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Abstract: Cardiomyopathy is the leading cause of death in patients with muscular dystrophy (MD).
Tranilast, a widely used anti-allergic drug, has displayed inhibitory activity against the transient
receptor potential cation channel subfamily V member 2 and improved cardiac function in MD
patients. To identify urinary biomarkers that assess improved cardiac function after tranilast adminis-
tration, we performed a urinary metabolomic study focused on oxidative fatty acids. Accompanying
the clinical trial of tranilast, urine specimens were collected over 24 weeks from MD patients with
advanced heart failure. Urinary levels of tetranor-PGDM (tetranor-prostaglandin D metabolite), a
metabolite of prostaglandin D2, significantly decreased 12 weeks after tranilast administration and
were correlated with BNP. These results suggest that prostaglandin-mediated inflammation, which
increases with the pathological progression of heart failure in MD patients, was attenuated. Urinary
prostaglandin E3 (PGE3) levels significantly increased 4 weeks after tranilast administration. There
were positive correlations between the urinary levels of PGE3 and 8-hydroxy-2′-deoxyguanosine, an
oxidative stress marker. High PGE3 levels may have a protective effect against cardiomyopathy in
MD patients with high oxidative stress. Although further validation studies are necessary, urinary
tetranor-PGDM and PGE3 levels may help the current understanding of the extent of advanced heart
failure in patients with MD after tranilast administration.

Keywords: muscular dystrophy; tranilast; transient receptor potential cation channel subfamily V
member 2; heart failure; brain natriuretic peptide; metabolomics; oxidative fatty acids

1. Introduction

The transient receptor potential cation channel subfamily V member 2 (TRPV2) is a
stretch-sensitive Ca2+ channel. It is normally localized in intracellular membrane com-
partments but translocates to the cytoplasmic membrane in damaged myocytes or car-
diomyocytes and enhances the influx of Ca2+, which triggers the cell damage process [1].
Overexpression of TRPV2 at the sarcolemma was observed in the skeletal muscle and
cardiomyocytes of patients with muscular dystrophy (MD) and animal models of MD such
as mdx mice and BIO 14.6 hamsters [1,2]. Therefore, inhibition of TRPV2 is expected to
suppress myocardial degeneration by a mechanism that differs from that of conventional
cardioprotective agents such as angiotensin-converting enzyme inhibitors (ACEIs), an-
giotensin II receptor blockers (ARBs), and beta-blockers. Indeed, TRPV2 inhibition using
mutant TRPV2 and Ca2+ handling agents was effective against heart failure [3] and motor
function [4,5] in animal models of MD. We have already demonstrated that tranilast, a
widely used anti-allergic drug, displays TRPV2-inhibitory activity and has beneficial effects
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in BIO14.6 hamsters [2] and mdx mice [6]. These results suggest that tranilast may be a
useful therapeutic agent for patients with MD.

Currently, heart failure is the major cause of death in MD patients, including those
with Duchenne muscular dystrophy (DMD) [7]. Heart failure progresses chronically and
often concurrently with respiratory failure. Although novel therapies such as exon skipping
are being developed for DMD, they are unlikely to affect myocardiopathy [8]. This raises
the concern that improvements in motor dysfunction with novel therapies might increase
the risk of cardiac burden. Therefore, there is an urgent need to develop therapies aimed
at improving cardiac function. In addition, to assess cardiac function in patients with
MD, multiple markers and serial evaluations are needed because magnetic resonance
imaging and echocardiography are difficult to apply in many cases due to their pathological
conditions. Brain natriuretic peptide (BNP) level is a standard cardiac function marker
that is highly correlated with heart failure severity and prognosis. However, BNP level
frequently remains low, even in the advanced stages of heart failure, because factors other
than myocardial degeneration, such as instability of general conditions, volume load,
vascular resistance, and blood pressure, also affect its levels.

