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Abstract: Extensive research has been conducted for decades to elucidate the molecular and regula-
tory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream
signaling components that physically interact with phytochromes are identified, among which neg-
ative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs
(PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to
inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC
1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of
positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5
(HY5). Although many downstream components of phytochrome signaling have been studied thus
far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation
of these components. It should be noted that phytochromes are autophosphorylating protein kinases.
Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its
function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase
activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation
of plant photoresponses by phyA.

Keywords: phytochrome A; phosphorylation; protein kinase; phytochrome-interacting factors;
plant photoresponses

1. Introduction

In higher plants, light is an important environmental cue to optimize their growth and
development, causing the evolution of multiple and sophisticated photoreceptor systems
for sensing continually changing surroundings [1]. There are more than 10 photoreceptors
found in Arabidopsis thaliana L. Heynh, including UV RESISTANCE LOCUS 8 (UVR8) for
sensing UV-B (280–320 nm), UV-A/blue (320–500 nm) light-sensing photoreceptors such as
phototropins, cryptochromes, Zeitlupes (ZTL/FKF1/LKP2), and red/far-red (600–750 nm)
light-sensing phytochromes [2,3]. Among them, phytochromes are the most extensively
studied thus far [4]. They are dimeric chromoproteins with each monomer possessing a
covalently linked chromophore (i.e., phytochromobilin), and exist in two photo-reversible
forms, red (R, 660 nm) light-absorbing Pr and far-red (FR, 730 nm) light-absorbing Pfr
forms [5]. In general, the Pfr form is considered as the biologically-active form of phy-
tochromes. In Arabidopsis, phytochromes are encoded by a family of five genes, PHYA
to PHYE [6,7], where the chromophore-assembled phytochrome A (phyA) is classified as
a light-labile type I phytochrome and where phyB-phyE belong to relatively light-stable
type II phytochromes [8]. In dark-grown plants, phyA is the most abundant phytochrome,
but the level of phyA reduces rapidly upon formation of the Pfr form through exposure to
light. Thus, type II phytochromes are abundant in light-grown plants where phyB becomes
the most abundant. Due to the difference in light-dependent protein stability between
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phyA and type II phytochromes, phyA plays a major role in plant development during
the transition from dark to light; whereas type II phytochromes play prominent roles in
light-grown plants [9,10].

In addition to the light-labile property, phyA is unique in mediating plant responses
to FR light, whereas other phytochromes regulate plant responses to R light [11]. FR
light is favorable for generating the inactive Pr form so how phyA functions in FR light
had been an unresolved question for a long time. A joint experimental-theoretical study
answered this question by proposing the nucleocytoplasmic shuttling of phyA via FAR-
RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL) as a decisive role for the
FR-light signaling [12]. Due to the partial overlap of absorption spectra between the Pr and
Pfr forms, FR light is able to transform a small proportion of Pr into Pfr. With Pfr formation,
FHY1 and FHL function as shuttle proteins for the nuclear import of phyA, binding to the
Pfr form of phyA in the cytosol, and transporting it into the nucleus and back to the cytosol
when phyA is converted to Pr under the FR light [13,14]. Thus, photocycling between the Pr
and Pfr forms of phyA and the Pfr-specific interaction with FHY1/FHL is essential for the
phyA function under FR light, especially mediating FR-high irradiance responses (FR-HIRs)
in plants [15]. Moreover, phyA signaling is initiated by very low light amounts of any
wavelength in which tiny amounts of the Pfr form of phyA can be generated, mediating
very low fluence responses (VLFRs) in plants. Therefore, phyA detects FR-enriched light
conditions, i.e., close vegetation or canopy shade, to mediate FR-HIRs for survival, and
induces VLFRs for germination and de-etiolation [9,11,16].

Plants in the dark or soil after seed germination exhibit skotomorphogenic develop-
ment, i.e., etiolated seedlings with elongated hypocotyls and folded cotyledons with hook,
which, upon exposure to light, show photomorphogenic development, i.e., de-etiolated
seedlings with opened cotyledons and chlorophyll biosynthesis [17]. The transition from
skotomorphogenesis to photomorphogenesis is essential for the successful establishment
of seedlings, which requires a highly regulated signaling network for the transcription of
photoresponsive genes through the concerted work of photoreceptors, E3 ubiquitin ligases,
and various transcription factors [18–20]. Although phytochromes are known as one of
the most important photoreceptors for the regulation of plant photomorphogenesis [21,22],
the molecular mechanisms for the regulation of downstream signaling components by
phytochromes have not been fully elucidated. In this review, we highlight current knowl-
edge about the molecular and regulatory mechanisms of phyA in plant light signaling by
focusing on the fact that phytochromes are autophosphorylating protein kinases.

