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Abstract: Submergence stress can severely affect plant growth. Orchardgrass (Dactylis glomerata L.) is
an important forage grass, and the molecular mechanisms of orchardgrass to submergence stress are
not well understood. The roots of the flood-tolerant cultivar “Dian Bei” were harvested at 0 h, 8 h
and 24 h of submergence stress. The combined transcriptomic and metabolomic analyses showed
that β-alanine metabolism, flavonoid biosynthesis, and biosynthesis of amino acid pathways were
significantly enriched at 8 h and 24 h of submergence stress and were more pronounced at 24 h. Most
of the flavonoid biosynthesis-related genes were down-regulated for the synthesis of metabolites
such as naringenin, apigenin, naringin, neohesperidin, naringenin chalcone, and liquiritigenin in
response to submergence stress. Metabolites such as phenylalanine, tyrosine, and tryptophan were
up-regulated under stress. The predominant response of flavonoid and amino acids biosynthesis
to submergence stress suggests an important role of these pathways in the submergence tolerance
of orchardgrass.

Keywords: amino acids biosynthesis; Dactylis glomerata; flavonoid biosynthesis; metabolomics;
submergence; transcriptomics

1. Introduction

Submergence is a major environmental stress limiting plant growth and development.
Plants subjected to complete or partial submergence stress often suffer from oxygen de-
ficiency. It has been found that submergence stress affects plant growth and physiology,
including but not limited to reducing shoot and root growth, leaf chlorophyll, carbohydrate
content, photosynthetic rate, stomatal conductance, and antioxidant enzyme activities, as
well as activating anaerobic fermentation and altering hormone interactions in different
plant species [1–8]. The tolerant species or genotypes showed higher root dry weight,
chlorophyll content, antioxidant capacity, soluble sugar content and protein levels, and a
lesser degree of lipid peroxidation and lower electrolyte leakage in roots or shoots under
submergence than the sensitive ones [9,10]. Previous research has indicated some crucial
physiological responses associated with plant survival, but the adaptative mechanisms to
submergence stress are not fully understood due to genotypic variations in response to
stress and recovery from the stress.

At the molecular level, submergence stress largely alters gene expression in plants.
Through transcriptomic analyses, differentially expressed genes (DEGs) involved in the key
functional and regulatory pathways have been identified in various plant species exposed
to submergence stress [11–18]. In bermudagrass (Cynodon dactylon), shallow and deep
submergence stresses down-regulated the DEGs related to chlorophyll biosynthesis, light
harvesting, protein complex, and carbon fixation, while DEGs involved in starch and su-
crose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and
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oxidative phosphorylation were down-regulated in aboveground tissues but up-regulated
in underground tissues [18]. The pathways of glycolysis/gluconeogenesis were also more
enriched in submergence-tolerant accessions of Arabidopsis [18] and in tolerant soybean
(Glycine max) [14]. Notably, glycolysis and fermentation genes were strongly induced in
both submergence-tolerant Rorippa sylvestris and Rorippa amphibia and, to a greater extent,
in the relatively less tolerant R. amphibia [11]. Comparing deepwater rice (Oryza sativa) with
non-deepwater rice under submergence, DEGs related to gibberellin biosynthesis, trehalose
biosynthesis, anaerobic fermentation, cell-wall modification, and ethylene-responsive fac-
tors varied significantly in varieties [12]. The results indicate that the activation of certain
metabolic pathways, such as glycolysis/gluconeogenesis and fermentation, are associated
with plant survival under submergence stress; however, expressions of species-specific
responsive genes might contribute to differential underwater growth and adaptation.