Under these circumstances, we conducted a pilot study and multicenter clinical trial to
assess the safety and efficacy of tranilast in MD patients with cardiomyopathy [3,9,10]. In
the pilot study, reduced BNP levels were observed in two participating patients with severe
cardiac dysfunction after 3 months of continuous administration of tranilast at 300 mg/day.
These patients showed an improvement in echocardiographic findings after more than
one year of tranilast administration, suggesting that inhibition of TRPV2 might become
a new therapeutic target for heart failure and myopathy. In the following single-arm,
open-label, multicenter study, 34 MD patients with advanced heart failure were enrolled;
of which, 17 were in the full analysis set (FAS) [10]. Tranilast as an additional therapy
was administered orally for 28 weeks at a dose of 300 mg/day, divided into three daily
doses. In contrast to the pilot study, no obvious improvement in cardiac function was
observed owing to the short-term administration period; however, tranilast may have
the potential to prevent the progression of cardiac dysfunction and reduce cardiac events
and mortality [11]. In this trial, we also collected both biochemical and urinary test data
from the participants for an exploratory study. Furthermore, we performed a urinary
metabolomics study focused on oxidative fatty acids, that is, bioactive lipids derived from
polyunsaturated fatty acids (PUFA). Prostaglandin (PG)-mediated inflammation is involved
in the pathology of MD, and urinary levels of tetranor-PGDM (tetranor-prostaglandin D
metabolite), a metabolite of PGD2, are a useful marker of pathological progression [12,13].
In this study, we report the alteration of urinary metabolomic levels before and after
tranilast administration and their correlation with other markers, such as oxidative stress
markers. This study aimed to evaluate whether these metabolites have the potential to be
used as biomarkers to assess improved cardiac function or prevention of the progression
in MD.

2. Results
2.1. Alteration of Urinary Metabolites in a Long-Term Study

Of the 17 patients in the FAS, urine samples at 0, 4, 12, and 24 weeks after tranilast
administration were available only for six (long-term study, Table 1). The reason why
small numbers of samples were collected was that urinary metabolomic studies were
exploratory, accompanied by clinical studies, and urine collection was not mandatory
in participating institutes. Although we measured 88 target metabolites using selective
reaction monitoring mass spectrometry (SRM-MS), 24 metabolites were detected in none
of the specimens, 37 metabolites were detected in less than half of the specimens, and
27 metabolites were detected in more than half of the specimens. The normalized peak
areas and creatinine (Cre) concentrations are listed in Supplementary Table S1. Twelve
metabolites were detected in all specimens (six patients, four time points), and we focused
on these. Of the twelve metabolites, four were linoleic acid (LA) metabolites (13-HODE,
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9-HODE, 13-OxoODE, and trans-EKODE), four were arachidonic acids and their metabo-
lites (2,3-dinor-8-iso prostaglandin F2α, tetranor-PGAM, tetranor-PGDM, and tetranor-
PGEM), two were eicosapentaenoic acid (EPA) and its metabolite (prostaglandin E3), and
docosahexaenoic acid (DHA) (Supplementary Table S1). In addition, we focused on urinary
8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker for oxidative damage to nucleic
acids, which was measured in these six patients (Table 2).

Table 1. Patient characteristics in each study.

Study Long-Term Study Short-Term Study

No. of patients * 6 17
Urine collection point (weeks) 0, 4, 12, 24 0, 4

Age (mean ± SD) 28.5 ± 1.4 33.1 ± 7.5
Sex male/female 6/0 16/1

Diseases

Duchenne muscular
dystrophy 5 11

Becher muscular dystrophy 1 3
Limb-Girdle muscular

dystrophy 0 1

BNP (pg/mL)
(GM ± GSD)

0 weeks 182.0 ± 1.4 192.9 ± 1.7
4 weeks 162.9 ± 1.4 184.7 ± 1.8

12 weeks 169.0 ± 1.5 -
24 weeks 168.3 ± 1.4 -

* Patients in the long-term study were also included in short-term-study patients’ group.

Table 2. Median fold changes in metabolite levels after tranilast administration.

Median Fold Change
p-Value

4W/0W 12W/0W 24W/0W

13-HODE 0.91 0.59 0.70 0.6093
9-HODE 1.46 1.39 1.35 0.5120

13-OxoODE 0.90 1.27 0.49 0.8438
2,3-dinor-8-iso-Prostaglandin F2α 0.68 0.50 1.31 0.1555

Arachidonic Acid 0.50 0.54 1.09 0.6787
Docosahexaenoic Acid 0.31 0.51 1.05 0.6787
Eicosapentaenoic Acid 0.68 1.10 1.16 0.1555

Prostaglandin E3 1.87 0.91 1.78 0.1633
tetranor-PGAM 0.92 0.63 1.09 0.1081
tetranor-PGDM 0.85 0.53 0.99 0.0292
tetranor-PGEM 1.36 0.52 1.90 0.0073

trans-EKODE-(E)-Ib 0.21 0.30 0.51 0.3855
8-OHdG 1.01 1.02 0.99 >0.9999

Statistical analysis was performed using Friedman’s test to detect differences in metabolite levels from 0 weeks to
24 weeks. p-values < 0.05 were considered statistically significant.