2. The Core Phytochrome Signaling Pathway

Since the first discovery in 1950s [23,24], phytochromes have been studied intensively
by a broad range of experimental approaches, and a representative model about how
phytochromes transduce light signals into plant physiological responses can be proposed
(Figure 1). In the dark, phytochromes are biosynthesized as the inactive Pr form and
accumulated in the cytoplasm, and upon exposure to light, the Pr form is phototrans-
formed into the active Pfr form. Thus, the first step for the phytochrome signaling is the
conformational changes that are triggered by absorbing the incoming light including R
and FR wavelengths. Then, the second step is the translocation of the photoactivated
phytochromes from the cytoplasm into the nucleus, which is suggested as a crucial con-
trol step for the phytochrome signaling [14,25,26]. In the nucleus, the third step is the
interaction of phytochromes with various downstream signaling components, such as
PHYTOCHROME-INTERACTING FACTORs (PIFs) and an E3 ubiquitin ligase complex of
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105
(SPAs) [17,27]. It is notable that both PIFs and COP1/SPA complex play roles for sustaining
skotomorphogenesis, resulting in the suppression of photomorphogenesis in the dark.
Thus, the inhibition of PIFs and COP1/SPA complex by the photoactivated phytochromes
induces the photomorphogenic development. The regulatory mechanisms of PIFs by
phytochromes have been identified as ubiquitin/26S proteasome-mediated proteolysis,
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inhibition of PIFs binding to target promoters (i.e., sequestration), and retention in the
cytoplasm (i.e., compartmentation) [28–32]. At the same time, phytochromes in the nucleus
inhibit the E3 ligase activity of the COP1/SPA complex by inducing its dissociation [33,34].
Moreover, phytochromes mediate translocation of COP1 from the nucleus to the cytoplasm
(i.e., compartmentation) under prolonged light exposure [35,36]. The COP1/SPA complex
is a well-studied E3 ligase that induces the 26S proteasome-mediated degradation of many
signaling components, such as ELONGATED HYPOCOTYL 5 (HY5), HY5-HOMOLOG
(HYH), LONG HYPOCOTYL IN FAR-RED 1 (HFR1), LONG AFTER FAR-RED LIGHT
1 (LAF1), HECATEs (HECs), and B-box containing proteins (BBXs) [37–44]. Among the
target proteins of COP1/SPA complex, HY5 is a member of the basic leucine zipper (bZIP)
gene family that has been considered as a master transcriptional factor for the expression
of photoresponsive genes to initiate photomorphogenesis in plants [19,45]. Therefore, the
transcriptional regulation of photoresponsive genes via positive transcriptional factors
such as HY5 might be the core regulatory mechanism of phytochrome signaling pathway,
which is accomplished by the suppression of negative regulators for photomorphogenesis
such as PIFs and COP1/SPA complex (Figure 1).

Phytochromes are involved in almost every step of the plant life cycle, starting from
seed germination to seedling de-etiolation, reproductive transition, and senescence [17]. For
this, phytochromes regulate various signaling partners by protein-protein interactions [46].
Among them, PIFs are suggested to play pivotal roles as signaling hubs for the function
of phytochromes [47]. PIFs belong to the basic helix-loop-helix (bHLH) family of tran-
scription factors, and eight PIFs have been identified in Arabidopsis [48–50]. Through
the phytochrome-PIF signaling modules, various plant growth and development could be
regulated (Figure 2).