Plant response to submergence also involves numerous alterations of metabolites.
Metabolomics is one of the emerging and crucial approaches to studying abiotic stress tol-
erance. Changes in a large scale of metabolites have been identified through metabolomics
studies in plants under submergence stress [19–22]. For example, after soybean plants were
exposed to submergence stress, both the primary and secondary metabolism were affected,
particularly for those compounds involved in carbon and nitrogen metabolism, as well
as the phenylpropanoid pathway [21]. Sugar metabolism was also largely altered in the
submergence-tolerant mutant of soybean, and fructose might be the critical metabolite
through the regulation of hexokinase and phosphofructokinase to cope with initial submer-
gence stress [20]. When rice was exposed to short-term partial submergence, the metabolite
levels in the glycolysis pathway increased in a near-isogenic line with a background of
deepwater and non-deepwater rice varieties, while amino acid levels decreased under long-
term submergence [23]. Approximately 70% of amino acids detected under submergence
increased and then decreased in both tolerant and intolerant wheat (Triticum aestivum),
but the tolerant cultivar delayed the process of amino acid degradation with an increased
time of submergence stress [24]. Willow (Salix variegate) is a riparian shrub species that
can tolerate long-term complete submergence stress. Metabolites such as ethylene, ab-
scisic acid, jasmonic acid signaling, raffinose family oligosaccharides, highly unsaturated
fatty acids, specific stress-related amino acids, organic acid, cell-wall reorganization, and
phenylpropanoid metabolic processes (the synthesis of specific phenolics and flavonoids)
accumulated and activated in response to 60 d of submergence [25]. In pot mum (Chrysan-
themum morifolium), the top three types of differentially expressed metabolites were flavone
C-glycosides, flavonol, and flavone under submergence stress [26]. Collectively, the results
indicate a role of some metabolites in promoting submergence tolerance, but they also
suggest complex metabolic responses of plants to submergence stress.

Perennial grasses used for turf and forage are often subjected to periodically sub-
merged conditions in coastal and flood-prone plains. Orchardgrass (Dactylis glomerata) is
one of the most important forage grasses and is widely distributed in Asia and Europe, as
well as in some high-altitude areas in Africa [27–29]. This species is also used for grassland
improvement and stone desertification management [30,31]. Our previous transcriptomic
analysis found that pathways, such as glutathione metabolism, peroxidase, glycolysis, and
plant-hormone signal transduction, were highly enriched in the leaves of orchardgrass
under submergence stress [32]. Genes involved in metal homeostasis, the antioxidant
process, and the secretory pathway were remarkably differentially expressed in leaves
between two orchardgrass cultivars under submergence [33]. However, the molecular
responses of roots to submergence stress are not known in this species, especially by inte-
grating transcriptomic and metabolomic analyses. Therefore, we designed this experiment
to explore transcriptomic and metabolomics alterations in the roots of orchardgrass under
submergence stress. The correlations between gene expression and metabolites were ana-
lyzed to gain a better understanding of the molecular responses of roots to the stress. The
results will be helpful for genetic improvements in orchardgrass aimed at breeding new
varieties with enhanced submergence tolerance.
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2. Results
2.1. Root Appearance after Submergence Stress

The root tips became darkened after exposure to submergence stress and were more
pronounced at 24 h of stress (Figure 1). In addition, adventitious roots were produced at the
base of the stem at 24 h of stress, but root length was not significantly altered. Meanwhile,
the above-ground parts tended to elongate as the duration of submergence increased.
This suggested that short-term submergence stress already induced leaf elongation of the
orchardgrass, which might help resist the extreme hypoxic environment.
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2.2. Transcriptome Sequencing Analysis and Identification of DEGs

The raw data were filtered, checked for sequencing error rates and GC content distribu-
tion, and then clean reads (Table S1) were obtained for subsequent analysis. The clean reads
were mapped to the orchardgrass reference genome using HISAT2 software (Table S2). The
results showed that the proportion of sequenced reads successfully mapped to the genome
was higher than 70%, indicating the high reliability of the sequencing data. The correla-
tion of gene expression levels between samples showed good intra-group reproducibility
(Figure S1).

Based on the sequencing data, we analyzed the RNA-Seq at 0 h, 8 h, and 24 h to reveal
the DEGs under submergence stress. The distribution of DEGs in different treatment groups
is shown in Figure 2a. A total of 6663 DEGs (3096 up-regulated and 3567 down-regulated)
were identified in the roots after 8 h of submergence, while 9857 DEGs (4779 up-regulated
and 5078 down-regulated) were identified at 24 h of treatment (Figure 2b,c). Among them,
5455 DEGs were co-expressed. The gene expression pattern changed significantly after
submergence stress (Figure 2d).

