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Abstract: The discovery and advances of medicines may be considered as the ultimate relevant trans-
lational science effort that adds to human invulnerability and happiness. But advancing a fresh
medication is a quite convoluted, costly, and protracted operation, normally costing USD ~2.6 billion
and consuming a mean time span of 12 years. Methods to cut back expenditure and hasten new drug
discovery have prompted an arduous and compelling brainstorming exercise in the pharmaceutical
industry. The engagement of Artificial Intelligence (AI), including the deep-learning (DL) component
in particular, has been facilitated by the employment of classified big data, in concert with strikingly re-
inforced computing prowess and cloud storage, across all fields. AI has energized computer-facilitated
drug discovery. An unrestricted espousing of machine learning (ML), especially DL, in many scientific
specialties, and the technological refinements in computing hardware and software, in concert with
various aspects of the problem, sustain this progress. ML algorithms have been extensively engaged
for computer-facilitated drug discovery. DL methods, such as artificial neural networks (ANNs) com-
prising multiple buried processing layers, have of late seen a resurgence due to their capability to
power automatic attribute elicitations from the input data, coupled with their ability to obtain nonlinear
input-output pertinencies. Such features of DL methods augment classical ML techniques which bank
on human-contrived molecular descriptors. A major part of the early reluctance concerning utility of AI
in pharmaceutical discovery has begun to melt, thereby advancing medicinal chemistry. AI, along with
modern experimental technical knowledge, is anticipated to invigorate the quest for new and improved
pharmaceuticals in an expeditious, economical, and increasingly compelling manner. DL-facilitated
methods have just initiated kickstarting for some integral issues in drug discovery. Many technological
advances, such as “message-passing paradigms”, “spatial-symmetry-preserving networks”, “hybrid de
novo design”, and other ingenious ML exemplars, will definitely come to be pervasively widespread
and help dissect many of the biggest, and most intriguing inquiries. Open data allocation and model
augmentation will exert a decisive hold during the progress of drug discovery employing AI. This
review will address the impending utilizations of AI to refine and bolster the drug discovery operation.

Keywords: artificial intelligence; machine learning; drug discovery; virtual screening; QSAR; QSPR;
algorithms; neural networks

Int. J. Mol. Sci. 2023, 24, 2026. https://doi.org/10.3390/ijms24032026 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032026
https://doi.org/10.3390/ijms24032026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3222-2527
https://orcid.org/0000-0003-4366-8126
https://doi.org/10.3390/ijms24032026
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032026?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2026 2 of 40

1. Introduction

The course of research and development of drugs is comprised of drug target recogni-
tion, target authentication, hit-to-lead fructification, lead refinement, preclinical molecule
determination, and preclinical evaluation, as well as clinical testing. To advance a new
prescription drug to market, the mean pretax spending is almost USD 2.6 billion [1], requir-
ing roughly 10–15 years [2]. However, considering the huge financial stakes, the predicted
clinical approval realization frequency for novel small agents during the course of discovery
and development of drugs is a meagre 13%, with a rather steep possibility of ultimate
non-fruition. The advance of computer-enabled drug design technology has been hailed
as the most resourceful method for altering this bleak scenario dependent upon prudent
navigation in the development process [3]. The methodology pertinent to drug discovery
as well as the associated computer-enabled drug design approaches can be located in
the treatise “Computer-Assisted Drug Design” [4]. The computational approaches assure
a methodical appraisal of the molecular attributes (such as physicochemical properties,
selectivity, side effects, bioactivity, and pharmacokinetic parameters) at the speculative
level, in concert with engendering optimized molecules having agreeable attributes in silico.
Moreover, computational approaches with multi-objective refinement can be engaged to
reduce the failure frequency of the preclinical lead molecules. In the vista of drug design,
artificial intelligence (AI) invokes the use of computer software programs that evaluate,
learn, and reveal pharmaceutical-associated big data to unravel new medicine molecules,
by assimilating the advances in machine learning (ML) in a highly unified and mecha-
nized way [5]. Stemming out from the advancement of ML schemes and the growth of
chemical and pharmacological information, the AI paradigms have carved out a niche in
the arena of drug design for a data-impelled computational process. In comparison with
conventional approaches, ML-facilitated approaches, as an offshoot of AI, do not bank
upon the theoretical progress of the convoluted and established physico-chemical tenets,
but apportion greater emphasis on the metamorphosis of colossal biomedical big data
into new enlightenment and sustainable expertise (Figure 1). Typical algorithms synony-
mous with ML include: Logistic Regression (LR), Naive Bayesian Classification (NBC),
k Nearest Neighbor (KNN), Multiple Linear Regression (MLR), Support Vector Machine
(SVM), Probabilistic Neural Network (PNN), Binary Kernel Discrimination (BKD), Linear
Discriminant Analysis (LDA), Random Forest (RF), Artificial Neural Network (ANN),
Partial Least-Squares (PLS), Principal Component Analysis (PCA), and the like [6,7]. In
current times, AI technologies, specifically the Deep Learning (DL) paradigms, exhibit
tremendous promise in designing drugs, due to their impressive generalization and fea-
ture extrication power. Conventional ML approaches employ manually crafted attributes,
while the DL approaches can learn features from the input information in an automated
fashion, leading to reorganization of simple attributes into convoluted characteristics via
multi-layer attribute extrication (Figure 1). Moreover, the DL approaches commonly exhibit
less generalization errors than the conventional ML techniques, which facilitates them in
obtaining more beneficial outputs on some criterion or competitive assessments. As an
instance, George Dahl’s team claimed the Merck Molecular Activity Challenge through
implementing the AI technology, specifically the DL algorithms [8]. Owing to the afore-
mentioned conveniences, the DL technique as a data mining approach has demonstrated
huge prospects in the drug-designing arena. The DL paradigms are generally comprised of
Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Neural Networks
(RNN), autoencoders, and Restricted Boltzmann Machines (RBN). A brisk critique of DL
algorithms can be located somewhere else [9–11], with a more comprehensive preface to
DL methodologies in the treatise “Deep Learning” [12]. This review acquaints the reader
with the AI models related to the arena of drug design, and provides an exclusive spotlight
on the implementation of DL algorithms in new drug discovery and development. The
drug discovery, drug design topics and AI approaches are summarized in Figures 2 and 3.
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Figure 1. Conceptual Interrelationships between Artificial Intelligence(AI), Machine Learning(ML),
& Deep Learning(DL) for drug development.

