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Abstract: The C-Repeat Binding Factor (CBF) gene family has been identified and characterized in
multiple plant species, and it plays a crucial role in responding to low temperatures. Presently, only a
few studies on tree species demonstrate the mechanisms and potential functions of CBFs associated
with cold resistance, while our study is a novel report on the multi-aspect differences of CBFs among
three tree species, compared to previous studies. In this study, genome-wide identification and
analysis of the CBF gene family in Acer truncatum, Acer pseudosieboldianum, and Acer yangbiense
were performed. The results revealed that 16 CBF genes (five ApseCBFs, four AcyanCBFs, and seven
AtruCBFs) were unevenly distributed across the chromosomes, and most CBF genes were mapped on
chromosome 2 (Chr2) and chromosome 11 (Chr11). The analysis of phylogenetic relationships, gene
structure, and conserved motif showed that 16 CBF genes could be clustered into three subgroups;
they all contained Motif 1 and Motif 5, and most of them only spanned one exon. The cis-acting
elements analysis showed that some CBF genes might be involved in hormone and abiotic stress
responsiveness. In addition, CBF genes exhibited tissue expression specificity. High expressions of
ApseCBF1, ApseCBF3, AtruCBF1, AtruCBF4, AtruCBF6, AtruCBF7, and ApseCBF3, ApseCBF4, ApseCBF5
were detected on exposure to low temperature for 3 h and 24 h. Low expressions of AtruCBF2,
AtruCBF6, AtruCBF7 were detected under cold stress for 24 h, and AtruCBF3 and AtruCBF5 were
always down-regulated under cold conditions. Taken together, comprehensive analysis will enhance
our understanding of the potential functions of the CBF genes on cold resistance, thereby providing a
reference for the introduction of Acer species in our country.

Keywords: Acer truncatum; Acer pseudosieboldianum; Acer yangbiense; CBF gene family; cold stress

1. Introduction

Cold stress is a major natural factor that limits plant growth, productivity, and sur-
vival, and it determines the geographical distribution of plant species. Low temperature
(0–12 ◦C) will inhibit plant growth and development, and freezing temperature (below 0 ◦C)
will destroy cell membranes and cause cell death [1]. Plants can adapt to low temperatures
through inducing the expression of cold tolerance-related genes, synthesizing correspond-
ing protective proteins, and activating the protective enzymes and metabolites, and the
process is called cold acclimation [2]. The cold acclimation natural habitat plants have the
ability to acclimate completely, whereas plants originating from warmer climatic zones
cannot often successfully overwinter, due to poor preparation for cold acclimation [3].

The genus Acer L. belongs to Aceraceae, which are deciduous or evergreen small
trees or shrubs with medicinal, ornamental, and economic values. The ability of leaf color
change determines the significant ornamental and economic values of Acer, and this ability
is limited by diverse temperature zones. In Northeast China, some Acer species, such as
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Acer pseudosieboldianum, are mainly distributed in the cold temperate zone, and exhibit
unique adaptability and cold resistance for tolerating temperatures below 30 ◦C in winter
compared with other Acer species [4,5]. Most Acer species are native to Asia, whereas
some species are spread through North America, Europe, and North Africa [6,7]. Over
150 species of Acer germplasm resources have primarily been found in China, accounting
for more than half of the world’s Acer resources. The rich resources of germplasm in
China are important for further research on the evolutionary history of the Acer species [8].
Acer pseudosieboldianum, Acer yangbiense, and Acer truncatum are three species of Acer
endemic to China. A. pseudosieboldianum is endemic to north-east China [9]. A. yangbiense
primarily grows in the western valley of Cangshan Mountain and Yunnan Province [10].
The natural distribution area of A. truncatum is mainly concentrated over north China
and the north-east of China, and it is the most ubiquitous Acer species [11]. On the basis
of distinct geographical environments and climates, various phenotypic differences and
growth-specific differences of these three species are exhibited, and they may possess
different cold acclimation.

