. Validate the effect of the fused biological features on thermophilic
protein prediction.

Contrastive experiments using sequence encoding, biological features, and
sequence encoding of fused biological features were designed. As shown in Figure 3b
and Supplementary Table S5, when only sequence encoding was used, the ACC of the
model was 0.862 and the MCC was 0.728. When only biological features were used, the
ACC of the model was 0.865 and the MCC was 0.732. After the fusion of sequence en-
coding and biological features, the ACC of the model improved to 0.873 and the MCC
improved to 0.746, indicating that the fused biological features predicted thermophilic
proteins more effectively.

Comparison 3. Validate the effect of adding a self-attention mechanism on ther-
mophilic protein prediction.

Comparative experiments with and without the self-attention mechanism were de-
signed. As can be seen from Figure 3c and Supplementary Table S6, the ACC of the model
with the self-attention mechanism improved by 2.3% compared to that of the model without
the self-attention mechanism, and the MCC improved by 4.4%. Using the self-attention
mechanism can better extract key information on protein sequences, thereby improving
model performance.

2.4. DeepTP Web Application

DeepTP is freely available as a web application at http://www.YangLab-MI.org.cn/
DeepTP (accessed on 20 January 2023). The program uses as input protein sequence(s).
DeepTP provides a complete report, which is sent to the user by email when ready. The
website contains datasets used for training and testing, as well as the results for the
predictions of three proteomes.

3. Discussion

Biological experiments are a time-consuming and labor-intensive way to determine
thermophilic proteins, and therefore, computational tools are needed for this task. Ther-
mophilic proteins have high thermal stability and play an important role in industrial
production, life sciences manufacturing, and other fields. The application of deep learn-
ing in the field of bioinformatics is becoming more extensive. With the development of
sequencing technology, large amounts of protein sequence information are being generated,
meaning that comprehensive analysis of thermophilic proteins can be performed based
on their sequences. In this study, a new predictor based on protein sequences and deep
learning was developed, called DeepTP.

http://www.YangLab-MI.org.cn/DeepTP
http://www.YangLab-MI.org.cn/DeepTP
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There is no large-scale public benchmark dataset for thermophilic protein prediction.
Therefore, the authors constructed a reliable large-scale benchmark dataset, calculated six
sets of biological features, and used RFECV to filter out the optimal feature subset.

The protein sequence itself contains rich information. The protein sequence was
encoded in two ways: through encoding of amino acid composition and amino acid physic-
ochemical properties. Then, the encoded sequence was extracted by CNN, BiLSTM, and
the self-attention mechanism, and finally, the sequence features extracted by deep learning
were fused with the biological features to construct a thermophilic protein predictor.

Due to the lack of benchmark datasets, two independent test sets were constructed, and
the dataset provided by TMPpred was obtained as a validation set. DeepTP was compared
with TMPpred (accessed on 13 January 2023), SCMTPP (accessed on 13 January 2023),
iThermo (accessed on 13 January 2023), and SAPPHIRE (accessed on 20 January 2023) in
the test and validation sets, achieving the highest AUC values among these tools, with
0.944 in the balanced test set, 0.940 in the unbalanced test set, and 0.801 in the validation
set. In the balanced test set, the ACC of DeepTP was at least 5.2% higher and the MCC was
at least 8.9% higher.

In the unbalanced test set and validation set, DeepTP did not achieve the highest ACC
or MCC, but had better AP and AUC. SAPPHIRE had the highest performance on the
unbalanced test set in PPV, SPE, ACC, and MCC. SAPPHIRE is a stacking-based ensemble
learning framework, which employs various feature encoding schemes and integrates an
optimal combination of baseline models. The comprehensive feature exploration provides
sufficient information from multiple perspectives, and the baseline model integration
and optimization decreases the generalization error rate of single machine learning based
classifiers. DeepTP adopted a deep learning strategy based on self-attention and multiple
channel feature fusion. The better performance of SAPPHIRE than DeepTP is primarily
owing to the comprehensive exploration of different feature encodings to obtain sufficient
information and careful analysis of the relationship between prediction results and each
feature. Indeed, interpretability is one of major technical obstacles in the implementation
of deep learning. In future studies, more biological features with comprehensive feature
optimization might be integrated into our approach to enhance the prediction performance.

Three experiments were constructed to analyze the model. The results showed that
combining amino acid composition encoding and amino acid physicochemical property
encoding more fully expressed the protein sequence. Use of the self-attention mechanism
better captured key information about the amino acid residues. The fusion of biological
features with sequence features acquired by deep learning technology provided superior
prediction performance for thermophilic proteins.