Figure 2. A Summarized Notion of AI & ML Tools engaged in Drug Discovery & Development.
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Figure 3. Links between AI, ML & DL for drug development.

Also, this review familiarizes ML blueprints linked to drug design schemes, including
approaches for the molecular depiction, transfer learning for low data, cross-validation
strategy and dexterity of training the deep neural networks (DNNs). Lastly, this review en-
capsulates the utilities of AI in the arena of drug design and provides a futuristic panorama
of the outlook of AI in drug discovery and advancement.

1.1. Artificial Intelligence: Facts to Ponder

The last several years have witnessed a radical data digitalization escalation in the
pharmaceutical arena. But such digitalization has arrived in response to the demand
of amassing, investigating, and engaging that expertise to dissect convoluted clinical
issues [13]. This encourages the utilization of AI, as it can process huge quantities of data
with augmented mechanization [14]. AI follows a technology-enabled approach invoking
multiple cutting-edge tools and networks simulating human intelligence. At the same time,
it does not prompt fears of superseding human physical existence, altogether [15,16]. AI
exploits software and systems which are enabled to decipher and then trained by input
data to arrive at autonomous outcomes for realizing definite aims. As pointed out in this
review, its utilization has seen a progressive augmentation in the pharmaceutical sector. As
per the McKinsey Global Institute, the swift progression in AI-directed mechanization will
probably be thoroughly altering the societal work culture [17,18].

1.2. AI: Networks and Tools

AI engages various method domains, like knowledge depiction, solution exploration,
deduction, and amidst them, is itself an axiomatic exemplar of ML. ML utilizes algorithmic
logic capable of detecting trends in a cluster of data which can be further categorized.
An entity of ML is deep learning (DL), which invokes artificial neural networks (ANNs).
These networks involve a group of intercommunicating refined computing components
engaging ‘perceptrons’, comparable to neurons in human nervous tissue, and simulating
the transmittal of electrical excitations within the human CNS [19]. ANNs comprise a group
of nodes, with individual nodes accepting a distinct input, and finally transforming inputs
to output, either singly or multilinked, utilizing algorithms to decode problems [20]. ANNs
comprise many varieties, like multilayer perceptron (MLP) networks, recurrent neural
networks (RNNs), and convolutional neural networks (CNNs), engaging either supervised
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or unsupervised training operations [21,22]. Such MLP networks have utilities inclusive of
pattern detection, optimization facilities, process determination, and controls that are gener-
ally trained using supervised training algorithms functioning unidirectionally, and may be
utilized as universal pattern classifiers (UPCs) [23]. RNNs are network systems possessing
a closed loop, having the power to cram and hoard data, like Boltzmann constants as well
as Hopfield networks [23,24]. CNNs are an array of dynamic mechanisms engaging local
connections, each determined by its topological architecture, with utilities in image and
video signal refinement, biological system simulation, handling complex central neuronal
activities, pattern appreciation, and refined signal processing [25]. The highly convoluted
schemes comprise Kohonen networks, Radial Basis Function (RBF) networks, Learning
Vector Quantization (LVQ) networks, counter-propagation networks (CPNs), and Adaptive
Linear Neuron or later Adaptive Linear Element (ADALINE) networks [21,23]. Instances
of AI-based method domains are depicted in Figure 2. Various algorithms have been
crafted depending upon the interconnections that constitute the fundamental framework
of AI paradigms. An instance of this advanced tool employing AI scheme is the Watson
supercomputer by International Business Machines (IBM) (IBM, New York, NY, USA).
This computing infrastructure was devised to support the scrutiny of a patient’s clinical
data and its interrelationships against a mammoth database, culminating in determining
intervention modalities for cancer. Such a facility may in addition be also utilized for the
swift revelation of afflictions. Its utility was established by its power to identify breast
cancer within 60 s [26,27].