As examples, PIF1 plays a critical role in inhibiting light-dependent seed germi-
nation, so phytochromes can promote seed germination by the negative regulation of
PIF1 [51]. PIF3 primarily functions as a negative regulator of seedling de-etiolation along
with other PIFs, so phytochromes induce seedling de-etiolation by inhibiting PIF3 and other
PIFs [52,53]. PIF4 and PIF7 are positive regulators of plant thermomorphogenesis, in which
phytochromes have been shown to function as thermo-sensors and negatively regulate
these PIFs [54–57]. Therefore, the phytochrome-PIF signaling modules play important
roles in the regulation of various plant development, such as photomorphogenesis and
thermomorphogenesis [31,49]. It should be noted that Arabidopsis PIFs (PIF1-PIF8) have
binding domains to interact with phytochromes, known as active phyB-binding (APB) and
phyA-binding (APA) motifs [58]. All the Arabidopsis PIFs have an APB motif, so they
can interact with phyB in a light-dependent manner. In contrast, only PIF1 and PIF3 have
an APA motif in addition to APB, so these two PIFs can interact with phyA as well as
phyB (Figure 2). However, many phytochrome-interacting proteins, other than PIFs, do not
have the APB and APA motifs, so these motifs would be one of the binding motifs to phy-
tochromes. In this regard, it is also notable that PIF4, PIF7, and PIF8 can interact with phyA
to a lesser strength compared with phyB, although they do not have an APA motif [48,59].
In general, PIF3 and PIF1 are used for the study of phyA. With these backgrounds, we
move on the molecular function of phyA as an autophosphorylating protein kinase in the
following.
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Figure 1. A simplified model of the core phytochrome signaling pathway for photomorphogenesis. 
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Figure 1. A simplified model of the core phytochrome signaling pathway for photomorphogenesis.
Phytochromes are biosynthesized in the cytoplasm as the inactive Pr form in the dark. In the mean-
time, two repressors for photomorphogenesis, PIFs and COP1/SPA complex promote and sustain
skotomorphogenesis by negatively regulating transcriptional factors for photomorphogenesis such
as HY5 via proteolysis. Upon exposure to light, the active Pfr form is generated and translocated
from the cytoplasm to the nucleus. Then, the photoactivated phytochromes negatively regulate
both the PIFs and the COP1/SPA complex. As the regulatory mechanisms for PIFs, phytochromes
induce 26S proteasome-mediated degradation (i.e., proteolysis), inhibition of binding to the tar-
get promoters (i.e., sequestration), and retention in the cytoplasm (i.e., compartmentation). At the
same time, phytochromes induce the dissociation of COP1/SPA complex and the translocation of
COP1 from the nucleus to the cytoplasm (i.e., compartmentation), which inactivate the E3-ligase
activity of the complex on target proteins. As a result, HY5 is accumulated, which induces the
expression of photoresponsive genes for photomorphogenesis. Red arrows and lines indicate the
phytochrome-mediated light signaling, while black arrows and lines represent the regulation in the
dark for skotomorphogenesis. Pr and Pfr, red and far-red light-absorbing forms of phytochromes;
PIFs, phytochrome-interacting factors (8 PIFs in Arabidopsis); COP1, CONSTITUTIVELY PHOTO-
MORPHOGENIC 1; SPAs, SUPPRESSORs OF phyA-105 (4 SPAs in Arabidopsis); HY5, ELONGATED
HYPOCOTYL 5; HYH, HY5-HOMOLOG; HFR1, LONG HYPOCOTYL IN FAR-RED 1; LAF1, LONG
AFTER FAR-RED LIGHT 1; HECs, HECATEs; BBXs, B-box proteins.
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Figure 2. The functions of eight PIFs identified in Arabidopsis. In general, photoactivated phy-
tochromes negatively regulate PIFs by molecular mechanisms such as phosphorylation and subse-
quent proteolysis, sequestration, and compartmentation. Arabidopsis phyB interacts with all eight
PIFs that have an active phyB-binding (APB) motif (shown as blue lines). In contrast, only PIF1 and
PIF3 have an active phyA-binding (APA) motif, showing interaction with phyA (red lines). However,
it is noted that APA-lacking PIF4, PIF7, and PIF8 can also interact with phyA, although their binding
affinities to phyA are much lesser than that to phyB (red dashed lines) [29,48,49,51–53,56,57,59–92].

3. Regulation of phyA as Phosphoproteins

Plant phytochromes have been reported as phosphoproteins by a phosphate analysis
with purified phytochromes from dark-grown Avena sativa L. (oat) seedlings, indicating an
average of one phosphate per monomer [93]. Phytochromes exist as dimers, and the molec-
ular mass of each monomer is about 120–130 kDa. They consist of a globular chromophore-
binding N-terminal domain and a structurally extended C-terminal domain, also known
as photosensory module (PSM) and output module (OPM), respectively (Figure 3) [4,94].
The PSM contains the chromophore-harboring photosensory core (i.e., PAS-GAF-PHY
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tri-domain) and N-terminal extension (NTE), in which the NTE is shown to be dispensable
for chromophore binding but necessary for the biological activity [95–98]. The OPM con-
tains a PAS-repeat domain (PRD) and a histidine kinase-related domain (HKRD) that play
roles in phytochrome function such as dimerization, nuclear localization, and interactions
with signaling partners [99,100]. Phytochromes were shown to be readily phosphorylated
in vitro and in vivo [101,102], and to this end, three phosphorylation sites on A. sativa phyA
(AsphyA) have been identified: two phosphorylation sites (Ser-8 and Ser-18) in the NTE,
and one site (Ser-599) in the hinge region between PSM and OPM [103]. The determination
of these phosphorylation sites subsequently opened the functional analysis of phyA as
phosphoproteins.
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Figure 3. The proposed molecular mechanisms for the regulation of phyA as phosphoproteins. A sim-
plified domain structure of Avena sativa phytochrome A (AsphyA; 1,129 aa) is shown. The N-terminal
photosensory module (PSM) consists of N-terminal extension (NTE, 1~65 aa) and the photosensory
core composed of Per/Arnt/Sim (PAS), cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF),
and phytochrome-specific (PHY) domains. The tetrapyrrole chromophore is covalently attached to a
cysteine residue in the GAF domain. The C-terminal output module (OPM) contains a PAS-repeat
domain (PRD) and a histidine kinase-related domain (HKRD). The PSM and OPM are linked by a
hinge region. There are three phosphorylation sites that have been determined in AsphyA, in which
Ser-8 and Ser-18 in the NTE are autophosphorylated and Ser-599 in the hinge region might be phos-
phorylated by unknown protein kinase(s). The autophosphorylation of AsphyA has been suggested
as a mechanism of signal desensitization for terminating phyA function after photoactivation via the
promotion of its proteolysis. The phosphorylation at Ser-599 regulates protein-protein interactions
with downstream signaling partners, in which the hinge region phosphorylation can prevent its
interaction with positive regulators (PRs) such as NDPK2. Based on the results of Arabidopsis
phyA phosphorylation site mutants in the hinge region, it is also possible that the hinge region
phosphorylation promotes the interaction with negative regulators (NRs) such as PIF3, resulting in
the promoted proteolysis of NRs with phosphorylated phyA. This phosphorylation can be reversed
by protein phosphatases such as PAPP5. Thus, the phosphorylation in the hinge region can play roles
in phyA signaling either negatively (via the prevention of the interaction with PRs) or positively (via
the promotion of the interaction with NRs and subsequent proteolysis). The functional roles of the
hinge region phosphorylation need to be elucidated more clearly in the future.