As mentioned, cold acclimation is the inevitable result of a long period of low tem-
perature time, affected by morphological coordination, physiological or biochemical adap-
tations, and genetic factors. The C-repeat binding factors dehydration-responsive ele-
ment binding (CBFs/DREB1) proteins have been identified as key transcription factors
involved in cold acclimation. They belong to the APETALA2/ethylene-responsive ele-
ment binding factor (AP2/ERF) transcription factor family, which is further divided into
the AP2, DREB, ERF, and Soloist, and related to abscisic acid insensitive 3/viviparous 1
(RAV) groups [12]. Among them, the DREB group consists of six subgroups, of which
the A1 subgroup consists of the CBF/DREB1 transcription factors [13]. Studies have per-
formed the genome-wide analysis of CBF/DREB1 genes in several plant species, such as
Lolium perenne [14], Taraxacum kok-saghyz [15], Camellia sinensis [16], Eucalyptus grandis [17],
Brassica rapa [18] and so on. In previous studies, cold treatment (4 ◦C) induced the ex-
pression of LpCBF3 in Lolium perenne [14], the LeCBF1 gene in Lycopersicon esculentum, and
the CpCBF1 and CpCBF2 in Carica papaya were also found to be cold-inducible [19,20]. In
Arabidopsis thaliana, the CBF gene family contains six genes, including CBF1/DREB1C,
CBF2/DREB1B, CBF3/DREB1A, CBF4/DREB1D, DREB1E/DDF2, and DREB1F/DDF1 [21].
The expression of AtCBF1, AtCBF2, and AtCBF3 is induced under cold stress, whereas the
expression of AtCBF4, AtDREB1E, and AtDREB1F is induced under osmotic stress, such as
drought and salt [22,23]. Studies have shown that MbCBF2, isolated from Malus baccata,
enhances the resistance to cold stress in A. thaliana by increasing proline content, superoxide
dismutase (SOD), peroxidase (POD), and catalase (CAT) activity [24]. The overexpression
of CsCBF1 increases the putrescine (Put) levels in Citrus sinensis, along with remarkably
enhancing cold tolerance [25]. Besides low temperature, light quality, photoperiod, and
the circadian clock also regulate the CBF gene expression via light-sensitive cis-elements in
their promoter region [26].

In this study, we systematically performed genome-wide identification and analysis
of the CBF gene family in Acer pseudosieboldianum, Acer yangbiense, and Acer truncatum,
including comprehensive analysis of physical and chemical characteristics, chromosomal
location, phylogenetic and evolutionary relationship, and conserved motifs. The expression
pattern of the CBF genes in different tissues and the expression profile of three Acer CBFs
under cold stress were detected. This was the novel report on the multi-aspect differences
of CBFs among three tree species compared to previous studies. Our study will enhance
our understanding of the CBF genes, which lay a theoretical foundation on the study of the
CBFs protein structure and function, and the molecular breeding of resistance to cold in
these three Acer species, thereby providing a reference for introducing Acer species in all
regions in our country.
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2. Results
2.1. Identification of CBF Genes in Three Acer Species

A total of 16 CBF genes were identified from three Acer species, including seven
AtruCBF genes, four AcyanCBF genes, and five ApseCBF genes after sequence alignment
with A. thaliana. Of these CBFs, AtruCBF7 had the longest protein sequence with 395 amino
acids, and the length of CDS was 1185 bp. The protein sequence of AtruCBF5 was the
smallest, with 165 amino acids, and the length of CDS was 495 bp. The molecular weight of
CBF proteins ranged from 19,008.12 kDa (AtruCBF5) to 43,582.88 kDa (AtruCBF7), and the
isoelectric point ranged from 4.77 (ApseCBF2) to 9.79 (AtruCBF4). ApseCBFs and AcyanCBFs
were neutral. The results of subcellular localization prediction revealed that most CBF
proteins localized in the nucleus, while ApseCBF3, ApseCBF4, AcyanCBF1, AcyanCBF3,
and AtruCBF5 proteins also localized in the cytoplasm concurrently (Table 1). These results
suggested that significant differences existed in three Acer species CBFs genes.

Table 1. The identification of CBF genes in three Acer species.