2. Futuristic Applications of AI in Drug Design

Drug designing and development is an important area of research for pharmaceuti-
cal companies and chemical scientists. In order for a molecule to have any potential as
a drug target it must be “druggable”. In the post-genomic era, drug discovery has shifted
towards applying new design principles to molecules or new strategies to bind, modulate,
or degrade challenging biological targets for future innovative medicines. Traditionally,
the pharmaceutical industry has been focusing on developing orally bioavailable small
molecules with established targets (druggable targets). Based on the physicochemical
profiles of Phase II drugs, Lipinski’s Rule of Five (Ro5) was developed in 1997. Ro5 predicts
that poor absorption or permeation is more likely when there are more than five hydrogen-
bond donors (HBD > 5), more than ten hydrogen-bond acceptors (HBA > 10), the molecular
weight is greater than 500 Da (MW > 500), and the calculated Log P is greater than five
(cLogP > 5). Since then, Ro5 has served as a guide for designing developable molecules
during drug discovery. While the efforts to discover small molecule Ro5 compounds that
interact with established “druggable” targets have been productive, there is an increased
demand for innovation to engage newer targets for transformative medicines. As a result,
identification and validation of novel biological targets have become a key focus in the
early stages of drug discovery. Molecular modalities beyond bRo5, small molecules via
nontraditional modes of action (e.g., protein–protein interaction or PPI modulators) include
bifunctional bRo5 small molecules (e.g., protein-targeted chimeras or PROTACs), pep-
tides/peptidomimetics, and oligonucleotides (ONs). Carbohydrate-based drug discovery
is an up-and-coming area of research in medicinal chemistry. Bioactive carbohydrates
have opened up a new source for drug development. More than 170 carbohydrate-based
drugs have been successfully approved as anticoagulants, antitumor agents, antidiabetic
agents, antibiotics, antiviral agents, and vaccines. However, most carbohydrates have low
druggability. New methods and strategies to improve carbohydrates’ druggability are in
high demand. Lipids are essential for life. They store energy, constitute cellular membranes,
serve as signaling molecules, and modify proteins. In the long history of lipid research,
many drugs targeting lipid receptors and enzymes that are responsible for lipid metabolism
and function have been developed and applied to a variety of diseases. Lipid signaling
pathways (prostanoids, leukotrienes, epoxy fatty acids, sphingolipids, lysophospholipids,
endocannabinoids, and phosphoinositides) and lipid signaling proteins (lysophospholipid
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acyltransferases, phosphoinositide 3-kinase, and G protein-coupled receptors (GPCRs) offer
a wide array of druggable targets. However, the vast majority of the targets of approved
drugs are proteins. A druggable protein is one that possesses folds that favor interactions
with small drug-like molecules, be they endogenous or extraneous, and therefore is one
that contains a binding site. These binding sites are expected to have certain attributes that
enable high affinity site-specific binding with the drug-like molecule. As with all drug
targets, a potential protein drug target must be linked to a disease process. Currently, there
is a lack of knowledge about both the number of proteins that modern pharmaceuticals
act upon and the number of potentially druggable proteins. The development of efficient
and advanced systems for the targeted delivery of therapeutic agents with maximum
efficiency and minimum risks has imposed a great challenge upon chemical and biological
scientists. Researchers across the globe engage in traditional computational approaches like
virtual screening (VS) and molecular docking to identify and characterize protein–protein
as well as drug–protein interactions. But these approaches are imprecise and inaccurate. In
addition, complex and big data from genomics, proteomics, microarray data, and clinical
trials also impose an impediment in the drug discovery pipeline. AI and ML technology
are innovative approaches that play a crucial role in drug discovery and development. This
section of the review article provides crucial insights about how artificial neural networks
(ANNs) and deep learning (DL) algorithms have modernized the techniques of elucidating
the structure and function of proteins, unravelling hits, hit-to-lead optimization algorithmic
schemes, and in silico evaluation of ADME/T properties. ML and DL algorithms have been
implemented in several drug discovery processes such as peptide synthesis, structure-based
virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and
release, pharmacophore modelling, quantitative structure–activity relationship (QSAR),
drug repositioning, poly-pharmacology, and physico-chemical activity. Evidence from
the past strengthens the implementation of AI and DL in this field. Moreover, novel data
mining, curation, and management techniques provide critical support to recently devel-
oped modelling algorithms. In summary, AI and DL advancements provide an excellent
opportunity for a rational drug design and discovery process, one which will eventually
impact mankind.

2.1. The Structure and Function of Proteins
2.1.1. Prognostication of Protein Folding from Sequence (Predicting the 3D Structure of
a Target Protein)

Most diseases are linked to dysfunctional proteins. By scrutinizing protein archi-
tectures, the structure-based drug design blueprints can be employed to originate the
active small compounds for the protein targets. But computing the three-dimensional
(3D) architectures of the proteins would currently require a huge amount of time and
finances, so it is beneficial to craft software codes to foretell the 3D architecture of a protein.
Though the sequence data of almost all proteins is accessible, it is still not possible to
deduce precise de novo presaging of their 3D architectures. Of late, due to the impressive
power of attribute extrication, DL approaches continue to be implemented to foretell the
secondary structure [28], backbone torsion angle [29] and residue contacts of proteins [30].
To cite an example, the DL approach capable of amalgamating one-dimensional (1D) with
two-dimensional (2D) “Combinatorial Neural Network (CNN)” to foretell the residue
contacts defeated other approaches in “12th Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction (CASP12)” [30,31]. The archi-
tecture of DL may flawlessly learn the linkages among the sequence and the structure via
attribute extraction. At present, accurately foretelling 3D architectures of proteins is still
an unrealized goal. Hence, the DL approach has demonstrated tremendous potential in
advancing the development in this arena.
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2.1.2. Prognostication of Protein–Protein Interactions

The protein–protein interactions (PPIs) are vital for various biological systems and
may be associated with many disorders [32,33]. A PPIs database, viz., the “Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING)” database, hoards close to 1.4 billion
PPIs imported from both experimental as well as bioinformatics schemes via literature
curation [34]. Moreover, STRING also hoards computationally presaged interactions
culled from:

(a) text mining of scientific documents,
(b) interactions estimated from genomic attributes, and
(c) interactions conveyed from model organisms, depending upon orthology.

All approximated/imported interactions are gauged against a common reference
of functional association as commentated by the “Kyoto Encyclopedia of Genes and
Genomes (KEGG)”.