2.3. GO Analysis and KEGG Pathway Analysis

To fully understand the functional properties of DEGs and the metabolic pathways
of gene products, we performed functional enrichment analyses. Each group of DEGs
was annotated into three categories: biological process; molecular function; and cellular
component (Figure S2). The Gene Ontology (GO) enrichment analysis revealed that most of
the terms had more down-regulated DEGs than up-regulated DEGs and more DEGs at 24 h
than at 8 h. The DEGs were highly expressed in terms of oxidative stress, coenzyme-binding
oxidoreductase activity, acting on peroxide as an acceptor, antioxidant activity, etc., under
stress. Unlike at 8 h, the genes related to peroxidase activity were more active at 24 h.
Moreover, some highly expressed genes were involved in multiple regulatory pathways
simultaneously under 8 h and 24 h of submergence stress (Figure 3a,b, Table S3).
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of DEGs. Volcanic map of up- and down-regulated genes for 8 h vs. 0 h (b) and 24 h vs. 0 h (c).
(d) Cluster heat map of DEGs was shared in all treatment groups.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment was analyzed
to show the effect of submergence stress on the metabolic pathways of DEGs. The top
ranked 20 metabolic pathways were significantly enriched at 8 h and 24 h, compared
to 0 h, including phenylpropanoid biosynthesis, plant-hormone signal transduction, the
biosynthesis of amino acids, starch and sucrose metabolism, plant–pathogen interaction,
and MAPK signaling pathway–plant (Figure 3c,d). The number of DEGs in each metabolic
pathway was higher at 24 h than at 8 h (Table S4). The antioxidant-related metabolic
pathways, such as ascorbate and aldarate metabolism and glyoxylate and dicarboxylate
metabolism, were significantly enriched at 24 h of submergence.

2.4. qRT-PCR Validation

To verify the reliability of the transcriptome sequencing data, we performed qRT-PCR
validation on the 11 screened DEGs. Correlation analysis of qPCR and RNA-Seq results
for these 11 genes revealed that R2 was 0.931 at 8 h and 0.806 at 24 h of submergence
stress. The validation results were basically consistent with the expression level of RNA-seq
sequencing results (Figure S3). This indicated that the data obtained by transcriptome
sequencing were reliable.
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2.5. Quality Control of Metabolomic Data

A total of 439 metabolites were obtained from a control group of root samples ex-
tracted from 0 h of submergence stress and 8 h and 24 h as treatment groups for untargeted
metabolomic analyses. A hierarchical clustering heat map was constructed and anno-
tated with Human Metabolome Database (HMDB) classification. The phenylpropanoid-
and polyketide-related metabolites had the highest number under submergence stress
(Figures 4a and S4). Correlation analysis of the QC samples showed R2 values all close to 1
(Figure S5), indicating that the entire analysis process was stable and reproducible. Subse-
quently, principal component analysis (PCA) was performed, and there was a significant
separation between 0 h, 8 h, and 24 h (Figure 4b). PC1 and PC2 explained more than 35.0%
of the variability, and metabolites were mainly distinguished by PC1 (Figure 4b). Through
partial least-squares discrimination (PLS-DA) analysis, treatment groups were separate
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from each other, with both R2 and Q2 close to 1 (Figure S6), indicating a stable and reliable
relationship between metabolite expression and sample categories.
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2.6. Differentially Expressed Metabolites (DEMs) and Functional Enrichment

A total of 120 DEMs were obtained at 8 h of submergence compared to 0 h
(Figure 5a). Of them, 64 were up-regulated and 56 were down-regulated (Figure 5b).
A total of 155 DEMs were obtained at 24 h, compared to 0 h, including 60 up-regulated and
95 down-regulated (Figure 5a,c). Subsequently, the hierarchical clustering analysis showed
that DEMs were clustered at different levels at different time points (Figure 5d,e).

The DEMs were subjected to KEGG-enrichment analysis, and the top 20 enriched path-
ways were identified (Table S5). The top five enriched metabolic pathways after 8 h of stress
were pantothenate and CoA biosynthesis, tryptophan metabolism, β-alanine metabolism,
flavonoid biosynthesis, and phenylalanine, tyrosine and tryptophan biosynthesis; mean-
while, the zeatin biosynthesis pathway was also significantly enriched at 8 h (Figure 6a). The
top five metabolic pathways enriched after 24 h of treatment were propanoate metabolism,
alpha-linolenic acid metabolism, ascorbate and aldehyde metabolism, flavonoid biosyn-
thesis, and vitamin B6 metabolism (Figure 6b). Flavonoid biosynthesis was significantly
enriched in the roots at both 8 h and 24 h of stress.