Gene Name Gene ID AA 1 MW 2 (kDa) PI 3 SL 4 CDS (bp)

ApseCBF1 Apse002T0243400.1 253 27,693.81 4.9 Nucleus 759
ApseCBF2 Apse002T0243300.1 253 27,666.73 4.77 Nucleus 759

ApseCBF3 Apse011T0099600.1 246 27,542.91 6.68 Cytoplasm,
Nucleus 738

ApseCBF4 Apse002T0243600.1 235 24,831.5 5.04 Cytoplasm,
Nucleus 705

ApseCBF5 Apse007T0094500.1 212 22,876.3 5.46 Nucleus 636

AcyanCBF1 Acyan11G0087800.1 301 33,234.08 6.03 Cytoplasm,
Nucleus 903

AcyanCBF2 Acyan11G0087900.1 382 42,556.73 8.9 Cytoplasm 1146

AcyanCBF3 Acyan02G0289000.1 249 26,360.25 5.42 Cytoplasm,
Nucleus 747

AcyanCBF4 Acyan07G0093600.1 223 23,930.49 5.61 Nucleus 669
AtruCBF1 Atru.chr10.1810 258 27,824.85 9.35 Nucleus 774
AtruCBF2 Atru.chr1.1042 238 27,303.82 9.49 Nucleus 714
AtruCBF3 Atru.chr2.1230 190 20,944.53 9.73 Nucleus 570
AtruCBF4 Atru.chr4.1701 216 24,514.44 9.79 Nucleus 648

AtruCBF5 Atru.chr13.731 165 19,008.12 9.37 Cytoplasm,
Nucleus 495

AtruCBF6 Atru.chr6.2697 291 31,912.79 7.37 Nucleus 873
AtruCBF7 Atru.chr4.2790 395 43,582.88 6.38 Nucleus 1185

1 The number of amino acids, 2 Molecular weight, 3 Isoelectric point, 4 Subcellular localization.

2.2. Construction of Phylogenetic Tree

The phylogenetic relationships of the CBF gene family between three Acer species
and other plants were analyzed. A total of 28 CBF proteins were used to construct the
phylogenetic tree, including seven proteins from A. truncatum (AtruCBFs), four proteins
from A. yangbiense (AcyanCBFs), five proteins from A. pseudosieboldianum (ApseCBFs),
six proteins A. thaliana (AtCBFs), and six proteins from P. trichocarpa (PtrCBFs). These
CBFs were clustered in five groups: Group I, Group II, Group III, Group IV, and Group V.
The CBFs from three Acer species were clustered in Group I, Group IV, and Group V. Group
I was the largest group, containing one AcyanCBFs, one ApseCBFs, five AtCBFs, AtDDF1,
and AtDDF2. Four PtrCBFs were clustered in Group III. Interestingly, all five species are
clustered to group V (Figure 1). These results suggested that the evolution relationships of
CBFs in Acer species were different with other plant species.
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Figure 1. Phylogenetic tree of the CBF proteins from six species. Different colors represent the groups.
At: A. thaliana; Acyan: A. yangbiense; Atru: A. truncatum; Apse: A. pseudosieboldianum; Os: O. sativa;
Potri: P. trichocarpa.

2.3. Gene Structure and Conserved Motif of CBF Genes

The structure and motif of CBF genes in A. truncatum, A. pseudosieboldianum, and
A. yangbiense were analyzed, and these 16 CBFs were ordered according to the phylogenetic
tree (Figure 2a). A total of 12 CBFs spanned only one exon, and four CBFs. AcyanCBF1,
AcyanCBF2, AtruCBF2, and AtruCBF6 spanned two exons and one intron (Figure 2c). The
analysis of conserved motifs showed that the CBF genes had three to eight motifs. Motif 1
and Motif 5 were found from all CBFs. Motif 2 and Motif 4 were found from AcyanCBFs
and ApseCBFs, while Motif 6 was only found from AtruCBFs. Further, Motif 3 was found
in AcyanCBFs and ApseCBFs, except for ApseCBF4 and AcyanCBF3. Motif 7 was only
found in AcyanCBF1, AcyanCBF2, ApseCBF3, ApseCBF1, and ApseCBF2. Motif 10 was only
found in AtruCBF1, AtruCBF4, AtruCBF5, AtruCBF6, and AtruCBF7 (Figure 2b). These
results suggested that the gene structure and motif of CBFs in three Acer species were
relatively conserved.
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Figure 2. The analysis of gene structure and conserved motif. (a) The phylogenetic tree of all
CBF proteins in three Acer species. (b) The motif composition of CBF genes in three Acer species.
(c) The structure of CBF genes.