Based on the observation that Ser-599 in the hinge region of AsphyA is phospho-
rylated in vitro and in vivo in a Pfr-specific manner [103], the functional role of Ser-599
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phosphorylation was first investigated using transgenic plants with S599A mutant. The
results showed hypersensitive responses of the S599A plants to FR light, suggesting an
inhibitory role of the phosphorylation in the hinge region of AsphyA [104]. The same study
showed that the S599A mutant (i.e., unphosphorylated form) of AsphyA interacted more
strongly with nucleoside diphosphate kinase 2 (NDPK2), a positive signaling component
in the phytochrome signaling [105]. Thus, these results suggest that the hinge region
phosphorylation plays a role for the regulation of protein-protein interactions between
phytochromes and signaling partners. To be consistent, three sites (Ser-590, Thr-593, and
Ser-602) in the hinge region of A. thaliana phyA (AtphyA) have been demonstrated to be
phosphorylated in plants, indicating that the phosphorylation at hinge region plays an
important role in regulating the function of AtphyA [106]. In the same study, it was also
shown that the phosphorylated form of AtphyA is produced in the nucleus by the Pfr form,
which proposes the role of phytochrome phosphorylation in the nucleus.

Subsequently, the Ser-8 and Ser-18 in the NTE have been identified as the autophos-
phorylation sites of AsphyA, and the Ser-to-Ala autophosphorylation site mutants (ex.
S8/18A) were degraded in plants at a significantly slower rate than wild-type AsphyA,
resulting in transgenic plants with hypersensitive responses to FR light [107]. These results
are consistent with an older report that the serine-to-alanine substitutions in the NTE
including Ser-8 and Ser-18 increased the biological activity [108]. Based on these data,
the autophosphorylation of AsphyA is suggested as a desensitization signal to terminate
phyA signaling after its activation under light, which might be comparable to rhodopsin
desensitization via phosphorylation by rhodopsin kinase in animals [109]. It is notable
that phyA exhibits rapid light-induced proteolytic degradation along with its aggregation,
known as sequestered areas of phytochrome (SAPs), which requires the ubiquitin/26S pro-
teasome pathway [110,111]. In addition, it is reported that the light-induced degradation
of phyA is promoted by transfer into the nucleus, although phyA is degraded both in the
cytoplasm and in the nucleus [112]. Thus, phyA mediates only transient signaling under
R light because of its rapid degradation, while phyA functions stably under FR light or
shade, i.e., in the conditions that its degradation is prevented or significantly reduced [113].
Furthermore, COP1 has been reported as an E3 ligase for the ubiquitination of phyA, which
associates preferentially with the phosphorylated form of phyA [114,115]. Collectively, the
autophosphorylation in the NTE might play an inhibitory role in the phyA signaling by
causing the rapid light-induced degradation (Figure 3). By comparison, phosphorylation
sites of AtphyB in the NTE, such as Ser-86 and Tyr-104, have also been reported, and
the NTE phosphorylation is suggested to play a negative role in phyB function [116,117].
Especially, the phosphorylation at Ser-86 has shown to accelerate dark reversion (i.e., light-
independent thermal conversion of Pfr to Pr), which contribute to the inactivation of type II
phytochromes (phyB, phyD, and phyE) in plants [116,118]. Therefore, the phosphorylation
of phyA and phyB in the NTE might provide a mechanism of signal desensitization or
attenuation of phytochromes: for phyA via promoting protein degradation and for phyB
via accelerating dark reversion.