Subsequently, the DEMs with p-value < 0.05 and ranked in the top 20 (from small-
est to largest p-values) were screened for correlation analyses and categorical annotation
to verify synergistic or mutually exclusive relationships between different metabolites
(Figure S7). Flavonoid biosynthesis-related metabolites naringenin chalcone and narin-
genin were significantly enriched at 8 h of submergence stress, while naringenin chalcone,
naringenin, apigenin, and scutellarin in this class were enriched at 24 h of treatment
(Table S6). All the compounds in this class showed extremely strong synergistic ef-
fects. Moreover, amino acid biosynthesis-related metabolites, such as tryptophan, gamma-
aminobutyric acid, and n-epsilon-acetyllysine, were also significantly enriched and showed
synergistic relationships with each other (Table S6). However, at 8 and 24 h of stress, the
metabolite jasmonic acid had mutually exclusive relationships with most of the metabolites
except for dihydrojasmone and n-[(−)-Jasmonoyl]-(l)-isoleucine, which showed strong
synergistic relationships with each other (Table S6).
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2.7. C orrelation and Enrichment Analysis between DEGs and DEMs

To further analyze the role of genes and metabolites in the regulation of orchardgrass
under submergence stress, a nine-quadrant diagram was drawn to illustrate the correlation
between genes and metabolites. Among them, metabolite abundance located in quadrants
one, two, and four was higher than gene abundance, indicating that metabolites were
up-regulated while genes remained unchanged or down-regulated. Metabolite abundance
located in the sixth, eighth, and ninth quadrants was lower than gene abundance, indicating
that genes were up-regulated but metabolites remained unchanged or down-regulated.
Only genes and metabolites located in the third and seventh quadrants showed consistent
differential expression patterns between DEGs and DEMs. A total of 234 metabolites were
positively regulated by 2389 genes at 8 h of submergence, and a total of 286 metabolites
were positively regulated by 2389 genes at 24 h of stress (Figure 7a,b). These results suggest
that these changes in metabolite accumulation might be directly or indirectly regulated by
the corresponding genes.
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The DEGs and DEMs were simultaneously subjected to KEGG pathway analysis. The
results showed that 16 and 27 metabolic pathways were enriched at 8 h vs. 0 h and at
24 h vs. 0 h, respectively. Among them, two metabolites and 17 genes were significantly
enriched to β-alanine metabolism, three metabolites and 30 genes to flavonoid biosynthesis,
and two metabolites and 27 genes to phenylalanine, tyrosine, and tryptophan biosynthesis
at 8 h of submergence stress (Figure 7c). Three metabolites and 114 genes were enriched
for the biosynthesis of amino acids, two metabolites and 29 genes for the biosynthesis of
flavonoids, two metabolites and 53 genes for the metabolism of cysteine and methionine,
and two metabolites and 37 genes for the biosynthesis of phenylalanine, tyrosine, and
tryptophan biosynthesis at 24 h of submergence (Figure 7d). In addition, the metabolic
pathways of zeatin biosynthesis, pantothenate, and CoA biosynthesis were significantly
enriched at 8 h and 24 h of stress.

2.8. Biosynthesis of Flavonoid and Amino Acids

Because the flavonoid biosynthesis and biosynthesis of amino acids pathways were
significantly enriched through the integrated DEGs and DEMs analysis under submergence,
the expression patterns and network interactions of the DEGs and DEMs annotated in
these two pathways were analyzed. Most DEGs associated with flavonoid biosynthesis
were down-regulated in expression after submergence stress, while the metabolites narin-
genin, apigenin, naringin, neohesperidin, and naringenin chalcone, were up-regulated
in expression, suggesting that orchardgrass may regulate the biosynthesis of flavonoid-
related substances by down-regulating related genes in response to submergence stress
(Figure 8a1,a2). The genes involved in the biosynthesis of the amino acid pathway were
more significantly up-regulated at 24 h of submergence, and the metabolites tryptophan
and l-saccharopine were both up-regulated at 24 h of stress (Figure 8b1,b2). The network
analysis of DEGs and DEMs annotated in these two metabolic pathways showed positive
and negative regulations of genes and metabolites (Table S7a,b; Figure 8c,d).
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3. Discussion