2.4. Cis-Acting Elements of CBF Genes

The cis-acting elements of the 16 CBF genes promoters were explored, and a total of
24 types of cis-elements were identified. Low-temperature response elements were found in
the promoter of three ApseCBFs genes, including ApseCBF3, ApseCBF4, and ApseCBF5; three
AcyanCBFs genes, including AcyanCBF1, AcyanCBF2, AcyanCBF3; and two AtruCBFs genes,
including AtruCBF4 and AtruCBF7. The light responsiveness presented in the promoter of
all CBF genes with a large number. The promoter of CBF genes also contained elements
associated with hormone responsiveness, such as MeJA-responsiveness elements, found in
the promoter of ApseCBFs, and gibberellin-responsiveness elements, found in the promoter
of ApseCBF3 and AtruCBF6. The promoter of ApseCBF genes had drought inducibility
elements, but of all AtruCBFs genes, the drought inducibility elements only presented in
the promoter of AtruCBF5 (Figure 3). The detection of these cis-acting elements suggested
that the CBF genes in three Acer species played important roles in treating abiotic stress,
drought, light and cold stress, etc.
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2.5. Chromosome Location of CBF Genes

The chromosomal location of CBF genes in three Acer species were analyzed. The
ApseCBFs genes were unevenly distributed at one end of three chromosomes in



Int. J. Mol. Sci. 2023, 24, 2088 6 of 15

A. pseudosieboldianum, where ApseCBF1, ApseCBF2, ApseCBF4 were located on Chr2,
ApseCBF5 was located on Chr7, and ApseCBF3 was located on Chr11 (Figure 4a). The
AcyanCBF genes were also unevenly distributed at one end of three chromosomes in
A. yangbiense. AcyanCBF3 was located on Chr1, AcyanCBF4 was located on Chr2, and
AcyanCBF1 and AcyanCBF2 were located on Chr11 (Figure 4b). The AtruCBF genes
dispersed six chromosomes, and each AtruCBF gene was located on one chromosome,
except for Chr4 containing AtruCBF4 and AtruCBF7. AtruCBF2, AtruCBF3, AtruCBF6,
AtruCBF1, and AtruCBF4 were located on Chr1, Chr2, Chr6, Chr10, and Chr13, respectively
(Figure 4c). The CBF gene family was not located on all 13 chromosomes; this difference
in gene distribution determined the complexity and diversification of CBFs in three Acer
species, providing clues to their evolution.
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Figure 4. (a) The chromosomal location of ApseCBFs in A. pseudosieboldianum. (b) The chromosomal
location of AcyanCBFs in A. yangbiense. (c) The chromosomal location of AtruCBFs in A. truncatum.

2.6. Synteny Analysis of CBF Genes

The intraspecific and interspecific synteny analysis of CBF genes were explored. One
orthologous gene pair located on Chr2 and Chr11 was found in A. pseudosieboldianum
and A. yangbiense (Figure 5a,b). Two orthologous gene pairs located on Chr3 and Chr13,
Chr6 and Chr12 were found in A. truncatum (Figure 5c). As for the synteny analysis between
different species, A. yangbiense and A. truncatum, A. truncatum and A. pseudosieboldianum
contained 12 and 14 orthologous gene pairs, indicating they possessed the higher homol-
ogy. A. yangbiense and A. pseudosieboldianum only contained five orthologous gene pairs,
indicating they possessed lowest homology. The results showed that A. pseudosieboldianum
and A. truncatum exhibited the highest level of homology. Furthermore, orthologous gene
pairs in A. pseudosieboldianum and A. truncatum were mainly distributed on chromosomes 2
and 1. Further, some orthologous gene pairs were also detected between A.thaliana and
A. pseudosieboldianum, A.thaliana and A. yangbiense, and A. thaliana and A. truncatum, sug-
gesting these species also exhibited homology (Figure 5d). These results proposed that CBF
genes possessed a degree of homology in different Acer species.
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2.7. The Expression of CBF Genes in Different Tissues

