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Abstract: Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic
natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the
superoxide anion radical (O2·−) is a key redox signaling molecule prominently generated by the
NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably,
altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are
involved in malignant progression and resistance to drugs treatment. Since oxidative stress and
metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of
NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family
includes seven isoforms with different activation mechanisms, widely expressed in several tissues.
In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation
of cellular metabolism and highlight their potential role as a new therapeutic target for tumor
metabolism rewiring.

Keywords: NADPH oxidase; NOX; reactive oxygen species; ROS; cell metabolism; redox metabolism;
metabolic reprogramming; glycolytic enzymes

1. Introduction

Reactive oxygen species (ROS) are generated from several cell types and include a
group of molecules derived from the reduction of molecular oxygen. Based on magnitude,
duration, and the site of generation, ROS show a dualistic nature since they can induce
cytotoxicity or regulate cellular physiology. A detrimental effect is observed at high
concentrations, whereas at low concentrations they function as second messengers, acting
as regulators of cellular signaling [1]. Among ROS, the superoxide anion radical (O2·−) is a
key redox signaling molecule, generated prominently by members of the NADPH oxidase
(NOX) enzyme family and by the mitochondrial electron transport chain [2,3].

The NOX family represents the main source of controlled ROS formation and includes
seven isoforms with a broad tissue distribution and activation mechanism [3]. Their
subcellular distribution varies in the different cell types, ranging from plasma membrane
to intracellular compartments and nuclear membrane [4,5]. The NOX family includes
NOX1, NOX2, NOX3, NOX4, NOX5, and the dual oxidase Duox1 and Duox2. NOX2 is the
first isoform characterized and consists of at least six different subunits, whose interaction
is required to form an active enzymatic complex [6]. In unstimulated conditions, the
two integral membrane proteins gp91phox and 22phox (the heterodimeric cyt b558) do not
interact with the cytosolic regulatory subunits, p40phox, p47phox, p67phox, and Rac1/2 [7].
Upon stimulation, p47phox undergoes rapid phosphorylations and, in turn, interacts with
p67phox triggering a membrane translocation of the cytosolic subunits and their interaction
with the membrane cyt b558 to form the active oxidase complex able to generate superoxide
anion. The activated NOX complex transfers electrons from the substrate (NADPH) to
molecular oxygen through a prosthetic group (flavin) and heme group(s). NOX1 and NOX3
are regulated through a similar molecular mechanism, whereas Nox5, Duox1, and Duox2
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are activated by receptor-linked stimuli that elevate cellular calcium levels [8,9]. NOX
activation is finally regulated in order to prevent ROS overproduction, with the exception
of NOX4 that does not require any further cytosolic subunits and therefore is constitutively
active [10].

In phagocytic leukocytes, NOX-dependent superoxide generation plays a crucial
role in destroying phagocytosed organisms and facilitating the anti-microbial function
of cells [11], whereas in most cells and tissues NOX-dependent ROS production is impli-
cated in biosignaling and pathophysiological functions [12], such as cardiovascular [13,14],
neurodegenerative [15,16], cancer [17,18], and metabolic [19,20] diseases.

The specific effects of ROS are mainly associated with the covalent modification of
specific cysteine residues localized within redox-sensitive target proteins. As a consequence
of the oxidation of these specific and reactive cysteine residues, the activity of protein
tyrosine phosphates (PTPs), as well as of many enzymes, are reversibly modified [21],
thus promoting the phosphorylation of cytosolic residues of tyrosine kinase receptors
(TKRs) [22–25] and serine/threonine kinase receptors (RSTK) [26,27]. These trigger, in turn,
the activation of intracellular signaling proteins involved in several cell functions, such as
metabolism, proliferation, and oxidative stress responses [28–30].

Oxidative stress and the cellular metabolism of cancer cells are strictly intertwined. In
fact, high ROS levels, derived by metabolic and microenvironment-associated alterations,
contribute to the modulation of cancer cell metabolism [1] and NOX enzymes play a key
role in this process. Furthermore, an altered redox balance and deregulated redox signaling
are recognized as hallmarks of cancer and are involved in malignant progression and
resistance to drugs treatment.