Through the combined transcriptomic and metabolomics analyses, the post-transcriptional
state of related gene expression can be explored to further understand the response mech-
anisms of orchardgrass to submergence stress. When the roots of orchardgrass were
exposed to 8 h and 24 h submergence, genes involved in flavonoid biosynthesis and amino
acid biosynthesis were significantly expressed, and the content of compounds, such as
flavonoids and amino acids, also showed an increasing trend. The results indicate that
the flavonoid and amino acid biosynthetic pathways largely responded to submergence
stress in orchardgrass. Similar results were found in the aboveground tissue of red clover
(Trifolium pratense) to Pb toxicity [34,35].

Flavonoids participate in plants’ responses to environmental stress and serve as strong
antioxidants and free radical scavengers [36]. A study on the radical scavenging and
antioxidant activities of flavonoids from Scutellaria baicalensis extracts concluded that the
scavenging activities of different flavonoids varied in response to different environmental
conditions [37]. Submergence stress increased lipid peroxidation of roots and decreased
antioxidant activities in four genotypes of perennial ryegrass under submergence stress [4].
In this study, naringenin, apigenin, naringin, neohesperidin, and naringenin chalcone
involved in flavonoid biosynthesis were significantly enriched at 24 h of submergence
stress. Flavonoid compound accumulation was also associated with the submergence
tolerance of willow [25] and pot mum [22]. The results suggest the role of flavonoid in
coping with oxidative injury from submergence stress.

It has been shown that the flavonoid biosynthetic pathway is regulated by different
classes of transcription factors (TFs), such as MYB, WRKY, NAC and bHLH [38–40]. Among
these TFs, the MYB-bHLH-WD40 ternary complex is one of the most important regulatory
components involved in the biosynthesis of phenylpropanoids and flavonoids [22,41,42].
In this study, the metabolic pathway of flavonoid biosynthesis was enriched at 8 h and 24 h
of submergence stress, accompanied by a high expression of genes encoding the TF family,
such as WRKY and MYB. The results indicate that these TFs could regulate the biosynthesis
of flavonoid compounds in orchardgrass roots under the water.

Amino acids are important physiologically active organic compounds in plants and
play an important role in regulating growth. When plants experience abiotic stress, free
amino acids can respond rapidly by increasing the concentration of certain amino acids for
adaptation to environmental changes [43,44]. In this study, biosynthesis of amino acids and
β-alanine metabolism were enriched at both the gene and metabolite levels in the roots of
orchardgrass in response to submergence. Similar to the results of orchardgrass root un-
der submergence stress, alpha-linolenic acid metabolism, phenylalanine metabolism, and
phenylpropanoid biosynthesis pathways were also significantly enriched in the leaf tran-
scriptome analysis [32]. Meanwhile, oxidoreductase activity, cofactor bling, and oxidation–
reduction processes are highly present in GO-enriched terms, suggesting that the leaves
of orchardgrass have a complex oxidoreductase process in response to flooding stress.
However, carbon metabolism, flavonoid biosynthesis, and zeatin biosynthesis pathways
were not significantly enriched in the leaves [32]. The up-regulated expression of genes
encoding β-alanine metabolism, methionine metabolism, tyrosine metabolism, glycine,
serine, and threonine metabolism was also found in field cress (Sesbania cannabina) roots
after 3 h of submergence stress [45]. In wheat, most of the measured amino acids increased
in shoots during the first 12 days of submergence, with only five showing decreasing or
unchanged levels, including alanine in both tolerant and sensitive cultivars. However,
all amino acid levels were lower in the intolerant cultivar than in the tolerant cultivar on
days 14 and 16 of treatment [24]. All results suggest that amino acid metabolism-related
processes, such as β-alanine metabolism and phenylalanine metabolism, are associated
with submergence tolerance, but the responses of amino acids to submergence varies with
plant species, stress duration and intensity. We speculated that the increased amino acids in
the roots of orchardgrass after submergence stress was probably due to accelerated nitrogen
metabolism to make the raw material for more abundant protein biosynthesis.
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The metabolic pathways of zeatin biosynthesis, pantothenate, and CoA biosynthesis
were significantly enriched in orchardgrass at 8 h and 24 h of submergence stress, suggesting
a role of these pathways in submergence tolerance. Zeatin is a natural cytokinin present in
plants, which promotes plant-cell division, prevents chlorophyll and protein degradation,
maintains cell viability, and delays plant aging [46,47]. The up-regulated zeatin biosynthesis
found in this study indicated its role in promoting growth and assisting submergence
tolerance in orchardgrass. The enriched DEGs for zeatin biosynthesis were also found in
Populus ussuriensis exposed to salt stress [48]. CoA is an essential cofactor in the metabolism
and is particularly important in the metabolism of fatty acids. A combined transcriptomic
and metabolomic analysis of the response of Zygophyllum plants to salt stress revealed that
pantothenate and CoA biosynthesis were significantly enriched in both salt-tolerant and
sensitive varieties [49], demonstrating its role in altering plant response to stress conditions.