To identify the metabolites associated with response to tranilast therapy, their uri-
nary levels were compared before and after administration of tranilast (Table 2). Of the
13 metabolites including 8-OHdG, levels of tetranor-PGDM and tetranor-PGEM, major
urinary metabolites of PGD2 and PGE2, respectively, changed significantly after adminis-
trations across four time points (p = 0.0292 and p = 0.0073 by Friedman’s test). However,
post-hoc tests did not show any significant difference in tetranor-PGEM levels at 4, 12,
and 24 weeks after tranilast administration compared with those of pre-administration.
In contrast, urinary levels of tetranor-PGDM after 12 weeks of tranilast administration
were significantly lower (0.53-fold) than those before tranilast administration (p = 0.0417 by
post-hoc analysis, Figure 1).
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points. A positive correlation was observed, with a Spearman’s rank correlation coeffi-
cient r of 0.7052 (p = 0.0001), suggesting that urinary tetranor-PGDM might reflect cardiac 
function in our patients (Figure 2). 

 
Figure 2. Correlation between BNP and urinary tetranor-PGDM level (r = 0.7052). Data on four time 
points of six patients were plotted. 
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Figure 1. Alteration of urinary tetranor-PGDM level in MD patients between pre- and post-
administration of tranilast. Fold-changes were calculated as ratios of levels at 4, 12, and 24 weeks
relative to 0 weeks for each patient. Data were represented as medians with interquartile ranges of
N = 6. p-values were determined using the Dunn’s post-hoc analysis.

Next, to examine whether the decrease in tetranor-PGDM is associated with the preven-
tion of the progression of cardiac dysfunction, the correlation between BNP concentration
and urinary levels of tetranor-PGDM was assessed in six patients at four time points. A
positive correlation was observed, with a Spearman’s rank correlation coefficient r of 0.7052
(p = 0.0001), suggesting that urinary tetranor-PGDM might reflect cardiac function in our
patients (Figure 2).
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Figure 2. Correlation between BNP and urinary tetranor-PGDM level (r = 0.7052). Data on four time
points of six patients were plotted.

2.2. Alteration of Urinary Metabolites in a Short-Term Study

In the short-term study (Table 1), metabolome data, before and 4 weeks after tranilast
administration, for 17 patients with FAS were compared using the Wilcoxon signed-rank
test. There were no significant differences in the 12 metabolites, including tetranor-PGDM
(Supplementary Table S2, Figure 3). This is consistent with a long-term study in which
the tetranor-PGDM levels did not change after 4 weeks, but changed after 12 weeks of
tranilast administration in six patients. In contrast, the urinary level of prostaglandin
E3 (PGE3) was significantly increased 4 weeks after tranilast administration compared to
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before administration (p = 0.0002, Figure 3). Median fold changes in PGE3 levels at 4 weeks
to pre-administration of tranilast was 3.15 (N = 17).
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Figure 3. Comparison of normalized peak area of (A) tetranor-PGDM and (B) prostaglandin E3

in 17 DMD patients between pre- and post-administration. p-values were determined using the
Wilcoxon signed-rank test. ns, not significant.

The correlation of PGE3, which is derived from EPA, with the concentration of oxida-
tive stress marker 8-OHdG, was examined because EPA may alter oxidative status and
immune function [14]. There was a significant positive correlation between PGE3 and
8-OHdG, with a Spearman’s rank correlation coefficient r of 0.4625 (p = 0.0059) (Figure 4).
EPA and 8-OHdG levels were weakly correlated (r = 0.4112, p = 0.0157).
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Figure 4. Correlation between 8-OHdG and urinary metabolite levels. (A) PGE3 level (r = 0.4625)
and (B) EPA level (r = 0.4112). Data on two time points for 17 patients were plotted. 8-OHdG,
8-hydroxy-2′-deoxyguanosine levels, an oxidative stress marker.
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3. Discussion