The interplay of NOX-modulated redox signaling pathways associated with metabolism
is still far from being fully understood. A better understanding of how NOX enzymes drive
these complex adaptive responses will provide new mechanistic insights into metabolic
reprogramming and may contribute to the development of novel therapeutic strategies.

In this review, we focus on the emerging roles of the NOX family as important mod-
ulators of metabolic reprogramming. Currently, only NOX1, NOX2, and NOX4 isoforms
have been reported as implicated in this process. Therefore, we discuss the discuss the
contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism
and highlight their potential role for new therapeutic approaches that target the rewired
metabolism of cancer cells.

2. NOX-Dependent Regulation of Cellular Metabolism

Increasing evidence indicates the critical role of NOX in the regulation of glucose,
lipid, nucleotide, and protein metabolism, as well as in the metabolic reprogramming
of cancer cells [31,32]. The most explored metabolic effects exerted by ROS generated
by NOXs are associated with glucose metabolism. For instance, in PCB118-stimulated
hepatocellular carcinoma cells, an enhanced aerobic glycolysis, lactate production, GLUT1,
lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase (PDK), and pyruvate
kinase M2 (PKM2) expression is observed [33]. ROS scavengers or NOX inhibitors signif-
icantly suppress PCB118-induced glucose consumption, lactate production, and aerobic
glycolysis-related gene expression, thereby supporting the key role of NOX-dependent
ROS generation in the glucose metabolism reprogramming of these cells [33]. Glucose
is an essential source of energy for supporting all mammalian life and its metabolism
involves multiple processes, including glycolysis, gluconeogenesis, pentose phosphate
pathway (PPP), glycogenolysis, and glycogenesis. In anaerobic conditions, glycolysis pro-
duces lactate, whereas CO2 is generated in mitochondria upon full oxidation of glucose via
respiration in aerobic conditions. Tumor or proliferating cells show an increased uptake
of glucose that is metabolized in lactate in the aerobic glycolysis, even in the presence of
oxygen and fully functioning mitochondria.

A critical factor involved in glucose metabolic reprogramming is hypoxic inducible fac-
tor 1 α (HIF1α) [34]. Some evidence demonstrates that ROS released by NOX contribute to
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metabolic reprogramming by stabilizing HIF1α, for instance in hypoxia-stimulated HUVE
cells [35]. Here, HIF1α stabilization requires the activation of PKC and PI3K signaling and
is accompanied by augmented hexokinase activity and membrane translocation of GLUT1.
Interestingly, ROS scavenging or NOX inhibition completely reverts hypoxia-induced
HIF1α accumulation and hexokinase activity, suggesting that ROS production is upstream
of HIF1α signaling.

Glucose and glutamine play a key role in the metabolic reprogramming of cancer
cells and represent the primary sources of carbon atoms for the biosynthesis of several
molecules. In particular, glutamine is an important nitrogen donor for the production of
nucleotides, amino acids, and nicotinamide. Carbamoyl-phosphate synthetase 2, aspartate
transcarbamylase, and dihydroorotase (CAD) form a multifunctional enzyme that regulates
de novo synthesis of pyrimidine nucleotides. In mammals, CAD is phosphorylated at
the Ser1859 by S6 kinase 1 (S6K1), a downstream ribosomal protein target of mTORC1,
thus stimulating the first three steps of the pyrimidine synthesis and allowing the cells’
overall progression through S phase of the cell cycle. S6K1 activity is finely regulated by
redox-sensitive mechanisms that control its phosphorylation, its interaction with mTORC1,
and the kinase activity of the S6K1-mTORC1 complex.