Since phytochromes are phosphoproteins, it is expected that protein phosphatases
might be involved in the phytochrome signaling. Indeed, a few protein phosphatases
that directly interact with dephosphorylate phytochromes has been reported, which in-
clude flower-specific phytochrome-associated protein phosphatase (FyPP), phytochrome-
associated protein phosphatase 5 (PAPP5), and phytochrome-associated protein phos-
phatase 2C (PAPP2C) [119–121]. Especially, the protein stability of phyA increased in
PAPP5-overexpressing plant, but decreased in papp5 mutant, suggesting that phyA phos-
phorylation is necessary for the promotion of protein degradation [121]. In addition to
PAPP5 that can increase phyA stability in plants, both FyPP and PAPP2C also play positive
roles in the phytochrome signaling, suggesting a positive regulation through protein de-
phosphorylation. These results are consistent with the role of phyA autophosphorylation
that negatively regulates phytochrome signaling. Therefore, phyA signaling could be regu-
lated by reversible phosphorylation, in which autophosphorylation decreases signaling
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flux by reducing the amounts of active Pfr and dephosphorylation increases the signaling
flux by increasing protein stability and/or regulating the protein-protein interactions with
signaling partners (Figure 3).

4. Function of phyA as Protein Kinases

A protein can be phosphorylated by itself (i.e., autophosphorylation) or by protein
kinases (PKs). In this regard, it is notable that earlier studies on phytochromes raised issues
about whether phytochromes are protein kinases or not [122]. This is based on the results
that the phosphorylation of nuclear proteins involved in phytochrome signaling and se-
quence analyses indicated similarity between the HKRD of phytochromes and prokaryotic
histidine kinases [123,124]. In addition, a cyanobacterial phytochrome (Cph1) has been re-
ported as a light-regulated histidine kinase showing autophosphorylation [125]. However,
it is suggested that the HKRD in plant phytochromes is not a functional domain, because
the key conserved residues of the histidine kinase domain are absent and mutations on
residues required for ATP-binding did not affect the function of phytochromes [122]. Later,
not only phytochromes isolated from dark-grown seedlings, but also purified recombi-
nant phytochromes were proven to exhibit serine/threonine kinase activity, suggesting
that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine speci-
ficity [126]. To this end, recombinant phytochromes isolated from different plant species
have all shown autophosphorylation and the kinase activity on histone H1 as a substrate,
demonstrating that plant phytochromes are protein kinases [127]. Moreover, since the
HKRD is not a functional kinase domain, it is conceivable that the kinase domain in plant
phytochromes resides in the domain other than the HKRD. This issue has been answered
by kinase domain mapping experiments, which suggests the N-terminal photosensory core
composed of PAS-GAF-PHY tri-domain as the domain for the observed kinase activity of
AsphyA [127]. Additionally, a previous report had predicted nucleotide binding sites of
phytochromes in the photosensory core [128]. In addition, the tertiary structure of Cph1
photosensory core is suggested to be similar to the regulatory region of cyclic nucleotide
phosphodiesterases and adenylyl cyclases, indicating the possibility of ATP-binding in the
region [129]. Moreover, the HKRD was reported to play roles in phytochrome dimerization
and protein-protein interactions with signaling partners, such as PAPP5 [100,121]. There-
fore, plant phytochromes are now believed to be the autophosphorylating serine/threonine
kinases, and the PAS-GAF-PHY tri-domain, not the HKRD, is responsible for the observed
kinase activity.