In conclusion, a multi-channel thermophilic protein prediction model has been pro-
posed based on a self-attention mechanism. The approach uses CNN and BiLSTM to learn
the hidden features of the protein sequence itself and then uses the self-attention mecha-
nism to weight the obtained features, extract the corresponding key features, and fuse them
with the biological features of the protein sequence to build a thermophilic protein pre-
diction model. Future work will involve attempts to incorporate more effective biological
features and new model architectures to reconstruct the model and improve its perfor-
mance. Efforts will also be made to predict thermophilic proteins using semi-supervised
and unsupervised methods.

The tool is freely available and allows the submission of sequence information in
different formats.

4. Materials and Methods
4.1. Datasets

1. There are no large-scale public datasets of thermophilic proteins for the proposed
computational methods, all of which use small sample data. Li et al. [16] constructed a
database containing experimental optimal protein growth temperatures and predicted



Int. J. Mol. Sci. 2023, 24, 2217 8 of 14

optimal temperatures; their experimental data were used in this study. The following
steps were taken to ensure the quality of the dataset (Figure 4):

1. The proteins with known optimal growth temperatures from the database of
Li et al. were kept, resulting in 5,597,122 proteins.

2. Thermophilic proteins were defined as proteins with 60 ◦C as their lowest op-
timal growth temperature [11], while 37 ◦C was chosen as the highest optimal
growth temperature for mesophilic proteins. The 60 ◦C cutoff was for hyperther-
mophiles rather than average thermophiles.

2. All protein sequences were extracted from Uniprot [17]. Sequences that contained
other protein fragments or had more than 1500 residues were excluded.

3. Highly similar sequences were removed using the CD-HIT [18] program, applying
40% sequence identity as a cutoff.

4. The number of mesophilic proteins in the dataset obtained by the above steps was
much greater than the number of thermophilic proteins. To avoid the influence of
data imbalance, the data were under-sampled by randomly deleting some mesophilic
proteins. The numbers of thermophilic proteins and mesophilic proteins were thus
made the same.

5. The final training set included 8704 thermophilic proteins and 8704 mesophilic pro-
teins. The balanced test set consisted of 817 thermophilic proteins and 817 mesophilic
proteins.

6. In nature, there are far more mesophilic than thermophilic proteins. Therefore, in order
to simulate this realistic situation, we also constructed an independent unbalanced
test set, which included 30 thermophilic proteins and 1800 mesophilic proteins to
keep the same proportion of positive and negative samples as in the original Li et al.
database. Thirty thermophilic proteins were random selected from the test set and
1800 mesophilic proteins were random selected from all mesophilic proteins, excluded
the proteins in the training set.
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The validation set came from TMPpred [13] and one protein included in the train-
ing set was removed. The final TMPpred validation set contained 101 mesophilic and
105 thermophilic proteins.
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4.2. Features

To build a model that could accurately identify thermophilic and mesophilic proteins,
the features of six groups of proteins were extracted using the protr [19] program, namely
amino acid composition (AAC), dipeptide composition (DPC), composition-transition
distribution (CTD), quasi-sequence order descriptor (QSO), pseudo-amino acid composition
(PAAC), and amphipathic pseudo-amino acid composition (APAAC). Finally, 797 features
were obtained. Table 3 lists the number of features for each class. Details of the features can
be found in the Supplementary Features Description.

Table 3. Feature information.

Feature Type Description Dimension

AAC Frequency of 20 amino acids 20
DPC Frequency of 400 dipeptides 400
CTD Composition, transition, and distribution 147
QSO Distance matrix between 20 amino acids 100

PAAC Pseudo-Amino Acid Composition 50
APAAC Amphiphilic Pseudo-Amino Acid Composition 80

Total - 797

4.3. Feature Selection

Irrelevant and redundant features can affect model prediction performance. If the
feature dimension is too large, the model will have difficulty converging during training.
To reduce the influence of irrelevant and redundant features on the model and reduce the
training time, a feature-selection method was used to remove irrelevant and redundant
features. With reference to the feature-selection method used by ProTstab (accessed on
13 January 2023) [20,21], the LightGBM algorithm was adopted, and the recursive feature
elimination algorithm based on cross-validation (RFECV) was chosen for feature selection.
Recursive feature elimination (RFE) [22] requires specifying the number of features required,
but usually it is not possible to determine how many features are valid. Cross-validation
and RFE algorithms were used together to score different feature subsets and select the
optimal subset, which was an efficient feature-selection scheme. Finally, 205 biological
features were selected in addition to the feature representations obtained from deep learning
to train the model.