Interestingly, in several cell types, formyl peptide receptor 2 (FPR2) induces NADPH
oxidase activity [23,24,28,29,36–39]. We analyzed, in human CaLu-6 cells, the ability of
NOX-dependent ROS production to regulate CAD phosphorylation at the Ser1859 residue.
The blocking of NOX activity by preincubation with apocynin or by Crispr/Cas technique
completely prevents FPR2-induced CAD phosphorylation/activation, thereby revealing
that NOX plays a crucial role in the metabolic reprogramming of anaplastic lung cancer
cells by redirecting glutamine into anabolic pathways [40].

NOX-dependent ROS generation also contributes to the progression of metabolic
diseases such as metabolic syndrome, obesity, and type 2 diabetes [41], as observed in
a mouse cell line and in human skeletal muscle primary cells. The stimulation of these
cells increases NOX-dependent production of ROS and triggers a shift towards a more
glycolytic phenotype, which is sensitive to antioxidants and NOX inhibition, rather than to
mitochondrial respiration [42].

3. NOX1 and the Modulation of Cellular Metabolism

NOX1 was the first homolog of NOX2 and was initially named mitogenic oxidase 1
(mox-1) [43] or NADPH oxidase homolog 1 (NOH-1) [44]. NOX1 and NOX3, the second
NOX cloned isoform, share 60% sequence identity with NOX2 and for this reason are
considered the closest isoforms to phagocytic NADPH oxidase. NOX1 isoform is expressed
in a variety of tissues [45] but it is predominant in colon, prostate, and vascular cells [46]. Its
expression can be induced by many conditions [45]. NOX1 activation requires the presence
of the cytosolic subunit NOXO1 and NOXA1, the membrane subunit p22phox, and the small
GTPase Rac. ROS generated via NOX1 are involved in several physiological processes
implicated in cell metabolism regulation (Table 1).

However, aberrant NOX1 activation and/or expression is involved in a growing
number of diseases, including neurological disorders, atherosclerosis, hypertension, inflam-
mation, and cancer [45], through the deregulation of cell metabolism (Figure 1).
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Table 1. NOX1 implication in cell metabolism regulation.

Cell Type/Tissue Biological Effect Cellular Effects References

Pancreatic Cancer
specimens/Colon cancer cells

NOX1 expression ↑
[NAD+] ↑
HK2 activity ↑

Glycolysis ↑ [31]

C2C12 cells p70S6k ↑ Glycolysis ↑ [47]

Hepatic cancer cells

UTP-glucose-1-phosphate
uridylyltransferase expression ↓
PEPCK expression ↑
GDH expression ↓
AST expression ↑
GMP reductase 2 expression ↑
cytosolic HMG-CoA synthase
expression ↑

Glycolysis ↑
Reprogramming of glutamine metabolisms
Nucleotide synthesis ↑
Lipid, steroid and isoprenoid biosynthesis ↑

[32]

HK2: Hexokinase II; PEPCK: phosphoenolpyruvate carboxykinase; GDH: glutamate dehydrogenase; AST: aspar-
tate aminotransferase; HMG-CoA synthase: hydroxymethylglutaryl-CoA synthase.
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Indeed, NOX1 is upregulated in several tumors, where it functions as an
oncogene [31,48]. Such upregulation is critical for elevated glycolysis and provides addi-
tional NAD+ in cancer cells with mitochondrial dysfunction [48–50]. NOX1 upregulation
is also observed in cancer cells with compromised mitochondria functions due to the acti-
vation of oncogenic Ras or the loss of p53, and in primary pancreatic cancer tissues. The
blocking of NOX1 functions selectively impairs cancer cells with mitochondrial dysfunction,
leading to a decrease in cellular glycolysis, a loss of cell viability, and an inhibition of cancer
growth in vivo, suggesting that NOX1 is a potential novel target for cancer treatment [31].

NOX1 is expressed in pancreatic β-cells [51] and plays an important role for ROS
production during glucose-stimulated insulin secretion [52]. A further connection between
the glucose-sensing mechanism and NOX1 is observed in C2C12 cells that show a NOX1-
dependent glucose sensing pathway for selective phosphorylation of p70S6k. This kinase
is involved in many cellular functions including protein synthesis, cell growth, cell cycle
progression, and the regulation of insulin signaling. Interestingly, insulin-stimulated
phosphorylation of p70S6k depends on both glucose and NOX1 [47].