After the proposal of plant phytochromes as serine/threonine kinases [126], several
substrate proteins that can be phosphorylated by phytochromes have been reported, which
includes PHYTOCHROME KINASE SUBSTRATE 1 (PKS1), cryptochromes, Aux/IAA
proteins, FHY1, and PIFs [28,71,91,130–135]. Among these substrates, PIFs are remarkable
in showing phytochrome-dependent phosphorylation in plants, which is required for their
degradation via the ubiquitin/26S proteasome pathway. It is notable that the regulation of
PIF7 by phosphorylation is different from other PIFs, which is necessary for controlling its
localization, not for proteolysis [56,91]. At the end of these substrate studies, phytochromes
have been demonstrated to be the protein kinases for the phosphorylation of PIFs [127]. It
should be noted that the autophosphorylation of AsphyA is reduced only in the presence
of PIF3, but not in the presence of PKS1 and other known substrate candidates, suggesting
PIFs as the genuine substrates of phytochrome kinase activity. Subsequently, the functional
roles of phyA kinase activity have been suggested by analyzing AsphyA mutants with
altered kinase activity [127,136]. Three AsphyA mutants displaying reduced kinase activity
(K411L, T418D, and D422R) were initially isolated by proteomics and site-directed muta-
genesis on the photosensory core, in which the ATP-binding affinity of the mutants was
significantly decreased compared with wild-type AsphyA. As a result, transgenic plants of
the AsphyA mutants exhibited hyposensitive responses to FR light. Moreover, FR-induced
phosphorylation and subsequent degradation of PIF3 was significantly decreased in the
transgenic plants of the AsphyA mutants with reduced kinase activity. This study provides
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the evidence that AsphyA functions as a protein kinase in triggering PIF3 degradation
via phosphorylation in plants [127]. Later, two AsphyA mutants displaying increased
kinase activity (K411R and T418V) were further isolated and their function has been in-
vestigated in Arabidopsis. The results showed that these mutants accelerated FR-induced
phosphorylation and subsequent degradation of both PIF3 and PIF1 in transgenic plants,
exhibiting hypersensitive de-etiolation responses to FR and higher germination frequencies
than the transgenic plant with wild-type AsphyA [136]. The same study also showed that
HY5 accumulated higher in the transgenic plants under FR light than in the control plants.
These results suggest that AsphyA mutants with increased kinase activity inhibited the
activity of COP1/SPA complex more effectively, compared with wild-type AsphyA, for the
accumulation of HY5. Overall, these studies suggest a positive relationship between the
protein kinase activity of AsphyA and photoresponses in plants (Figure 4).
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Figure 4. A model depicting phyA signaling as a protein kinase in response to FR light. This model
is constructed using the results of AsphyA mutants with lower or higher kinase activity. Based on
the core phytochrome signaling pathway, far-red (FR) light-activated phyA (PfrA) phosphorylates
PIFs (labeled p© in purple), which induces subsequent degradation via the ubiquitin/26s proteasome
pathway. At the same time, PfrA induces the dissociation of COP1/SPA complex, resulting in the
accumulation of HY5. Thus, the negative regulation of PIFs and COP1/SPA complex by phyA
resultantly contributes to HY5 accumulation, which is necessary for photomorphogenic development
such as de-etiolation of seedlings. According to this model, AsphyA with reduced kinase activity
might exhibit an attenuated function (i.e., approximately 2-fold decreases in phosphorylation of PIFs
and dissociation of the COP1/SPA complex, represented as thin lines), showing reduced responses of
transgenic plants to FR light (i.e., etiolated seedlings). On the other hand, AsphyA with increased
kinase activity could show an enhanced function, which results in about 4-fold higher accumulation
of HY5 (represented as thick lines), exhibiting increased FR-responses of transgenic plants (i.e., de-
etiolated seedlings). It is noted that other protein kinases are also involved in the phosphorylation of
PIFs, and possibly PfrA is involved in the phosphorylation of COP1 (see the text).
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Besides phytochromes, PIFs have been reported to be phosphorylated by other PKs,
which include casein kinase II (CK2), brassinosteroid insensitivity 2 (BIN2), light-regulated
protein kinases (PPK1 to PPK4), and SPAs [137–141]. In plants, slow-migrating PIF proteins
are detected, probably due to multiple phosphorylations, but phytochromes alone are not
enough to mediate the hyperphosphorylation of PIF3 in plants [127]. Thus, co-action of
phytochromes and other PKs might be necessary for the regulation of PIF function by
phosphorylation. However, the phosphorylation of PIFs is not observed in the absence of
phytochromes, indicating phytochromes as the most important PK for PIFs.

Besides PIFs, several signaling components in the core phytochrome signaling pathway
are known to be regulated by phosphorylation. A previous report suggests phyA-mediated
phosphorylation of FHY1 in a R and FR light-reversible manner [133,142]. The study
showed R light-induced phosphorylation of FHY1, which can be reversed by the exposure
to FR light. It is well known that the nuclear localization of phyA depends on a nuclear
localization signal (NLS) of FHY1, which is recognized by importing α (IMPα) indepen-
dently of phyA [26]. FHY1 is phosphorylated on serine residues close to the NLS, resulting
in the prevention of FHY1 binding to IMPα. Thus, the Pfr form of phyA might induce the
phosphorylation of FHY1 to accelerate the dissociation of FHY1-IMPα, which helps FHY1
back into the cytoplasm for another cycle of phyA shuttle to the nucleus. Thus, FHY1 and
FHL might be another candidate for substrates of phyA kinase activity. However, AsphyA
mutants with altered kinase activity did not show significant differences in the nuclear
localization [127,136]. Thus, the importance of R-light induced phosphorylation of FHY1 in
phyA signaling needs to be investigated in the future. The other signaling component that
can be regulated by phosphorylation is COP1. A serine/threonine kinase PINOID (PID) has
been reported to repress the activity of COP1 by phosphorylating at Ser-20, resulting in the
promotion of photomorphogenesis [143]. This study suggests that COP1 phosphorylation
is necessary for the dissociation of the COP1/SPA complex and possibly for the nuclear
exclusion of COP1. Considering the direct interaction of phyA with COP1, phyA is also
possible to involve in the phosphorylation of COP1. Alternatively, it is also notable that
COP1-interacting SPA1 is reported to act as a serine/threonine kinase [140]. Therefore,
further studies are necessary to identify the protein kinase(s) for COP1 and to elucidate the
functional roles of COP1 phosphorylation.