The expression of CBF genes in different tissues was explored based on the tran-
scriptomes. In A. pseudosieboldianum, a higher expression of ApseCBFs genes was detected
in green leaf (GL) compared to half-red leaf (HRL) and red leaf (RL) (Figure 6a). In
A. yangbiense, the expressions of AcyanCBF1, AcyanCBF2, and AcyanCBF3 were up-regulated
in the stem and sprout, whereas these genes were down-regulated in the leaf and fruit
(Figure 6b). In A. truncatum, the expressions of AtruCBF5 and AtruCBF6 were up-regulated
in the flower and seed, while the expressions of AtruCBF3, AtruCBF4, and AtruCBF1 were
up-regulated in seed, flower, and root, respectively (Figure 6c). The results revealed that
the CBF genes possessed tissue-specific expression.
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Figure 6. The expression pattern of the CBF genes in different tissues. (a) The expression of
five ApseCBF genes in green leaf (GL), half-red leaf (HRL), red leaf (RL) of A. pseudosieboldianum.
(b) The expression of three AcyanCBF genes in sprout, leaf, root, fruit, and stem of A. yangbiense.
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2.8. Expression of CBF Genes in Three Acer Species under Low-Temperature Conditions

Previous studies have shown that CBF genes play an important role in responding
to cold stress [24,25]. Therefore, the expression of CBF genes in three Acer species under
low temperatures was detected. The results showed that low temperatures could induce
the expression of CBF genes (Figure 7). The expression of ApseCBF1, ApseCBF3, AtruCBF1,
AtruCBF4, AtruCBF6, and AtruCBF7 was up-regulated on exposure to low temperature
for 3 h, and the differences were significant except for ApseCBF1 and AtruCBF7 (p < 0.05)
(Figure 7a,c,f,i,k,l). ApseCBF3, ApseCBF4, and ApseCBF5 were significantly highly expressed
under cold for 24 h (p < 0.05) (Figure 7b,d,e), while AtruCBF2, AtruCBF6, and AtruCBF7 were
significantly lowly expressed at 24 h (p < 0.05) (Figure 7g,k,l). Moreover, the expressions
of AtruCBF3 and AtruCBF5 were always down-regulated during the low temperature
conditions (Figure 7h,j). The expressions of AcyanCBF1 and AcyanCBF2 exhibited no
significant differences under cold conditions, except for at 3 h (Figure 7m,n), while a
significantly higher expression of AcyanCBF3 was detected on exposure to low temperature
for 12 h and 48 h (Figure 7o). These results suggested that CBF genes in three Acer species
have specific expression patterns when exposed to low-temperature conditions for different
time durations.
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3. Discussion

Acer is a medicinal, ornamental, and economic tree species. The Acer species mentioned
in our study, A. pseudosieboldianum, A. yangbiense, and A. truncatum, are distributed across
different areas of China. Presently, the studies on genome assembly of A. pseudosieboldianum,
A. yangbiense, and A. truncatum heve been reported, which provide references for exploring
the genome-wide identifications and functions of genes in three species [8,27,28]. CBF
transcription factors, also known as DREB1 proteins, belong to the AP2/ERF family. They
play an important role in mediating plant responses to biotic and abiotic stress, including
high salt, drought, and low temperature. Particularly, CBFs can enhance the resistance
to cold stress in several tree species, such as Eucalyptus gunnii, Malus × domestica, and
Betula pendula [29–31]. On the basis of their genome, our study performed genome-wide
identification and analysis of CBFs in three Acer species, which will lay the foundation for
further study of CBF gene functions in cold resistance.