NOX1-dependent metabolic rewiring is not limited to glucose oxidation through
glycolysis. In hepatoma cells, NOX1 silencing induces a decrease in mitochondrial phos-
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phoenolpyruvate carboxykinase (PEPCK-M), which converts oxaloacetic acid to phospho-
enolpyruvate (PEP), thus re-channeling the mitochondrial intermediates of the tricarboxylic
acid cycle (TCA) into the cytosolic pool of glycolytic intermediates. PEP can be directed
towards the PPP for NADPH generation and nucleotide synthesis [32]. NOX1 also induces
an increase in UTP-glucose-1-phosphate uridylyltransferase, suggesting an involvement of
NOX1 in modulating glycogen biosynthesis [32].

NOX1 levels are also inversely correlated to the levels of mitochondrial glutamate de-
hydrogenase and positively correlated with aspartate aminotransferase, thus playing a role
in the reprogramming of glutamine metabolisms. Moreover, NOX1 expression correlates
with the amount of GMP reductase 2 modulating, in turn, nucleotide synthesis. Finally,
reduced NOX1 levels result in a reduced expression of cytosolic hydroxymethylglutaryl-
CoA synthase (HMG-CoA synthase). Thus, NOX1 may contribute to remodeling lipid
metabolism in tumor cells since HMG-CoA synthase catalyzes the second step of the
mevalonate biosynthesis, leading to lipid, steroid (including cholesterol), and isoprenoid
biosynthesis [32].

4. NOX2 and the Rewiring of Metabolism

NOX2, also known as gp91phox, represents the first discovered member of the NOX
family [45]. It is highly expressed in monocytes, macrophages, and granulocytes where
it contributes to innate immune response [53]. However, NOX2 expression has also
been observed in several tissues and nonphagocytic cells including neurons, hepato-
cytes, hematopoietic stem cells, endothelial cells, cardiomyocytes, and skeletal muscle
myocytes [54]. NOX2 is constitutively associated with the protein p22phox and its activation
requires translocation of cytosolic factors to NOX2/p22phox complex. Phosphorylation of
the cytosolic subunit p47phox is crucial for the recruitment and translocation of the other
cytosolic subunits, p40phox, p67phox, and Rac. Subcellular NOX2 localization depends on
the specific cell type. In phagocytic and other nonphagocytic cells, it shows mainly an intra-
cellular and plasma membrane localization. However, in smooth muscle and endothelial
cells NOX2 results localized in perinuclear cytoskeleton [5,55,56]. Enhanced NOX2-derived
ROS production is responsible for an oxidized microenvironment that impacts deeply on
tumorigenesis, tumor progression, cell proliferation [57], and cell metabolism [58] (Table 2).

Table 2. NOX2 implication in cell metabolism regulation.

Cell Type/Tissue Biological Effect Cellular Effects References

M1 macrophages

HIF1α stabilization ↑
PDK1 activity ↑
PDH activity ↓
[Lactate] ↑

Metabolic reprogramming [58,59]

Ovarian Cancer cells
HIF1α ↑
GLUT1 expression ↑
HK2 expression ↑

Glycolysis ↑
Metabolic reprogramming [60]

RW264.7 monocyte/macrophage-like cells

NOX2 expression ↑
HIF1α ↑
GLUT1 expression ↑
HK2 activity ↑

Atherosclerotic microenvironment
Glycolysis ↑ [61]

acute myeloid leukemia

Glucose uptake ↑
UCP2 expression ↑
AMPK phosphorylation ↑
PFKFB3 expression ↑

Glycolysis ↑
Sphingolipid metabolism ↑
Fatty acid oxidation ↑
Purine metabolism ↑

[62,63]

Glioblastoma multiforme and glioma cell
NOX2 activity ↑
Glucose uptake ↑
HK2 activity ↑

Glycolysis ↑ [64]

neutrophils PFK-2 activity ↑ Glycolysis ↑ [65]