The PPI interface is represented as the protein–protein association loci made up of
multiple residues [35]. It has the potential to usher in a new group of drug targets that are
in contrast to the conventional drug targets like ion channels, G-protein coupled receptors
(GPCRs), kinases, and nuclear receptors [36,37]. To explain, there exist 1756 non-peptide
inhibitors across 18 families of PPIs recorded in the “inhibitors of protein–protein Database
(iPPI-DB)” [38]. Being a fresh group of targets, PPIs will expand the target space and
boost the advancement of the small molecule compounds [39]. In contrast to conventional
approaches, targeting PPIs may lessen the adverse effects as it enhances the biological
specificity of regulatory actions [40]. For example, compound DC_AC50 can block copper
ion movement inside cells by associating with the copper-transfer mechanisms, and curb
tumor cell multiplication selectively without concomitantly interfering with the usual
somatic cell durability [41].

To accomplish the concept of drug design dependent upon the architecture of the
protein–protein complex, it is imperative to scrutinize the PPI interface. Regrettably,
in a great many instances, the precise PPI information is scant [42], thereby spawning
a multitude of computational schemes for foretelling the PPI interface. The approach relying
on the template is straightforward and highly dependable due to the attribute preservation
of PPI interfaces [43]. To cite an exemplar, “eFindSite” [44], a web server for PPI interfaces
forecasting, engages template-dependent, residue-dependent, and sequence-dependent
determinants to promote “Support Vector Machine (SVM)”, and “Naïve Bayes Classifiers
(NBC)” paradigms. According to the doctrine of complementarity, the protein–protein
docking processes (e.g., “ZDOCK” [45] and “SymmDock” [46]) can be utilized to foretell
the PPI interface when the architecture of two interactive proteins is accessible [47]. Of
these approaches, the vexing problem is how to foretell the conformational shifts when
two unassociated proteins combine with each other. DL approaches can extricate the most
pertinent sequence attributes to presage PPI interfaces, which exemplifies a noticeable
enhancement in comparison to other ML technologies like SVM [48].

Taking note of the sizable buried surface area region (1500–3000 Å2) of the interface [33],
it is imperative to hunt for the druggable locales or regions on the interface. Detectable hot
spots could possibly represent the druggable loci since it furnishes a sizable quantum of
binding free energy [35]. “Fragment Docking and Direct Coupling Analysis (FD-DCA)”
has been engaged to identify the druggable PPI loci [49]. Researchers initially devised
a fragment docking package named “iFitDock”, that could be utilized to scout for the drug-
gable hot spots residing in PPI interfaces. Consequently, the small hot spots were bundled
to establish candidate binding loci. Ultimately, the scoring function dependent upon the
evolutionary conservative level was engaged to identify the optimized protein–protein
binding locales. Collectively, the hot spots residing in the PPI interface have turned out
to be encouraging drug targets and it is worthwhile to evolve computational avenues for
determining the hot spots and crafting small modulators aiming at PPI interfaces.
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2.1.3. Prognosticating Drug–Protein Interactions

Drug–protein interactions (DPIs) play a crucial part in the success of a therapeutic
entity. The prognostication of a drug–receptor or a drug–protein association is imperative
to comprehend its effectiveness and success, enabling drug repurposing, and thwarts
poly-pharmacology [50]. A multitude of AI approaches have been beneficial in the precise
prognostication of ligand–protein interactions assuring augmented therapeutic effective-
ness [50–54]. A description of a model utilizing the SVM method, incorporating training on
about 15,000 protein–ligand interactions, that have been advanced grounded upon primary
protein sequences as well as structural features of small compounds to identify nine fresh
molecules and their interaction with four vital targets have been documented [55].

A research group took advantage of two RF paradigms to presage achievable DPIs due
to the amalgamation of pharmacological as well as chemical information and corroborating
them against familiar algorithms, like SVM, with great sensitivity and specificity. Moreover,
such approaches were adept at presaging drug–target interactions which may be further
widened to capture target–disease as well as target–target interactions, hence hastening
the drug discovery mechanism [56]. Espousing the “Synthetic Minority Over-Sampling
Technique (SMOST)” and the “Neighborhood Cleaning Rule (NCR)” to gather refined
data for the ensuing advancement of iDrugTarget has also been documented. This is
a merger of four subpredictors (iDrug-Chl, iDrug-Enz, iDrug-GPCR, and iDrug-NR) for
determining associations among a drug and ion channels, enzymes, G-protein-coupled
receptors (GPCRs), and nuclear receptors (NR), respectively. Upon correlation with extant
predictors via target-jackknife tests, the earlier technique outperformed the latter with
respect to both forecast precision and consistency [57].

The power of AI to foretell drug–target associations has also been employed to boost the
repurposing of available drugs and obviating poly-pharmacology. Repurposing an already
available drug entitles it undeviatingly for Phase II clinical trials [58]. Such strategies
curtail financial outlay, as reintroducing an already-available drug costs USD ~8.4 million
in comparison with the introduction of a fresh drug entity (USD ~41.3 million) [59]. The
‘Guilt by association’ method may be engaged to foretell the ingenuous interaction between
a drug and disease, that is either a knowledge-based or computationally guided interactive
grid [60]. For computationally impelled networks, the ML method is extensively employed,
which engages methods like SVM, NN, and logistic regression, as well as DL. Algorithms
based on logistic regression, like “PREDICT”, “SPACE”, as well as other ML techniques,
take into consideration disease-to-disease and drug-to-drug resemblance, the comparability
among target compounds, chemical architecture, and gene expression summary at the time
of drug repurposing [61].