Five, four, and seven CBF genes were identified from A. pseudosieboldianum,
A. yangbiense, and A. truncatum. Most CBF proteins are localized predominantly in the
nucleus (Table 1), in accordance with their biological roles as transcription factors. The
study on identifying the gene family based on the whole genome is significant for un-
derstanding the origin, evolution, and differentiation of gene families [32]. These results
were similar to the report on CsCBFs [16]. According to the phylogenetic tree analysis, the
results showed that the CBF family members of the three species of Acer, P. trichocarpa, and
A. thaliana did not form a separate cluster of evolutionary branches, indicating that there
was a certain degree of homology between the CBF gene families of several species. At
the same time, the CBF gene family may have undergone great differentiation in evolu-
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tion (Figure 1) [15]. Although CBF homologs from A. thaliana, A. pseudosieboldianum, and
A. yangbiense were clustered in the same group, they were divided into separate subgroups,
indicating that the duplications of CBFs in eudicot plants were independent events, and the
duplication and divergence occurred after speciation [33]. The analysis of gene structure
and conserved motif showed that genes clustered on the same branch exhibited similar-
ity, such as similar exon number, motif number, and motif position (Figure 2a–c). The
certain conserved motifs played important functional and/or structural roles in active
proteins [34]. All ApseCBFs, most AcyanCBFs, and AtruCBFs were single-exon structures,
while AcyanCBF1, AcyanCBF2, AtruCBF2, AtruCBF6 contained one intron (Figure 2c). The
results showed that most members of the CBF family in three Acer species were intron dele-
tion genes, which were consistent with CBFs in Taraxacum koksaghyz [15]. The loss of introns
might shorten the time required for gene transcription to translation, thereby accelerating
gene expression and functional protein production to adapt to the changes of the plant
and environment [35].

Most ApseCBFs, AcyanCBFs, and AtruCBFs were unevenly distributed at one end of the
chromosomes in three Acer species, while ApseCBF1/2/4, AcyanCBF1/2, AtruCBF4/7 were
located on one chromosome (Figure 4a–c). The difference in gene distribution determined
the complexity and diversification of CBFs in three Acer species, which might be caused
by the differences in the structure and size of the chromosomes. The intraspecific and
interspecific synteny analysis of CBFs could also be used to indicate the homology. Interest-
ingly, A. yangbiense and A. truncatum, A. truncatum and A. pseudosieboldianum had higher
homology, while A. yangbiense and A. pseudosieboldianum had lower homology (Figure 5d).
The distribution areas of A. yangbiense and A. pseudosieboldianum were distinct; one was
distributed in Northeast China, the other was distributed in Yunnan Province [9,10]. The
regional differences might lead to the separation of plants and gene origin, divergence,
and evolution [36].

The gene promoters are upstream of the transcriptional start, which contains plenty
of cis-acting elements, and controls the transcription of genes [37]. The promoter poly-
morphisms of CBFs affect the expression of CBF genes, and affect the expression of related
response genes in A. thaliana [38–40]. The studies have also shown that AtCBF2 negatively
regulated AtCBF3 and AtCBF1, while AtCBF4 functioned in drought stress tolerance [22,41].
In our study, low-temperature, drought, light, and plant hormone-responsive elements
were identified from the promoter region of ApseCBFs, AcyanCBFs, and AtruCBFs genes.
For example, the low-temperature responsiveness cis-acting elements were found in the
promoter of ApseCBF4, ApseCBF5, ApseCBF3, AcyanCBF1, AcyanCBF2, AtruCBF4, AtruCBF7,
and the expression of these genes could be significantly induced by cold stress, especially
ApseCBF4 at 12 h, ApseCBF5 at 24 h, ApseCBF3 at 3 h, AcyanCBF1 at 6 h, AcyanCBF2 at 12 h,
AtruCBF4 at 3 h, AtruCBF7 at 3 h (Figures 3 and 7). It is speculated that some transcription
activators could specifically bind to and activate the promoters of CBFs on exposure to low
temperature, thereby inducing the expression of these mentioned genes; therefore they
may play crucial roles in cold resistance [14,42]. Other cis-acting elements, such as drought-
inducibility elements in the promoters of ApseCBFs, AcyanCBF2/4, AtruCBF5; defense
and stress responsiveness; and wound-responsive elements were found (Figure 3). These
elements might help in activating CBFs to cope with other abiotic stresses. The expression
patterns of CBFs under cold stress were explored. A high expression of some CBF genes on
exposure to low temperature for 3 to 12 h was detected, while an increase in expression of
ApseCBF4, AcyanCBF3, and AtruCFB2 on exposure to low temperature for 12 h, AcyanCBF2,
and AcyanCBF4 on exposure to low temperature for 12 to 48 h was observed (Figure 7). The
results indicated that some CBF genes might function during the early stages of response
to cold stress, and that genes such as AcyanCFB2/3, and AcyanCBF4 might function during
the late stages of response to cold stress. Previous studies have also demonstrated that
the CBF genes respond to cold stress in a time-dependent manner in Secale cereale L. [43]
and Camellia sinensis [16]. However, no significantly negative regulations were found in
three Acer species between CBF2 and CBF1/3 from gene expression patterns under low
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temperature, so we will explore this relationship in the future. Further, the tissue-specific
expression of CBF genes was exhibited (Figure 6a–c); these results were also reported in
Eucalyptus grandis and Punica granatum [17,44]. In summary, our study excavated some
CBFs significantly induced by low temperature in three Acer species, which provided a
reference for further gene function research and molecular regulation mechanisms in cold
resistance. The results might direct the introduction of Acer species.