HIF1α: Hypoxic Inducible Factor 1 α; PDK1: pyruvate dehydrogenase kinase 1; PDH: pyruvate dehydro-
genase; HK2: Hexokinase II; UCP2: uncoupling protein 2; PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase; PFK-2: phosphofructo-2-kinase.
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Many cancer-related events undergo to a modified redox state, such as the inactivation
of PTPs by oxidation of their thiol groups [13,27,30,66], DNA damaging [67], genomic
instability [68], the regulation of transcriptional factors [69,70], and the modulation of cell
metabolism [40,71] (Figure 2).
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Several cellular systems that neutralize ROS are induced in an oxidative microenviron-
ment. Among them, the transcription factor Nrf2 crucially regulates cellular antioxidative
enzymes production. In resting conditions, binding to Keap1 inhibits Nrf2 activity. Upon
oxidation of Keap1 cysteine residues by NOX2-derived ROS, Nrf2 is released and translo-
cates to the nucleus where it binds to antioxidant response elements [57].

Hypoxia is a peculiarity of the tumor microenvironment that activates the hypoxia-
inducible factor (HIF) family of transcription factors. HIFs, by mediating cellular adaption
to low oxygen levels may influence several aspects of cancer. NOX2-dependent ROS
generation induces the activation of HIF1α and thereby stimulates HIF-related cancer
events [57].

Acute hypoxia induces anaerobic glycolysis to compensate cellular energy demands,
and NOX2 activation is an early and crucial driver of a cascade of metabolic changes that
promote glycolysis. In fact, NOX2-mediated stabilization of HIF1α contributes to anaerobic
glycolysis by the direct activation of PDK1, which inactivates pyruvate dehydrogenase.
This is one of the enzymes that form the pyruvate dehydrogenase complex (PDC) that
catalyzes the conversion of pyruvate into acetyl-CoA. Thus, pyruvate is not directed to TCA
and is converted into lactate, leading to the attenuation of mitochondrial respiration [58,59].

Similarly, in ovarian cancer cells and in RAW264.7 monocyte/macrophage-like cells,
NOX2-dependent HIF1α activation induces glycolysis by enhancing the expression of
GLUT1 and of the glycolytic enzyme hexokinase [60,61]. Furthermore, the high levels of
NOX2 observed in patients affected by glioblastoma multiforme (GBM) correlate with high
levels of hexokinase 2 and glucose uptake [64].

Although NOX2-mediated ROS generation promotes glucose oxidation, a metabolic-
dependent feedback loop allows glycolysis to increase the expression of NOX2 and p47phox

to improve the ability of macrophages to produce ROS. In these cells, the resulting induction
of the metabolic switch from oxidative phosphorylation to glycolysis results in an increase
in NADPH levels, the major electron donor for NOX2 activity, also suggesting the activation
of PPP [72].
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NOX2 is the primary source of superoxide in primary acute myeloid leukemia (AML)
cells. In these cells NOX2-dependent ROS generation promotes an increase in the uncou-
pling protein 2 (UCP2) and phosphorylation of AMPK, thus upregulating the expression
of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), a key regulatory gly-
colytic enzyme. Overexpression of PFKFB3 promotes glucose uptake and cell proliferation,
whereas downregulation of PFKFB3 strongly suppresses leukemia growth both in vitro
and in vivo [62].

In AML patient blasts, NOX2-derived ROS are also implicated in sphingolipid metabolism,
fatty acid oxidation (FAO), purine metabolism, and amino acid homeostasis. In fact, the
blocking of NOX2 functions results in an alteration of sphingosine and sphinganine levels,
as well as in the inhibition of the transport of FAO. The inhibition or silencing of NOX2
results in the alteration of purine metabolism and amino acid homeostasis [63].