To the best of our knowledge, this is the first urinary metabolome analysis of MD
patients with advanced cardiomyopathy intended to evaluate the effects of tranilast ad-
ministration. In this clinical trial, TRPV2 expression on the mononuclear cell surface was
reduced after administration of tranilast and cardiac biomarkers such as BNP remained
stable [11], suggesting a protective effect of tranilast against the progression of heart failure.
We previously reported that PGD2 in myocardial tissues from J2N-k hamsters was signifi-
cantly increased in the symptomatic phase (16 weeks) but not in the presymptomatic phase
(4 weeks), compared with that in J2N-n healthy control hamsters [15]. In a clinical study,
urinary levels of tetranor-PGDM were shown to be increased in DMD patients compared
with those in age-matched healthy control subjects and increased with advancing age [12].
These results suggest that PGD2-mediated inflammation plays a key role in myocardial
damage in the progression of MD. An increase in urinary tetranor-PGDM levels might
help explain the progression and symptomatic presentations, such as ambulatory difficulty,
associated with DMD [13]. Therefore, we investigated whether tranilast administration
suppressed the increase in urinary tetranor-PGDM levels. This study aimed to explore
urinary biomarkers, including tetranor-PGDM, to assess improved cardiac function or
prevention of the progression of MD.

We demonstrated that urinary tetranor-PGDM levels decreased after 12 weeks of trani-
last administration in a long-term study. Urinary tetranor-PGDM levels at 4 and 24 weeks
did not increase but were stable, that is, 0.85 and 0.99-fold before tranilast administration,
respectively. In agreement with the long-term study, urinary levels of tetranor-PGDM at
4 weeks after tranilast administration did not increase (1.03-fold) compared with the levels
before tranilast administration in 17 patients in the short-term study. Tetranor-PGDM has
been shown to be a major urinary metabolite of PGD2 and reflects its biosynthesis [16].
PGD2 is a cyclooxygenase (COX) product of arachidonic acid that activates D-prostanoid
receptors to modulate vascular, platelet, and leukocyte functions in vitro. PGD2 is impli-
cated in both the development and resolution of inflammation, and its synthetic enzyme,
hematopoietic-type prostaglandin D synthase was reported to be expressed in necrotic mus-
cle fibers of DMD patients [17]. This indicates that the inflammatory mediator PGD2 plays
a role in DMD pathology. Tranilast suppresses inducible cyclooxygenase-2 (COX-2) expres-
sion [18,19], resulting in decreased PGD2 synthesis [20]. Furthermore, tranilast inhibits the
production of PGD2 by inhibiting PGD synthetase [21]. Considering that COX-2 expression
is induced in necrotic and fibrotic lesions in mdx mice [22], the fact that tetranor-PGDM
was stable at 4 and 24 weeks and decreased 12 weeks after tranilast administration suggests
that PGD2-related MD progression may have been prevented by tranilast administration.
To assess whether the effects of tranilast are mediated by the inhibition of TRPV2, it is
necessary to examine the effects of an inhibitory antibody specific to TRPV2 on urinary
tetranor-PGDM levels [23]. In a pilot study, favorable changes in echocardiographic find-
ings were observed in two MD patients with advanced cardiomyopathy after more than
one year of tranilast administration [3]. Four weeks may not be sufficient to assess the effect
of tranilast on cardiac function. After 24 weeks of tranilast administration, only half of the
six patients had lower levels of tetranor-PGDM than those before tranilast administration.
The participants in this study had severe heart failure and poor health conditions compared
with those in the pilot study.