4. Materials and Methods
4.1. Plant Materials

The three-year-old A. truncatum, A. yangbiense and A. pseudosieboldianum were obtained
from the Northeast Forestry University greenhouse (126◦38′8.92′′ E, 45◦43′20.64′′ N), Harbin,
Heilongjiang Province, China. Acer species were exposed to low temperatures (i.e., 4 ◦C) in
an intelligent light incubator (ToppYunnong Technology Co., Ltd., Hangzhou, China) for
0 h, 3 h, 6 h, 12 h, 24 h, and 48 h. The functional leaves (the third to fifth leaves from the
main branches) were collected, and total RNA was extracted to analyze the expression
pattern of A. pseudosieboldianum CBFs (ApseCBFs), A. yangbiense CBFs (AcyanCBFs), and
A. truncatum CBFs (AtruCBFs) genes.

4.2. Retrieving the CBF Gene Family Sequences

To perform genome-wide analysis of the CBF genes from three Acer species, the whole
genome sequences were directly obtained according to previous studies [8,27,28]. The
six known CBF transcription factor family genes from A. thaliana were selected as the
query objects, and the protein sequences were retrieved using the Arabidopsis Information
Resource (TAIR) (https://www.arabidopsis.org/browse/genefamily/index.jsp, accessed
on 12 December 2021) [45]. The CBF genes in A. truncatum, A. yangbiense and A. pseu-
dosieboldianum were identified using the BLAST by Toolbox for Biologists (TBtools) v 1.087
(e-value < 1 × 10−5) based on A. thaliana [46]. Each A. thaliana gene was successfully
matched with multiple CBF genes, and the alignment sequence IDs of candidate CBFs
were obtained eventually after eliminating the repeated values and blanks. The candidate
CBF genes were further manually analyzed using Batch CD-Search in the National Centre
for Biotechnology database (NCBI) (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/
bwrpsb.cgi, accessed on 12 December 2021) to detect the presence of the CBF domain,
and 16 candidate CBFs were identified. The biochemical properties, such as the molecular
weight (MW) and isoelectric point (pI), were determined using the Compute pI/Mw tool on
the ExPASy (https://web.expasy.org/protparam, accessed on 15 December 2021). The sub-
cellular localization was analyzed using the WoLF PSORT tool (https://wolfpsort.hgc.jp/,
accessed on 15 December 2021).

4.3. Analyses of Gene Structure and Protein Motif Composition

The structures of candidate CBF genes in A. truncatum, A. pseudosieboldianum, and
A. yangbiense were identified and visualized using the TBtools software [47]. MEME,
a web-based tool (http://meme-suite.org/tools/meme, accessed on 20 December 2021),
was used to explore the conserved motif in A. truncatum, A. pseudosieboldianum,
and A. yangbiense. The parameters were set at a maximum of 10 motifs. TBtools was
further used to visualize the motif composition [48].