5. The Regulatory and Molecular Mechanisms of phyA in Plant Light Signaling

Phytochrome-mediated light signaling in plants is ultimately accomplished via the
expression of photoresponsive genes for photomorphogenesis. An initial genome-wide
expression analysis of A. thaliana has shown that approximately 2500 genes were regulated
by phytochromes upon exposure to light, where ~80% of the photoresponsive genes are
induced and ~20% are repressed [144]. This study also showed that phyA has a dominant
role in the light-induced expression of early response genes. The majority of these genes
are related to the transition from heterotrophic to autotrophic life of plants [145,146]. For
the transcriptional regulation of thousands of genes, master regulatory transcription factors
(TFs) are necessary to bridge the phytochrome activation with transcriptional reprogram-
ming. Basically, the regulation of the photoresponsive genes by phytochromes might be
dependent on PIFs and HY5. Because PIFs are known to sustain skotomorphogenesis,
photoactivated phyA can inhibit the expression of genes for skotomorphogenesis by in-
activating PIFs [49,147]. At the same time, phyA induces the accumulation of HY5 by
inactivating the COP1/SPA complex, which induces the expression of the photoresponsive
genes [19,45,148,149]. Thus, plant phytochromes exert their function by regulating the
expression and accumulation of HY5, a master regulator of photomorphogenesis including
de-etiolation. For example, phyA is not detectable in the nucleus of dark-grown seedlings
but accumulates in the nucleus within minutes following exposure of seedlings to light,
resulting in HY5 accumulation in higher amounts. Therefore, the primary regulatory
mechanism of phyA for photomorphogenesis would be the control of HY5 levels in plants.
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With the above advances, the molecular mechanisms of phyA in plant light signaling
can be speculated (Figure 5). In the dark, phyA is biosynthesized as the Pr form (PrA)
and accumulates in the cytoplasm. In the nucleus, PIFs regulate gene expression for
sustaining skotomorphogenesis, and the COP1/SPA complex degrades HY5 to inhibit
photomorphogenesis. Upon exposure to FR light, the Pr-to-Pfr photoactivation occurs and
the photoactivated phyA (PfrA) translocalizes from the cytoplasm into the nucleus via
FHY1/FHL shuttle. Under continuous FR light, the Pfr form in the nucleus is transformed
into the Pr form, which dissociates the FHY1/FHL-phyA complex. It is thought that the
phosphorylation of FHY1/FHL might accelerate this dissociation, which can be mediated
by phyA and/or possibly by other PKs. In the nucleus, phyA induces the degradation of
PIFs by directly phosphorylating them as a protein kinase. PIFs can also be phosphorylated
by other PKs such as PPKs and SPAs. At the same time, phyA inactivates COP1/SPAs
by dissociating the complex. COP1 can be phosphorylated by PID and possibly by phyA,
which promotes the dissociation as well as the translocation of COP1 into the cytoplasm.
Therefore, the negative regulation of both PIFs and the COP1/SPA complex via protein-
protein interactions and kinase activity would be the primary molecular mechanisms of
phyA, which induces the accumulation of HY5 for transcriptional regulation to initiate
photomorphogenic development. Lastly, phyA is autophosphorylated (AutoP), and the
phosphorylated phyA degrades rapidly to desensitize signaling for next round of signal
perception.
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Figure 5. A model for phyA-mediated plant light signaling as a protein kinase. In the dark (left),
phyA is biosynthesized as the Pr form (PrA) and accumulates in the cytoplasm. PIFs accumulated in
the nucleus regulate transcription of genes to sustain skotomorphogenesis. At the same time, the
COP1/SPA complex degrades HY5 via the ubiquitin/26S proteasome pathway to prevent photomor-
phogenesis. Under FR light (right), phyA is photoactivated to the Pfr form (PfrA) and translocalized
into the nucleus using FHY1/FHL shuttle. As a protein kinase, PfrA phosphorylates PIFs to induce
the degradation of PIFs, and inactivates COP1/SPAs by inducing the dissociation of the complex. As
a result, HY5 is accumulated and induces the transcription of photoresponsive genes to initiate photo-
morphogenesis. In addition, autophosphorylation of phyA (AutoP) occurs for signal desensitization
by inducing rapid degradation of phyA. Red arrows represent the molecular mechanisms of phyA
to induce photomorphogenesis (labeled p© in purple), while black arrows represent the generally
known mechanisms in previous studies. Besides phyA, other protein kinases (PKs) are also possible
to involve in the phosphorylation of phyA (hinge region), FHY1/FHL, COP1, and PIFs (labeled p©
in black).
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6. Conclusions and Perspectives