Cellular network-guided DL technology (“deepDTnet”) has been scrutinized to foretell
the therapeutic utility of topotecan, presently utilized as a topoisomerase blocker. This
could additionally be employed as the treatment for multiple sclerosis by causing blockade
of human retinoic acid receptor-associated orphan receptor-gamma t (ROR-γt) [62]. This
package is presently covered by a temporary US patent. Self-Organizing Maps (SOMs)
constitute the unsupervised subdivision of ML and are utilized in drug repurposing.
SOMs engage a ligand-dependent pathway to determine novel off-targets for a group
of drug compounds by training the algorithm on a designated count of molecules with
perceived biological actions, that is subsequently utilized for the investigation of various
agents [63]. In contemporary practice, Deep Neural Networks (DNN) have been engaged to
repurpose extant drugs with established actions towards influenza virus, SARS-CoV, HIV,
and drugs which happen to be 3C-like protease blockers. For this, Extended Connectivity
FingerPrint (ECFP), Functional-Class Finger-Prints (FCFPs), and a Ghose-Crippen octanol-
water partition coefficient (ALogP_- count)” were contemplated to train the AI algorithm.
As per the results, it was determined that 13 of the molecules subjected to screening
could be advanced for further advancement depending on their cellular toxicity and viral
blockade activities [64].
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Drug–protein associations may also foretell the probability of poly-pharmacology,
referring to the proclivity of a drug compound to bind with various receptors resulting
in off-target adverse actions [65]. AI can craft a new compound based on the philosophy
of poly-pharmacology and facilitate the origination of safer drug compounds [66]. AI
algorithms like SOM, in concert with the enormous databases accessible, may be engaged
to connect multiple molecules to many targets and off-targets. Bayesian classifiers and
Schoof–Elkies–Atkin (SEA) algorithms could be utilized to provide connections betwixt the
pharmacological attributes of drugs and their feasible targets [63].

A research group determined the utility of “KinomeX”, an AI-enabled online algorith-
mic tool engaging DNNs for the identification of poly-pharmacology of kinases depending
on their chemical architectures. This package utilizes DNN trained with ~14,000 bioactivity
data points advanced and optimized from > 300 kinases. Hence, this has pragmatic per-
tinence in analyzing the overall specificity of an agent for the kinase family and certain
subfamilies of kinases, hence facilitating in scheming novel chemical alterants. This re-
search group employed NVP-BHG712 as a prototype molecule to foretell its primary
targets and in addition its off-targets with justifiable precision [67]. One obvious exem-
plar is Cyclica’s proteome-screening AI scheme that is cloud-based, christened “Ligand
Express”. It can be employed to identify receptors that can associate with a specific small
compound (the molecular attributes of which is contained in SMILE string) and yield on-
and off-target associations. This aids in comprehending the probable adverse actions of the
medicinal molecule [68].

2.1.4. De Novo Drug Design

During the last several years, the de novo drug design method has been extensively
employed to craft drug compounds. The conventional approach to de novo drug design
has been substituted for by emerging DL paradigms, the earlier one having drawbacks
of convoluted synthesis pathways and bothersome augury of the biological effects of the
innovated compounds [69]. Computer-guided compound crafting may also offer millions
of chemical architectures which could be originated and in addition presage multiple
variable pathways for them [70].

Origination and advancement of the “Chematica program” [71], now renamed “Syn-
thia,” has the capacity to cipher a group of axioms into the machine and recommend
feasible synthesizing pathways in respect of eight medicinally indispensible targets. Syn-
thia has confirmed efficiency from the point of view of bettering the harvest and cur-
tailing the expenditure. The program is well-suited to catering to substitute synthesiz-
ing blueprints for patented items and is conceived to be beneficial in the generation of
molecules that are yet to be originated. From an analogous context, DNN emphasizes
upon edicts of organic chemistry as well as retrosynthesis, which, along with the help of
“Monte-Carlo Tree Searches (MCTS)” and symbolic AI, assist in reaction forecasting and
the mechanism of design and unravelling of drugs, that is much more nimble compared to
conventional approaches [72,73].

A research group refined a framework where an inflexible forward reaction blueprint
was practiced on a set of reactants to generate chemically achievable products having
a convincing reaction rate. ML was utilized to analyze the principal product depending
upon a score provided by the NNs [74]. A DNN framework termed the “Reinforced
Adversarial Neural Computer (RANC)” based on Reinforcement Learning (RL) was utilized
for small organic molecule de novo design. This system underwent training with compounds
characterized as SMILES strings. This then originated compounds with preordained
chemical descriptors with respect to MW, logP, and Topological Polar Surface Area (TPSA).
RANC was probed against one different platform, ORGANIC, where RANC performed
better in originating unique structures free from notable attenuation of the length of
their structure [75].

RNN was also dependent upon the “Long Short-Term Memory (LSTM)” associated
with compounds garnered from the ChEMBL database and introduced as SMILES strings.
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Such a module was engaged to originate a varied library of compounds for Virtual Screen-
ing (VS). Such a method was targeted to solicit innovative compounds for a specific target,
like 5-HT2A receptor, Staphylococcus aureus, as well as Plasmodium falciparum target sites [76].

The Reinforcement Learning for Structural Evolution (RLSE) program dealing with
de novo drug synthesis by engaging generative as well as predictive DNNs to evolve fresh
molecules has been documented. For this, the generative paradigm delivers more exclusive
molecules with respect to SMILE strings grounded upon a stack memory, although the
predictive approaches are utilized to presage the attributes of the originated molecule [77].
Efforts are underway to harness the generative AI paradigm to craft retinoid X as well
as PPAR agonist compounds, with coveted therapeutic outcomes free from necessitating
baffling regulations. Five molecules have been successfully originated, four of these
have exhibited convincing modulatory actions in cell assays, hence underscoring the
utility of generative AI in fresh compound origination [78]. The performance of AI in
the de novo modeling of compounds can be salutary to the pharmaceutical industry due
to its multifarious benefits, such as making provision for online learning and concurrent
refinement of the previously-learned data and proposing feasible synthesis pathways for
compounds, with consequent brisk lead conception and progression [76,79].