There was a significant correlation between urinary tetranor-PGDM levels and BNP
concentration (p = 0.0001, Spearman rank correlation test), indicating that tetranor-PGDM
correlates with cardiac function that can be assessed using BNP (Figure 2). This result
suggests that tetranor-PGDM may be a useful biomarker for heart failure, similar to con-
ventional BNP levels. It remains unclear whether tetranor-PGDM is more sensitive than
BNP as a biomarker for early-stage heart failure in MD patients, because this study was
limited to patients whose BNP levels were >100 pg/mL during standard administration. It
is necessary to evaluate the correlation between tetranor-PGDM and BNP in earlier patients
with various stages of heart failure to assess its potency as a biomarker of cardiac function.
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This study was the first report of a significant increase in PGE3 after 4 weeks of tranilast
administration (p = 0.0002) (Figure 3). Tetranor-PGEM levels were also slightly increased
(1.18-fold) after 4 weeks of tranilast administration with borderline significance (p = 0.0507).
Although the mechanisms underlying the increase in PGE3 following tranilast adminis-
tration are unclear, it is possible that the shunting effects after PGD synthase inhibition
by tranilast lead the increments of PGE3. PGE3, which shares a metabolic pathway with
PGE2, can be produced by nearly all cell types in the heart, such as fibroblasts, myocardial
cells, and vascular endothelial cells and infiltrating inflammatory cells [24]. An increase
in PGE3 might have a favorable effect on cardiac function. A high intake of EPA causes
increased production of anti-inflammatory eicosanoids such as PGE3 [25,26] and exerts
cardioprotective effects in coronary artery disease and sudden cardiac death [27–30]. In
this study, patients with MD did not have any dietary restrictions or supplementation
with n-3 PUFA. Indeed, urinary EPA levels did not increase after tranilast administration
(Supplementary Table S2). Therefore, it is unlikely that the increase in urinary PGE3 levels
could be attributed to high EPA intake. PGE3 interacts with PGE receptors (e.g., EP1–4)
together with PGE2, albeit with different binding affinities and potencies [31]. An increase
in PGE3 production might suppress the pro-inflammatory effects of PGE2 at sites of in-
flammation [32,33]. In this long-term study, urinary levels of PGE3 at 4, 12, and 24 weeks
were 1.87-, 0.91-, and 1.78-fold, respectively, of those at 0 weeks, whereas urinary levels of
tetranor-PGEM, the major urinary metabolite of PGE2, at 4, 12, and 24 weeks were 1.36-,
0.52-, and 1.90-fold, respectively, of those at 0 weeks; however, these changes were not
significant due to individual variation (Table 2). This data suggests that alterations in the
urinary levels of tetranor-PGEM and PGE3 may be synchronized. Tranilast may be effective
in regulating the balance between pro-inflammatory and anti-inflammatory responses in
patients with MD.

Oxidative stress is involved in the pathogenesis of dilated cardiomyopathy (DCM).
We previously demonstrated a mild reduction in glutathione levels and a compensatory
increase in ophthalmate levels in the cardiac tissue of 16-week-old J2N-k hamsters, suggest-
ing increased oxidative stress [15]. Patients with DCM exhibit increased plasma glutathione
levels and lipid peroxidation products such as malondialdehyde [34], and total plasma
peroxide levels are inversely correlated with cardiac ejection fraction [35]. There are no
reports on the effect of PGE3 on oxidative stress, but EPA has been suggested to have
antioxidant properties [36,37]. High PGE3 levels may have a protective effect against
cardiomyopathy in MD patients with high oxidative stress; however, the underlying mech-
anisms are unknown.

In conclusion, this study demonstrated that urinary levels of tetranor-PGDM were
significantly decreased by tranilast administration and were correlated with BNP, a conven-
tional biomarker. Tranilast suppresses PG-mediated inflammation and prevents cardiac
dysfunction progression. Examining urinary tetranor-PGDM levels helps with understand-
ing the extent of advanced heart failure in patients with MD. Our results also suggest that
PGE3 that is increased by tranilast administration at earlier stages may be a novel biomarker
with therapeutic effects against heart failure in patients with MD. However, this is an ex-
ploratory study, and further validation is needed to determine whether these metabolites
are potential biomarkers of improved cardiac function or prevention of MD progression.

4. Materials and Methods
4.1. Chemicals and Reagents

LC-MS-grade water was purchased from Kanto Chemical Co., Inc. (Tokyo, Japan).
Formic acid, methanol (for LC-MS), acetonitrile (for LC-MS), and isopropanol (for LC-
MS) were purchased from FUJIFILM Wako Pure Chemical Co., Ltd. (Osaka, Japan).
Authentic standards for oxidative fatty acids were obtained from Cayman Chemicals
(Ann Arbor, MI, USA) or Santa Cruz Biotechnology (Santa Cruz, CA, USA).
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4.2. Patients and Collection of Urine Samples

A total of 17 patients with MD with advanced heart failure, corresponding to FAS in
the clinical trial, were the subjects of a urinary metabolomic study. Among the MD patients,
11 were classified as having DMD, three as having Becker muscular dystrophy, and one as
having limb girdle muscular dystrophy. Patient characteristics are summarized in Table 1.
The 24 h urine samples were collected from 11 patients at all time points, while spot urine
was collected at either time point in six patients (Supplementary Table S1). Samples were
then transferred into an Eppendorf tube, which was stored at −80 ◦C until use. Urinary
8-OHdG concentrations were determined using an ELISA kit by outsourcing contractors,
SRL, Inc. (Tokyo, Japan).