Cytosolic subunits of NOX2 constitute a complex with the phosphorylated form of 6-
phosphofructo-2-kinase (PFK-2), in stimulated neutrophils. Phospho-PFK-2 catalyzes
the production of fructose-2,6-bisphosphate, which is the main allosteric activator of
phosphofructo-1-kinase, the limiting enzyme in glycolysis. The silencing or pharmacologi-
cal inhibition of PFK-2 results in a significant reduction of NOX2 activity in neutrophils and,
consequently, of the glycolytic rate. Therefore, modulation of NOX2 activity in neutrophils
affects the glycolysis rate, highlighting the role of NOX2 in supporting the increase in
energy metabolism, not only that of ROS production [65].

5. NOX4

NOX4 is considered the most evolutionarily distant NOX homolog sharing only
39% of homology with NOX2 [54]. NOX4 shows four splice variants and its functional
expression, as well as its physiopathological role, has been described in several tissues and
cell types [73–82].

ROS-generation by NOX4 depends on its interaction with p22phox, but does not re-
quire the recruitment of cytosolic subunits and Rac [83]. Therefore, NOX4 is considered
a constitutively active enzyme, mainly regulated at the transcriptional/translational lev-
els [84]. NOX4 expression is upregulated in oxidative injury [85] and upon TGF-β1 [86],
TNF-α [87], and angiotensin-II [88] stimulation. NOX4-mediated ROS production can be
induced by hypoxia [89] and by stimulation with lipopolysaccharide [90], insulin [91], and
angiotensin [92].

NOX4 is localized in mitochondria [93], endoplasmic reticulum (ER) [94], focal ad-
hesion [95], nuclei [96], and it is associated with actin network [97]. Coherently with its
pleiotropic localization, NOX4 is involved in the regulation of ER stress, DNA damage, the
modification of extra cellular matrix (ECM), and mitochondrial ROS (mtROS) production,
as well as cell tonicity and motility [18]. NOX4-derived ROS control a variety of cellular pro-
cesses linked to cell proliferation, migration, survival, transformation, cell metabolism, and
metabolic reprogramming (Figure 3) in different physiopathological processes in several
tissues and cell types (Table 3).

NOX4 directs glucose metabolism not only toward glycolysis but also to PPP for the
production of NADPH in non-small cell lung cancer (NSCLC) cells. NOX4 also supports
glutamine metabolism for GSH production via ROS/PI3K/Akt signaling, thus contributing
to the oxidative adaption of these cells [98]. NOX4 silencing significantly reduces GLUT1,
LDHA, and PKM2 expression, and NOX4-deficient cells display an impaired glycolytic
phenotype characterized by decreased ATP production, glucose consumption, lactate
production, and NADPH generation [98].
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Similarly to NOX2, NOX4-derived ROS are involved in HIFα activation. In glioblas-
toma, the aberrant NOX4-dependent ROS generation affects the regulation of FOXM1 by
mediating HIF1α stabilization. Overexpression of NOX4 or FOXM1 promotes aerobic
glycolysis, whereas the knockdown of NOX4 or FOXM1 significantly suppresses aero-
bic glycolysis [99]. TGF-β1 mediates NOX4 upregulation that, in turn, promotes ROS
generation, growth, survival, hypoxia, and the angiogenesis of glioblastoma [100,101].
TGF-β1 is also required for the NOX4-dependent stabilization of HIF1α and of its nuclear
accumulation, which results in metabolic reprogramming and in promoting the epithelial
mesenchymal transition (EMT) of glioblastoma. TGF-β1 stimulation induces glycolysis
and reduces mitochondrial respiratory capacity by increasing the protein expression levels
of GLUT1, hexokinase-2 (HK2), LDHA, and PDK1 [102].

NOX4-dependent HIFα stabilization is also observed in human neuroblastoma SH-
SY5Y cells, in which NOX4 expression is upregulated under hypoxic conditions. NOX4
knockdown inhibits glycolysis induced by hypoxia by preventing the activation of HIFα,
the expression of glycolysis-related proteins (LDHA, and PDK1), as well as glucose uptake,
lactate production, and ROS production [103]. Interestingly, in NOX4 knockout cancer
cells, the expression of HIF1α-targeting genes, such as SLC2A1, encoding a glucose trans-
porter, is prevented, thereby supporting the relevant role of NOX4-mediated metabolic
reprogramming [104].