2.2. Hit Discovery
2.2.1. Drug Repurposing

Drug repurposing, also known as drug repositioning, is interpreted as the method
to identify ingenious therapeutic applications of the approved drugs [80,81], which can
shorten the period and perils of drug advancement [80]. Drug repurposing is achievable
since many drugs may have numerous targets [82] and the targets may elicit their varied
actions, which exemplifies the high heterogeneity of drug-disease association. To cite
an example, metformin, which was ratified for the management of type two diabetes, may
prolong lifespan [83–85].

Drugs and diseases are two fundamental components related to repurposing a drug.
Auxiliary aspects are also associated with drug repurposing, like targets for drugs and
genes for diseases. Owing to the multifariousness of the associations, network scrutiny
may be engaged to portray the relationships among these aspects [81]. For the purpose
of drug design, there happen to be nine types of meaningful networks: gene regulatory,
metabolic, protein–protein, drug–target, drug–drug, drug–disease, target–disease, drug–
adverse effect, and disease–disease networks [81]. The primary assumption of the network-
dependent scheme is that the analogous drugs frequently possess comparable targets or
activities [86]. The data contained in the singleton network is restricted and fractional,
hence it is imperative to merge multiple networks to generate the conglomerate network
for repositioning one drug. Specifically, it is critical to integrate drug repurposing with
the drug target forecasting, as the target could be conceived as a connection from the
medication to the affliction. DTINet, a diversified network harmonizing the information of
numerous networks via the network diffusion algorithm and the dimensionality reduction
methodology, was utilized to foretell the fresh target and therapeutic niche [87]. To cite
an exemplar, this approach proposed that alendronate, chlorpropamide, and telmisartan
could possess novel cyclooxygenase blocking actions. These activities were subsequently
substantiated experimentally by assessing the generation of proinflammatory components,
and these three molecules thus furnish high fidelity hits for forestalling inflammation.

2.2.2. Virtual Screening (VS)

Virtual screening implies the implementation of algorithm and software to identify
bioactive molecules (hits) from in-house compound assemblage or commercial chemical
libraries, that offer a hugely efficient scheme to unravel novel hits and refine out molecules
with disadvantageous scaffolds during the early stages of drug development [6]. Vir-
tual screening approaches consist of docking-based, pharmacophore-based [88], similarity
searching [89], and ML schemes [90]. Broadly speaking, these approaches can be allocated
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into two types of virtual screening: structure-based and ligand-based. Molecular docking
has been extensively applied when the target protein 3D architecture is accessible [91].
Though numerous successful implementations of docking-aided virtual screening have
been established [92], there remain glaring disadvantages of this technique. For instance,
scoring function of docking is unable to foretell binding affinities precisely due to incom-
plete attention to solvation and entropic aspects [93], and the protein flexibility renders the
issue even more convoluted [91]. Furthermore, as most docking approaches only account
for binding affinities and overlook other parameters like the residence period [94], the
docking score is not an optimal clue for drug effectiveness and the false positive frequency
of the docking-associated VS is large [91,95].

Contrary to the docking-related virtual screening schemes, the ligand-based virtual
screening approaches do not bank on the 3D protein architectural data. They attempt to
correlate the molecular attributes (descriptors) with bioactivity classes [6]. Contextually,
ML algorithms like SVMs have been often utilized for virtual screening [7,90,96], which
has demonstrated significant yields (ratio of presaged known hits) and decremented false-
hit frequencies concomitantly (false hit in anticipated hits) [97]. Of late, DL approaches
have been tested in VS attributable to their incredible classification capabilities, robust
feature extrication power and small generalization error [10,98]. For instance, scanty
presence of the active moieties in the general database customarily exhausts a substantial
quantum of search duration at VS [77,97]. To provide a solution to this roadblock, a LSTM
network scheme grounded on the analogy among natural language and the Simplified
Molecular Input Line Entry Specification (SMILES) was implemented to engender targeted
molecule libraries with compounds comparable with the training compounds [77]. The
new molecular libraries engendered by Recurrent Neural Networks (RNNs) can be probed
with ML algorithms like Deep Neural Networks (DNNs) and Gradient Boosting Trees
(GBTs). Likewise, due to the compelling generative capacity, an Adversarial AutoEncoder
(AAE) model was trained dependent upon the NCI-60 cell line assay information [99],
which can then be implemented to originate molecular fingerprints for exploring promising
anticancer agents [100].