4.3. Urine Sample Preparation for MS Analysis

Samples were thawed in an ice bath to prevent sample degradation and centrifuged
(13,200× g) at 4 ◦C for 3 min. Next, 200 µL of the supernatant was added to 2750 µL
of 25% ACN in a glass tube and mixed thoroughly. Then, 50 µL of deuterated internal
standard solution (160 nM each of prostaglandin E2-d4, leukotriene B4-d4, 15(S)-HETE-d8,
prostaglandin F2α-d9) was added to a glass tube, and the samples were subsequently
vortexed for 5 min. Oxidative fatty acids were extracted according to earlier published
protocols with some modifications [38–40]. In brief, an Oasis MAX SPE Cartridge (Waters,
Milford, MA, USA) was conditioned with 3 mL of ACN, followed by 3 mL of 25% ACN.
The entire pre-treated sample was loaded onto the Oasis MAX SPE Cartridge and then
washed with 3 mL of 25% ACN and 3 mL of ACN. The samples were eluted with 2.0 mL of
1% formic acid in ACN and collected in a glass amber bottle. Finally, the eluted samples
were evaporated under nitrogen and reconstituted in 500 µL of 50/50 MeOH/ACN. For
SRM-MS analyses, 225 µL of extracted samples was dried in a SpeedVac (Thermo Fisher,
Paisley, UK) and resuspended in 30 µL of loading buffer (60% MeOH).

4.4. SRM-MS Analysis

The analyses were performed on an LCMS-8050 Triple Quadrupole Liquid Chromato-
graph Mass Spectrometer (Shimadzu, Kyoto, Japan) equipped with a heated ESI source and
a Shimadzu LC system, which consisted of Shimadzu LC-20AD pumps and an SIL-30AC
autosampler. Chromatographic separations were carried out using a Kinetex C8 column
(150 mm × 2.1 mm, 2.6µm) (Phenomenex, Torrance, CA, USA) at a flow rate of 0.3 mL/min.
The mobile phases consisted of acetonitrile/methanol (75:25, v:v) (solvent A) and 0.1%
formic acid in water (solvent B), and a gradient elution program was set as follows: 0–7 min,
90–75% B; 7–14 min, 75–65% B; 14–27 min, 65–25% B; 27–27.1 min, 25–5% B; 27.1–34 min,
5% B; 34–34.1 min, 5–90% B; 34.1–45 min, 90% B. The column oven temperature was 40 ◦C.
The injection volume was 15 µL. The ESI-MS conditions were as follows: nebulizer gas flow,
3 L/min; heating gas flow, 10 L/min; drying gas flow, 10 L/min; heat block temperature,
400 ◦C; DL temperature, 250 ◦C; and spray voltage, −3.5 kV for negative mode. The SRM
transitions for each of the 88 oxidative fatty acids were obtained from our previous stud-
ies [15,41]. Parameters such as Q1 pre-rod bias voltage, CE, Q3 pre-rod bias voltage, and
retention time (RT) were determined through optimization using standard materials, and
the scheduled-SRM method was constructed with fixed RT window widths (3 min) [42].

4.5. Data Analysis and Statistical Analysis

The creatinine concentration of each urine specimen was measured using a creatinine
(urinary) Colorimetric Assay Kit (Cayman Chemicals) according to the manufacturer’s
protocol. Data from SRM-MS were analyzed using LabSolutions version 5.91 (Shimadzu),
and the integrated peak area of each metabolite was normalized to the IS and creatinine
response. The normalized peak areas were statistically compared between pre- and post-
tranilast administration using Prism 9 (GraphPad Software, San Diego, CA, USA), with
statistical significance set at p < 0.05. Analysis was performed on 6 patients with urine
specimens at 0, 4, 12, and 24 weeks (long-term study) and 17 patients with urine specimens
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only at 0 and 4 weeks (short-term study). For the long-term study, statistical significance
was determined using Friedman’s test with Dunn’s post-hoc analysis to examine differ-
ences in metabolite levels pre- and post-tranilast administration. Correlations between
urinary metabolite levels and other markers, such as BNP concentration and 8-OHdG,
were evaluated using Spearman’s rank correlation coefficient. For the short-term study, the
Wilcoxon signed-rank test was used to calculate statistical significance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24032167/s1.
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