NOX4 is overexpressed also in other cancer cells and tissues, including renal carci-
noma cells [93]. In these cells, NOX4 localizes to the inner mitochondrial membrane and
is allosterically regulated by adenosine triphosphate (ATP) levels, thus contributing to
metabolic reprogramming [93]. During aerobic glycolysis, the depletion of mitochondrial
ATP activates NOX4 activity that triggers an increase in mitochondrial ROS (mtROS).
NOX4-mediated metabolic reprogramming including an increase in PKM2 expression,
proving that NOX4 plays the key role of mitochondrial energetic sensor and fulfils the
function of metabolic checkpoint, coupling the metabolic switch to cancer cell survival [93].
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Table 3. NOX4 implication in cell metabolism regulation.

Cell Type/Tissue Biological Effect Cellular Effects References

Non small lung cancer
GLUT1 expression ↑
LDHA expression ↑
PKM2 expression ↑

Glucose metabolism ↑
Glycolysis ↑
PPP ↑
Glutamine ↑
GSH production ↑

[98]

Glioblastoma specimens
NOX4 expression ↑
FOXM1 ↑
HIF1α ↑

Aerobic glycolysis ↑ [99]

Glioblastoma

GLUT1 ↑
HK2 expression ↑
LDHA expression ↑
PDK1 expression ↑

Survival ↑
Glycolysis ↑
EMT ↑
Proliferation ↑
Infiltration ↑

[102,105]

Neuroblastoma cell

NOX4 expression ↑
HIF1α ↑
LDHA expression ↑
PDK1 expression ↑
Glucose uptake ↑
Ki-67 expression ↑
PCNA expression ↑

Glycolysis ↑
Cell growth [103]

Papillary thyroid cancer
mtROS generation ↑
HIF1α ↑
SLC2A1 ↑

Metabolic reprogramming
Glycolysis ↑ [104]

Renal Carcinoma tissue and cells
NOX4 expression ↑
PKM2 expression ↑
mtROS ↑

Metabolic reprogramming
Aerobic glycolysis ↑ [93]

Prostate cancer patients and cells NOX4 expression ↑ Glycolysis ↑ [106]

Human aortic ECs
NOX4 expression↑
HIF1α ↑
PDK1 expression ↑

Glycolysis ↑
Hexosamine biosynthesis ↑
FAO ↑
Mitochondrial respiration ↓
Metabolic reprogramming

[107,108]

Cerebellar granule neuron
precursors (CGNPs)

NOX4 expression↑
HIF1α ↑
Cyclin D2 expression ↑

Glycolysis ↑
Proliferation ↑ [109]

Neutrophil [Lactate] ↑
PKM2 expression ↑

Glycolysis ↑
Warburg effect [110]

GLUT1: glucose transporter 1; LDHA: lactate dehydrogenase A; PKM2: pyruvate kinase M2; PPP: pentose
phosphate pathway; GSH: glutathione; FOXM1: Forkhead box M1; HIF1α: Hypoxic Inducible Factor 1 α; HK2:
Hexokinase II; PDK1: pyruvate dehydrogenase kinase-1; EMT: Epithelial Mesenchymal Transition; mtROS:
mitochondrial ROS.

In the heart, NOX4 plays a protective role in the cardiac response to load-induced stress,
involving an enhancement of myocardial capillary density and functional cardiac compen-
sation. The molecular mechanism underlying the proangiogenic role of NOX4 includes
NOX4-dependent ROS generation that, in turn, leads to enhanced HIF1 activation and an
increased release of VEGF, which promotes capillarization [108]. NOX4-overexpression
also promotes the metabolic reprogramming of glucose and fatty acid metabolism, by
enhancing the activity of hexosamine biosynthetic pathways, reducing glucose oxidation
by TCA cycle and increasing fatty acid oxidation, thus facilitating cardiac adaptation to
chronic stress [108].