2.2.3. Activity Scoring

As stated earlier, the fundamental attribute of molecular docking happens to be the
scoring function, which is crafted to appraise the binding proclivities of the drug-like
moieties for a target of relevance [101]. Due to the robust nonlinear mapping capacity, ML-
associated scores display improved method execution by extricating numerous attributes
efficiently, like the geometric attributes, chemical characteristics as well as physical force
field traits [102]. Such scores may be contemplated as data-impelled black box paradigms
as they foretell the binding affinity or ligand-protein binding association from experimental
information directly and bypass the consideration of the convoluted physical function
associated with docking [103]. ML algorithms such as Random Forest (RF) and Support
Vector Machine (SVM) can be engaged to enhance the performance of scoring function. As
an instance, in place of utilizing the linear additive acceptance of energy terms, an SVM
paradigm chronicled the nonlinear association among the particular energy terms bor-
rowed from the docking algorithm “eHiTS” and experimental binding affinity information
exhibited enhanced screening power in addition to scoring capability [104,105]. Wang
and Zhang documented a ∆vinaRF parameterization correction approach amalgamating
RF with AutoDock scoring function [106], which displayed an admirable performance
correlated with GlideScore XP [107]. In recent times, owing to the exemplary performance
of Convolutional Neural Networks (CNN) in the vista of image refinement [108], several
researchers have endeavored to utilize CNN to glean the attributes from protein-ligand
interactions image in order to foretell the protein-ligand affinity. A research group utilized
a 3D graph CNN algorithm to foretell ligand-protein binding proclivities [109], which
provided data that the anticipated binding tendencies had acceptable correlation with
experimental information within the datasets. The true capability of DL rests in its com-
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petence to grasp convoluted and abstruse attributes from elemental and primeval visage.
Hence, it is vital to portray the basic aspects of the compound protein complex like the atom
types, atom charge, atom distance and amino types [108]. Deep VS, an algorithmic scheme
grounded on CNN, can grasp the abstruse attributes from the key characteristics (the atom
frame of reference) and it performed better than the conventional docking algorithms like
Internal Coordinate Mechanics (ICM) [109], and GLIDE SP [110] on the Directory of Useful
Decoys (DUD) in the context of “area under the curve of receiver operating characteristic
(AUCROC)” and enrichment factor [111]. In principle, the CNN approach foretells the
binding tendencies by gleaning the characteristics in the protein-ligand association im-
age, which is quite analogous to a knowledge-dependent scoring function coupled with
augmented prognosticative prowess.

2.3. Hit-to-Lead Optimization
2.3.1. Quantitative Structure-Activity Relationship (QSAR)/Quantitative
Structure-Property Relationship (QSPR) and Structure-Aided Modelling with AI

In the course of hit-to-lead refinement, QSAR analysis could be utilized to determine
the potent leading molecules from a collection of hits analogues by foretelling biological ef-
fects of related molecules. QSAR especially points to the utility of mathematical techniques
for determining the quantitative mapping of the architectural or physicochemical attributes
of molecules and their affiliated biological effects [112]. QSAR investigation primarily
encompasses data capture, selection, and origination of molecular descriptors, formulation
of mathematical paradigms, and evaluation and analysis of models, as well as engagement
of models [113]. Of these, the crucial points are the depiction of the chemical architecture
and the mathematical paradigm capturing QSAR. Following choice of the descriptors, it is
imperative to identify a relevant mathematical algorithm to match the structure-activity
co-relationship. In 1964, Hansch et al. advanced the famous “Hansch Equation” that
ingeniously employed linear regression techniques in relation to physicochemical descrip-
tors (the hydrophobic parameter, the electronic parameter and the steric parameter) for
narrating the 2D structure-activity correlation, leading to the era for QSAR evaluation [114].
In the same year, a research group developed the “Free-Wilson” technique to narrate the
association between the chemical architecture and bioactivity depending upon the assump-
tion that the addition of substituents to the actions of the compound is supplementary [115].
In contrast to the Hansch technique, there is no need in the Free-Wilson approach for the
physiochemical criteria and it can directly foretell the biological actions from the chemical
architecture by ciphering the chemical framework. Owing to the progress of ML algo-
rithms, numerous approaches have subsequently been utilized to engineer mathematical
paradigms [116–118], like RF and SVM. Of late, DL algorithms have undergone integration
with QSAR modeling due to the capacity of handling disparate chemical attributes cou-
pled with the worthiness of extricating attributes in an automated fashion. George Dahl’s
team triumphed in the Merck Molecular Activity Challenge (a Kaggle championship event
conducted in 2012 and concerned with QSAR problems), by the composite (ensemble)
paradigms comprising the multi-task DNN, Gaussian progress regression as well as gradi-
ent boosting machine techniques [8]. Energized by the Kaggle championship outcomes,
Dahl et al. went on to methodically investigate the multi-task DNN and his output had
demonstrated that multi-task DNN outclassed single-task neural network approach as the
multitask approach may recognize generic characteristics by allocating specifications of
varied but allied assignments [119]. A research group amalgamated multi-task neural net-
works within the “DeepChem” platform that assisted the engagement of multi-task neural
network algorithms in relation to drug advancement [120]. They also assessed the execution
efficiency and identified the fact that multi-task deep networks were quite powerful and
superior to random forests (RFs) on diverse assignments. Another research group engaged
the DNN with Canvas descriptors to construct the classification and regression paradigm
to foretell the binding proclivities of the human β-secretase 1 (hBACE-1) blockers [121]. On
the validation set, this DNN technique engendered robust classification capacity with a cer-
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tainty of 0.82 and, in addition, displayed favorable regression capability with the coefficient
of determination (R2), and mean absolute error (MAE) of 0.74 and 0.52, respectively. Also,
their outcomes have demonstrated that the DNN approach coupled with 2D descriptors of-
fered superior results compared to the force-field-dependent schema (e.g., CoMFA), which
is partly because of the compelling generalization proficiency of DLapproaches. Evidently,
DL-aided QSAR algorithms with augmented activity prediction accomplishment will exert
a more salutary role in the subsequent hit-to-lead refinement techniques.

2.3.2. Generative Schemes for De Novo Drug Design with AI

De novo drug design relates to engendering fresh chemical moieties to inflect the
target of relevance [122]. The conventional de novo design approaches like the fragment-
aided method can engender fresh moieties from scratch. But most of these are onerous to
originate owing to the complexity and inapplicability of the compound architecture [123].
Moreover, it is difficult to assess their biological effects because of the demerits of scoring
functions ascribed to in an earlier section.