4. Materials and Methods
4.1. Plant Materials, Submergence Treatment and Harvesting

The flood-tolerant orchardgrass variety ‘Dian Bei’ was used for this experiment. The
seeds were obtained from the College of Grassland Science and Technology, Sichuan
Agricultural University, Chengdu, China. The seeds were placed in Petri dishes containing
two layers of moist filter paper and germinated in dark conditions in an incubator at 22 ◦C.
After germination, the uniformly growing plants were transplanted into pots (15.0 cm in
diameter and 13.5 cm in height), containing vermiculite, perlite, and nutrient soil (1:1:3,
v/v/v), and placed in an incubator with temperatures of 22/15 ◦C (day/night), 70–85%
humidity, and an 8 h photoperiod of 100 µmol·m−2·s−1. Submergence stress treatment
started when the plants grew 3–4 leaves. Plants with the same overall growth were selected
and placed in a water tank (length 80 cm × width 57 cm × height 50 cm), and water was
added to completely submerge the plants in water. The intact roots were harvested at 0 h,
8 h, and 24 h after submergence stress, with five biological replicates at each time point.
The morphological changes were observed immediately.

4.2. Transcriptome Sequencing and Data Analysis

At 0 h, 8 h, and 24 h of submergence stress, approximately 5 g of the root system
was taken for each sample, rapidly placed in liquid nitrogen, and then stored in a freezer
at −80 ◦C. Three biological replicates were made at each time point. Total RNA was
extracted using a Trizol kit (Invitrogen, Carlsbad, CA, USA), and the samples were tested
for RNA integrity and purity by agarose gel electrophoresis using a Nano Photometer
spectrophotometer (Implen, Westlake Village, CA, USA) and an Agilent 2100 bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). The samples that met the requirements were
sequenced by Illumina PE150 (Illumina, San Diego CA, USA) at Beijing NovoMagic.

The sequencing raw data were filtered by removing low-quality reads and detecting
sequencing error rate and GC content distribution. The clean reads were mapped to
the orchardgrass reference genome [50,51] using HISAT2 software (http://ccb.jhu.edu/
software/hisat2/faq.shtml, accessed on 20 July 2021) to obtain gene-on-gene localization
information, as well as information on sequence characteristics specific to this species. Gene
alignment statistics and fragments per kilobase of exon per million mapped fragments
(FPKM) values were calculated. Differential expression results were analyzed for each
comparison of treatment time points using DESeq2 (version 1.16.1) software [52], and
padj < 0.05 and |log2FC| ≥ 1 were used as screening criteria for identifying the DEGs. To
further implement the functions of DEGs, we used cluster profiler software to perform GO
functional enrichment and KEGG-pathway-enrichment analysis.