4.4. Model

DeepTP is a multi-channel feature fusion prediction model based on the self-attention
mechanism. The prediction procedure of the model is shown in Figure 5. The detailed
forecasting process is as follows: (a) the input was the three vectors of the protein sequence
after amino acid composition encoding, amino acid physicochemical property encoding,
and normalization of biological features. The vectors processed by the two encoding
modes performed the subsequent operations concurrently. (b) The vectors encoded by
the protein sequences are mapped to dense vectors through the embedding layers. To
avoid overfitting, part of the information was lost through the dropout layer. (c) The
vectors were sent to CNN to extract key local features in the sequences. (d) The feature
information hidden deep in the sequences was obtained through the BiLSTM layer, and the
relationship between long-range dependencies was explored. The corresponding hidden
units were then extracted. (e) The attention mechanism was used to weight key information
in the sequences, assigning more attention to important information and less attention to
unimportant information. (f) The long-range dependencies were extracted by the BiLSTM
layer, the key information was extracted by the attention layer, and the biological features
were integrated. The fused features were sent to the multi-layer perceptron for nonlinear
transformation, and the sigmoid function was used to complete the final prediction.
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4.4.1. Input Module

The input of the DeepTP model included amino acid composition encoding, amino
acid physicochemical property encoding, and protein sequence-based biological features,
as shown in Figure 5.

Amino acid composition encoding
The protein sequence was encoded according to the abbreviated alphabetical order of

the amino acid residues, with each amino acid corresponding to a specific real number.
Amino acid physicochemical property encoding
There is a close relationship between the physicochemical properties of amino acids

and thermophilic proteins. The amino acids were divided into six groups according to
their physical and chemical properties [23]: hydrophobic (V, I, L, F, M, W, Y, C), negatively
charged (D, E), positively charged (R, K, H), conformation (G, P), polarity (N, Q, S), and
other properties (A, T). The amino acids were encoded in sequence according to the class.
Encoding details are shown in Supplementary Table S8.

Protein sequence-based biological features
The biological features are detailed in Sections 2.2 and 2.3; the final number of biomet-

rics used was 205.
The two vectors encoded by amino acid composition and amino acid physicochemical

properties were input into the embedding layer and mapped to dense vectors. Injecting
noise (such as dropouts) into hidden units can effectively prevent the model from overfitting.
Therefore, a dropout layer was added after the embedding layer to temporarily drop some
of the neural network units from the network.

4.4.2. Feature Representation Module

As shown in Figure 5, after the input protein sequence was processed by the input
module, it was input into the feature representation module to extract the internal informa-
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tion of the sequence. The feature representation module consisted of three parts: the CNN
module, the BiLSTM module, and the self-attention mechanism module.

CNN module
A CNN [24] can effectively capture key local features, thus CNN was used to analyze

protein sequences. The convolution module set up three convolutional network layers.
Each convolutional layer used local connections and weight sharing to perform convolution
operations on the data to obtain key local information. The first convolutional layer had
128 filters, and the second and third convolutional layers had 64 filters, each with a sliding
step of 1. After a series of convolution operations, feature maps with higher dimensions c1
and c2 were created.

Using a pooling layer can effectively reduce the size of the parameter matrix, thereby
reducing the number of parameters in the model. Therefore, adding pooling layers can
improve computational efficiency and avoid overfitting. Therefore, a max pooling operation
was performed in the pooling layer to obtain the outputs c′1 and c′2.

BiLSTM module
Prediction of thermophilic proteins uses information from the entire sequence, and pre-

diction model performance may be affected by dependencies that exist between sequence
contexts. Therefore, the BiLSTM [25] algorithm was used to obtain further dependency
information between protein sequence contexts. The structure of BiLSTM is shown in
Supplementary Figure S3.

The forward layer of BiLSTM performed forward calculation from time 1 to t and
obtained the output of the forward hidden layer at each time. From time t to 1, the backward
layer performed reverse calculations to obtain the output of the backward hidden layer at
each time. On this basis, the outputs of the forward layer and the backward layer at each
moment were combined to obtain the final output result:

C f = f (w1xt + w2C f−1), (1)

Cb = f ′(w3xt + w5Cb−1), (2)

Hm = g
(

w4C f + w6Cb

)
, (3)

where t represents time; x represents the input; wi is the weight; C f is the output of the
forward layer; Cb is the output of the backward layer; f () and f ′() calculate the outputs of
the forward and backward layers, respectively; and g() combines and sums the outputs
of the forward and backward layers. Finally, the output (Hm) of the BiLSTM layer was
generated.