In physiopathological processes, such as the regulation of vascular functions, NOX4-
derived ROS regulate HIF1α stabilization [111]. In endothelial cells, HIF1 induces an
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increase in the expression of glycolytic enzymes and of PDK1, which reduces mitochondrial
respiratory capacity. Therefore, NOX4-derived ROS dynamically regulate endothelial
metabolic plasticity and, consequently, endothelial activation and vascular health [107].

Cerebellar development is another physiological process in which NOX4 plays a
crucial role. Here, NOX4-derived ROS promote HIF1α stabilization that, in turn, triggers
the transcription of target genes related with a glycolytic phenotype. In cerebellar granule
neuron precursors, NOX4-mediated HIF1α activation is also involved in the regulation of
cell proliferation, by promoting cyclin D2 accumulation [109].

Neutrophil extracellular traps (NETs) play a crucial role in the physiological innate
immune defense. NETosis induces a marked NOX4-dependent increase in ECAR, LDH
activity, PKM2 dimerization, and a reduction in PKM2 activity, promoting lactate formation
through the Warburg effect [110].

6. Modulation of NOX Family Expression as Therapeutic Target to Control
Cell Metabolism

NOX-dependent ROS generation plays a significant role in the development of several
malignancies, pathologies, and disease [112,113]. However, many studies have described the
involvement of NOXs in the modulation of cell metabolism in several experimental systems.

Therapeutic approaches based on the application of generic antioxidant molecules
in human trials have attracted much attention, but specific pharmacological strategies
that selectively target oxidative pathways are still lacking [114]. Therefore, since NOX
homologs are mainly regulated by enhanced expression and/or activation mechanisms,
modulation of NOXs expression, as well as their activity, are considered new promising
therapeutic approaches. For instance, NOX suppression by chemical inhibition or genetic
silencing impacts on cancer cells leading to a decrease in glycolysis, a loss of cell viability,
and an inhibition of cancer growth in vivo [31]. Consistently, mice deficient in NOX2
(NOX2KO) show a smaller visceral adipose deposit, attenuated visceral adipocyte hyper-
trophy, and diminished visceral adipose macrophage infiltration compared with wild-type
mice. In NOX2KO mice, the glucose regulation was improved and detrimental effects were
attenuated, in response to a high fat diet [115].

The therapeutic role of different miRNAs in the regulation of NOX expression has been
explored in several studies. For instance, miR-146a shows a full alignment of 11-nucletide
within the 3′-UTR of the human NOX4 and attenuates upregulation of NOX4 expres-
sion induced by glucose or thrombin in a diabetic atherothrombosis mouse model [116].
Similarly, miR-25 shows a 7-nucleotide match within 3′-UTR of NOX4 [117]. In high
glucose-treated glomerular mesangial cells, the decreased level of miR-25 correlates with
increased NOX4 expression [117]. NOX4 is also a direct target of miR-423-5p, both in vitro
and in vivo, and the reduced expression levels of miR-423-5p correlates with enhanced
NOX4 expression [118].

Further therapeutic approaches with miRNAs are based on the targeting of the cytoso-
lic regulatory subunits of NOXs. For instance, miR-126 overexpression decreased NOX2
activation by reducing the expression of p67phox and Rac family small GTPase 1 [119].

Currently, no FDA-approved miRNA-related drugs are available. The main limitation
of this therapeutic approach is selectivity in targeting a NOX isoform in a specific single cell
and/or tissue in a controlled manner. To date, the majority of miRNA-based therapeutic
approaches have been focused on NOX4 modulation. Therefore, further studies are required
to identify new miRNAs able to selectively modulate the other NOX homologs.

In conclusion, the interplay of NOX-modulated redox signaling pathways associated
with metabolism is novel and is still far from being fully elucidated. Therefore, a better
understanding of how NOX enzymes drive these complex adaptive responses will pro-
vide new mechanistic insights into metabolic reprogramming that may contribute to the
development of new molecular and more selective therapeutic strategies.
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