4.3. qRT-PCR Analysis

Eleven DEGs with expression in both 8 h and 24 h of submergence stress were ran-
domly selected for qRT-PCR using the orchardgrass actin gene as an internal reference
gene [53,54]. Primers are listed in Table S8. RNA was reverse-transcribed into cDNA
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using a PrimeScript ™ RT reagent kit with a gDNA Eraser kit (Takara, Dalian, China),
and qRT-PCR was performed with a TB Green Premix Ex TaqTM II kit (Takara, Dalian,
China). Three technical replicates were performed for each target gene. The total volume
for qRT-PCR was 10 µL with the following procedure: one cycle at 95 ◦C for 30 s; 40 cycles
at 95 ◦C for 5 s and 60 ◦C for 34 s; then, 95 ◦C for 15 s; 60 ◦C for 1 min; and 95 ◦C for 15 s.
Finally, the relative gene expression was calculated using 2−∆∆Ct [55].

4.4. Metabolomics Data Analysis

Root tissues for metabolomics at different times of sampling were the same batch as
those used for the transcriptome. A total of six biological replicates of each treatment were
used for metabolomics analysis. Approximately 0.1 g of ground root tissue was placed in a
tube with 500 µL of 80% aqueous methanol solution. The extraction was shaken and placed
in an ice-water bath for 5 min, and then centrifuged at 15,000 r for 20 min at 4 ◦C. A certain
amount of supernatant was taken and diluted with mass-spectrometry-grade water to
make a solution containing 53% methanol. The supernatant was collected after centrifuging
again for 20 min and used for liquid chromatography coupled with mass spectrometry
(LC-MS) [56]. Briefly, an equal volume of samples was mixed as QC samples and 53% aque-
ous methanol solution was used as blank samples. The chromatographic conditions were
as follows: column, HypesilGoldcolumn (C18), column temperature was 40 ◦C; flow rate
was 0.2 mL/min; mobile phase A in positive ionization mode was 0.1% formic acid; mobile
phase B was methanol; mobile phase A in negative ionization mode was 5 mM ammonium
acetate (pH 9.0); and mobile phase B was methanol. The elution gradient is shown in
Table S9. The mass spectrometry conditions were as follows: spray voltage of 3.5 kV;
sheath gas flow rate at 35 psi; aux gas flow rate at 10 L/min; capillary temperature at
320 ◦C; S-lens RF level at 60; aux gas heater temperature at 350 ◦C; positive and negative
polarity; and MS/MS secondary sweep at 350 ◦C. The MS/MS secondary scans were
data-dependent scans. The reagents and instruments used in the experiment are shown in
Tables S10 and S11.

The obtained raw data were imported into CD3.1 software, and each metabolite was
screened for charge-to-mass ratio and retention-time parameters. The molecular formula of
the metabolite was predicted by ion peaks and compared with the database. The relevant
interfering ions were removed using blank samples, and the data were processed to obtain
quantitative analysis results. Multivariate statistical methods, such as PCA and PLS-DA,
were applied to reveal the differences in metabolic patterns among different treatments.
Finally, DEMs were defined by VIP > 1.0, fold change (FC) > 1.2 or FC < 0.833, and
p-value < 0.05. The biological significance associated with the metabolites was explained
by functional analyses, such as metabolic pathways.

4.5. Integration of Transcriptomic and Metabolomic Analysis

The relationship between DEGs and DEMs were revealed based on Pearson’s corre-
lation coefficient analysis. All the obtained DEGs and DEMs were mapped to the KEGG
pathway database to identify biochemical pathways and signal transduction pathways in
which DEGs and DEMs were jointly involved. The common highly expressed pathways
were identified for further analysis of the expression patterns and network interactions.

5. Conclusions

The results elucidated the molecular mechanisms of submergence tolerance in or-
chardgrass by exploring expressions of genes and metabolites in the roots under short-term
stress conditions. The integrated transcriptomic and metabolomic analysis identified key
metabolic pathways in response to stress. The up-regulated flavonoid biosynthesis and
the up-regulated amino acids biosynthesis observed in the roots could contribute to sub-
mergence tolerance. These pathways could be potential targets for further explorations
of the role of these pathways in submergence tolerance. Given the complex nature of
submergence stress and potential genotype by environment interaction, the results would
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be helpful in designing future experiments for the dissection of these pathways in more
diverse lines in response to different levels of submergence stress.
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www.mdpi.com/article/10.3390/ijms24032089/s1.
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