4.4. The Analyses of Chromosomal Location and Collinearity

The chromosome locations of CBFs in three Acer species were analyzed, and they
were mapped on 13 chromosomes (named Chr 1 to Chr 13) according to their physical
positions (bp). The McScan software was used to perform the collinearity analysis, and
homology between ApseCBFs, AcyanCBFs, AtruCBFs and AtCBFs was evaluated with
default parameters. These results were visualized using TBtools.

https://www.arabidopsis.org/browse/genefamily/index.jsp
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://web.expasy.org/protparam
https://wolfpsort.hgc.jp/
http://meme-suite.org/tools/meme
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4.5. The Analysis of Phylogenetic Tree

The evolutionary relationship of CBF genes in A. thaliana, A. pseudosieboldianum,
A. yangbiense, A. truncatum, and Populus trichocarpa was analyzed. The phylogenetic tree
was constructed using the Neighbor-joining method by MEGA software, the Bootstrap
method value was set to 1000, and other parameters were set to default. Interactive Tree of
Life (iTOL) (https://itol.embl.de/, accessed on 22 December 2021) was used to beautify
the phylogenetic tree.

4.6. The Analysis of Cis-Acting Elements

The 2000 bp sequences upstream of CBF genes coding sequences (CDSs) were extracted
as promoter sequences using TBtools. The cis-acting elements were identified using the
Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html).

4.7. The Analysis of Gene Expression

The RNA-seq data of A. pseudosieboldianum, A. yangbiense, and A. truncatum were
obtained from NCBI (accession numbers were PRJNA736515, PRJNA524417, and PR-
JNA665613), respectively. After quality control, alignment, and quantitative analysis, the
expression levels of CBF genes were represented using fragment per kilobase per million
mapped reads (FPKM). The gene expression patterns of green leaf (GL), half-red leaf (HRL),
and red leaf (RL) in A. pseudosieboldianum; sprout, leaf, root, fruit, and stem in A. yangbiense;
and flower, leaf, root, seed, stem in A. truncatum were explored.

Total RNA was extracted from the functional leaves of three Acer species under cold
stress (4 ◦C for 0, 3, 6, 12, 24, and 48 h) using RNAprep Pure Plant Kit (Tiangen Biotech,
Beijing, China) according to the manufacturer’s instructions. After detecting the integrity
and quality of total RNA, the cDNA was synthesized using PrimeScriptTM RT reagent Kit
with gDNA Eraser (TaKaRa, Beijing, China). A total of 16 CBF genes were selected to explore
the gene expression using qRT-PCR. The primer sequences were listed in Supplementary
Table S1, and 18S was used as an internal reference gene. The qRT-PCR was performed on
the ABI 7500 Real-Time PCR system (Applied Biosystems, Carlsbad, CA, USA), using TB
Green® Premix Ex TaqTM II (Tli RNaseH Plus) (TaKaRa, Beijing, China) with three technical
replicates. Amplification system and procedure were carried out according to Li [32]. The
relative gene expression levels were calculated using the 2−∆∆CT method [49].

5. Conclusions

In conclusion, we have identified seven AtruCBF genes, four AcyanCBF genes, and
five ApseCBF genes from A. truncatum, A. yangbiens, and A. pseudosieboldianum. These CBF
genes, clustered in five subgroups based on phylogenetic relationships, mainly contained
conserved Motif 1 and Motif 5, and 12 CBF genes only spanned one exon. The cis-acting
elements in the promoters of CBF genes were involved in hormone, light, drought, and low-
temperature responsiveness. The CBFs were unevenly distributed at chromosomes in three
Acer species, mostly at Chr2 and Chr11. One, one, and two orthologous gene pairs were
found in A. pseudosieboldianum, A. yangbiense, and A. truncatum. A. yangbiense and A. trunca-
tum, A. truncatum and A. pseudosieboldianum possessed high homology, while A. yangbiense
and A. pseudosieboldianum possessed the lowest homology. In addition, high expressions of
ApseCBF1, ApseCBF3, AtruCBF1, AtruCBF4, AtruCBF6, AtruCBF7, and ApseCBF3, ApseCBF4,
ApseCBF5 were detected on exposure to low temperature for 3 h and 24 h. Low expressions
of AtruCBF2, AtruCBF6, AtruCBF7 were detected under cold stress for 24 h, and AtruCBF3
and AtruCBF5 were always down-regulated under cold conditions. These results provided
a meaningful direction for gene function research on the cold-resistance of A. truncatum, A.
pseudosieboldianum, and A. yangbiens, which is favorable for the future introduction of these
three Acer species.

https://itol.embl.de/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
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