Although it is a long-lasting issue whether phytochromes are protein kinases or
not, recent advances provide more confident evidence for the issue than before. First,
phytochromes are regulated by reversible phosphorylation. As an example, AsphyA is
phosphorylated at Ser-8 and Ser-18 in the NTE by autophosphorylation and at Ser-599 in
the hinge region. The NTE phosphorylation induces rapid degradation of phyA, playing
roles as a desensitization signal, whereas the hinge region phosphorylation regulates the
protein-protein interactions with downstream signaling partners (Figure 3). A few protein
phosphatases that interact and dephosphorylate phytochromes play positive roles in plant
light signaling. All these results are consistent with the old notion that phytochromes are
phosphoproteins. However, there are no known PKs that phosphorylate phyA thus far,
so the hinge region phosphorylation needs to be investigated further by identifying the
PKs. In this regard, it is notable that a positive regulator of phyA signaling, TANDEM
ZINC-FINGER/PLUS3 (TZP), is necessary for the formation of phosphorylated forms of
phyA in the nucleus under FR light [150,151]. Thus, it is possible that the hinge region
phosphorylation might be incurred by PKs in the presence of TZP, which needs to be
elucidated in the future.

Next, AsphyA is clearly demonstrated as a functional protein kinase in mediating plant
light signaling using the mutants with reduced or increased kinase activity (Figure 4). Im-
portantly, PIFs are revealed as genuine substrates that are phosphorylated by phytochromes.
Thus far, PIF1, PIF3, and PIF4 are shown to be phosphorylated by AsphyA [127], and a
recent study demonstrates the regulation of PIF3 and PIF1 by the kinase activity of AsphyA
for seedling de-etiolation and germination, respectively [136]. Additionally, since PIF7 and
PIF8 are shown to interact with phyA (Figure 2), they can also be regulated by the phyA
kinase activity, which needs to be investigated in the future. Moreover, FHY1 and COP1
are also phosphorylated in the nucleus. Thus, it is possible that phyA is involved in the
phosphorylation of these signaling components because direct interaction of phyA with
them is already reported. Especially, the role of COP1 phosphorylation by phyA is worth-
while to investigate in the future, because HY5 accumulation in transgenic plants with
the AsphyA mutants is positively corelated with the kinase activity. There are also other
candidate substrates that are phosphorylated by phyA, such as Aux/IAA proteins and
cryptochromes. Therefore, the connection or crosstalk between phyA and cryptochromes or
auxin/hormone signaling via the kinase activity would be good targets for future studies.

It is also evident that both type I and type II photochroms are autophosphorylating
protein kinases. However, the regulatory roles of phosphorylation are not the same among
different phytochrome species. For example, while the NTE phosphorylation of phyA
induces rapid degradation, that of phyB accelerates dark reversion, i.e., another molecular
mechanism of inactivation. In addition, phytochromes interact differently with substrate
proteins such as PIFs. For example, PIF2, PIF5, and PIF6 interact with phyB, but not with
phyA (Figure 2). PIF1, PIF3, and PIF4 interact with both phyA and phyB, but show different
binding affinities. Thus, the regulatory mechanisms of PIFs by different phytochromes
during plant growth and development need to be studied further. Moreover, besides
PIFs, other substrate proteins that can be regulated by phytochrome kinase activity could
also exist in plants. Therefore, it will be necessary to study the functional roles of other
phytochromes as protein kinases that phosphorylate substrate proteins in the regulation of
plant growth and development.

There are tens of phyA-interacting proteins reported thus far. However, the molecular
and regulatory mechanisms of the proteins by phyA are not elucidated fully, although
recent studies suggest those of PIFs by phyA (Figure 5). For the regulation of various
proteins by a protein, other mechanisms than protein-protein interactions are probably
necessary. In this regard, one answer would be the relationship between an enzyme and
various substrates. Thus, phyA, as a protein kinase, can regulate various substrate proteins
by phosphorylating them, in which the known phyA-interacting proteins are possible
candidates of the substrates. In the future, the molecular and regulatory mechanisms of
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phyA-interacting proteins can be re-examined in view of phyA as a protein kinase. These
studies will greatly help to understand the phyA-mediated light signaling in plants.
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