The output of the convolution module was input into the BiLSTM layer, and two
128-dimensional feature vectors H1 and H2 were finally obtained after training.

Self-attention mechanism module
The introduction of the attention mechanism can help the model to assign different

weight values to each part of the input, thereby extracting key information and enabling
the model to make more accurate decisions. Attention mechanisms are widely used in
various fields.

The self-attention mechanism [26] efficiently processes a given level of information in
parallel. Based on the fully extracted protein sequence feature information obtained through
the CNN and BiLSTM modules, the self-attention mechanism was used for optimization
so that the model could pay more attention to key information in the protein sequence,
thereby enhancing the module’s ability to extract key features. The computation of the
self-attention mechanism was carried out as follows.

The input word vector matrix was first mapped into three spaces to obtain three
vectors Q, K, and V. The expressions are:

Q = EWQ
i , (4)
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K = EWK
i , (5)

V = EWV
i , (6)

where Q, K, and V represent the matrices composed of query, key, and value vectors,
respectively, and WQ

i , WK
i , and WV

i are the parameter matrices of the i-th linear mapping.
Point multiplication was used to calculate the similarity between K and Q, after

which the so f tmax() function was used to normalize the attention weights to obtain the
probability distribution according to the following expression:

A = so f tmax(K·Q). (7)

Finally, the weights A and V were weighted and summed to obtain the attention, for
which the expression is:

Attention(Q, K, V) = V·A. (8)

After the hidden features of the extracted protein sequences were processed by the
self-attention mechanism module, more attention was allocated to important features and
less attention to unimportant features, and finally, outputs A1 and A2 were obtained.

4.4.3. Prediction Fusion Module

The dimension of the biological features also affects the predictive performance of
the model. If the dimension of the biological feature is too large, the feature dimension
obtained after fusion with the output feature of deep learning will be too large, which will
increase the complexity of model prediction. Therefore, biological features B were used
after feature selection and standardized processing.

The feature vectors of the BiLSTM layer, the output vectors of the self-attention
mechanism layer, and the biological feature vector were fused as the input to the next layer.

The result after feature fusion was input into the MLP. The MLP is connected through
three fully connected layers, and each layer of nodes has a ReLu activation function. At
the same time, to avoid overfitting, three dropout layers were added between the fully
connected layers. Finally, the sigmoid activation function turned the output into a value in
the range (0, 1).

The specific experimental parameter settings can be found in Supplementary Table S7.

4.5. Evaluation Metrics

Thermophilic protein prediction is a binary classification problem. Seven indicators
are used to comprehensively evaluate the prediction model: positive predictive value (PPV),
negative predictive value (NPV), sensitivity, specificity (SPE), accuracy (ACC), Matthews
correlation coefficient (MCC), the area under the receiver operating characteristic curve
(AUC), and the average precision (AP). These metrics are calculated as follows:

PPV (Precision) =
TP

TP + FP
, (9)

NPV =
TN

TN + FN
, (10)

SEN (Recall) =
TP

TP + FN
, (11)

SPE =
TN

TN + FP
, (12)

ACC =
TP + TN

TP + TN + FP + FN
, (13)

MCC =
TP× TN − FP× FN√

(TP + FN)× (TP + FP)× (TN + FN)× (TN + FP)
, (14)
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AUC =
∑i∈positives ranki −

M(1+M)
2

M× N
, (15)

AP = ∑
n
(Recalln − Recalln−1)× Precisionn (16)

where TP represents the number of correctly predicted thermophilic proteins, FP represents
the number of incorrectly predicted thermophilic proteins, FN represents the number of
incorrectly predicted mesophilic proteins, TN represents the number of correctly predicted
mesophilic proteins, positives represents the set of positive samples, M represents the
number of positive samples, and N represents the number of negative samples. Recalln
and Precisionn represent the precision and recall at the nth threshold, respectively. The
predicted scores of the samples are then arranged in ascending order, with the lowest score
being rank1 and so on to obtain ranki.

For the balanced datasets, the AUC curve was used to evaluate the performance, and
the precision-recall curve was preferred for the unbalanced set.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24032217/s1. References [27–30] are cited in the supplementary
materials.
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