Due to the compelling generative capacity and learning capability, DL algorithms
have been engaged to automatically engender new architectures with several coveted
attributes [124]. One research group advanced the deep reinforcement learning approach
to refine the RNN to originate the compounds with anticipated biological effects [125].
The “Simplified Molecular-Input Line-Entry System (SMILES)” structures of molecules
culled from ChEMBL were employed to train the “Recurrent Neural Network (RNN)” for
obtaining the syntax of SMILES, and the RNN could originate the molecules by represen-
tation from the conditional probability distribution related to the training group. With
reference to reinforcement learning, Agents are the decision-takers who execute actions in
the presence of specified conditions. When an Agent’s action results in a positive reward,
the Agent’s proclivity of producing this action will be augmented [126]. SVM has been en-
gaged to promote the action protocol for receiving the high anticipated reward from activity
scoring depending upon the ligands in the training dataset. In the instance of selection of
RNN along with the deep reinforcement learning (DRL) paradigm to originate agents for
dopamine receptor type 2, >95% of the architectures were presaged to be biologically active
from the SVM scoring function.

An added utility of generation paradigms with DL is the engagement of auto-encoders
to spawn novel molecules. A research group amalgamated the Variational AutoEncoder
(VAE) with the Multilayer Perceptron (MLP) to originate fresh molecules with salutary
attributes in an automated manner [127]. The network comprised of three components: the
encoder, the decoder, and the predictor. While the encoder converts disconnected SMILES
strings into uninterrupted vectors in latent space, the decoder can convert these vectors in
reverse order to the disconnected SMILES strings. Engagement of MLPs is done to foretell
the attributes of the compounds, and the gradient-enabled refinement can be utilized to
determine the uninterrupted vectors with high predictive potential of the characteristic.
Due to the durability of the vector depiction in the latent space, the gradient-enabled
optimization united with Bayesian reasoning can be employed to promptly determine the
compounds with coveted attributes. The paradigm has the power to originate a human-
intelligible chemical architecture with greater predictive effects in an automatic fashion. But
it also resulted in several instances of fallacious SMILES production which are unrelated to
legitimate chemical architectures. To surmount this problem, a group engaged the grammar
VAE to render the result more efficient by specified SMILES syntax [128]. Very recently,
a group popularized an AAE scheme named druGAN to originate molecular fingerprints,
that outclassed the VAE paradigm in the context of the reconstruction error, generation
power, and attribute extrication potential [129].

To assess if an engendered molecule is synthetically attainable, the group of Coley
et al. specified a synthetic complexity metrics by tuning-up a neural network algorithmic
scheme based on a reaction database [130]. The axiom for calculating synthetic intricacy is
that the synthetic reaction is a system that will raise complexity of the reacting agent. In
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case of a synthetic reaction, it implies that the product complexity score must exceed that
of the reacting agents. Hence, the aforementioned group ciphered a chemical reaction into
many (reactant, product) combination duets and undertook to formulate a scoring function
for depicting the inequality association among reactant complexity and product complexity.
As the neural networks possess compelling function approximation capabilities [131], this
group utilized 22 million (reactant, product) duets in order to train the neural network
in order to account for scoring function learning, with their outputs elucidating that the
learned function (SCScore) might well chronicle the intricacy enhancement in the synthesis
method. This scheme will facilitate chemists in achieving the inverse synthetic analysis and
in addition assist them set aside improbable molecules in drug design by appraising the
synthetic intricacies.

2.3.3. Automated Chemical Synthesis Planning with AI
Foretelling the Retrosynthesis Roadmap

Retrosynthesis is a refined scheme for conniving organic synthesis. In concert with the
progress of AI, this assignment can now be undertaken much more skillfully [73,74,132–134].
Following virtual screening of a molecule for its conceivable biological effects and toxicity at-
tributes, the hunt for an efficient chemical synthesis roadmap to generate the drug candidate
is initiated. This task is often imposing and unrefined. In spite of awareness of hundreds of
thousands of conversion steps, there is no assurance that novel molecules may be expertly
generated owing to novel structural characteristics or opposing reactivities [135].

Retrosynthesis analysis recursively probes for ‘backward’ reaction pathways until
a group of less complex, accessible precursor compounds are accomplished [74]. As ret-
rosynthesis pathway presage engages successive scissions of the lead molecule at numerous
locations, Monte Carlo Tree Search (MCTS) [136] is the algorithm of choice for executing
branch choices. Monte Carlo simulations implement random search steps with no branch-
ing till the time an optimal result is reached. Hitherto, software programs for Computer-
Assisted Synthesis Planning (CASP) [137,138] were advanced to facilitate retrosynthesis
scrutiny, but missed gaining full approval with the chemists. Such algorithms insist that
human insight is integrated within executable schemes, but formalization of chemistry
with the aid of manual ciphering will not add up to exponentially multiplying knowledge,
and the outputs fetched from reaction databases were most frequently devoid of chemical
intelligence [74]. ML algorithms trained on provisional data may now be engaged; (i) to
foretell the chances of a conversion at a distinct branching location, and (ii) to pilot the
choice of the random steps. For individual conversion steps, the compound (or an inter-
mediary molecule) could be related to distinct forerunner molecules through preordained
conversion axioms. Training of AI packages can be done from the scientific documentation
with regard to the yields and expenses of these conversion statutes, and the AI can then
presage the best suitable retrosynthesis conversion roadmap for a selected compound.

A recently documented 3N-Monte Carlo Tree Search (3N-MCTS) technique [74] incor-
porates three disparate neural networks incorporating MCTS to engender a roadmap for
Critical Assessment of Protein Structure Prediction (CASP). CASP exemplifies the latest
state-of-the-art in modelling protein structure following up from amino acid sequence.
Each network executes a separate assignment: (i) an expansion node; (ii) a rollout node;
and (iii) an update node. For the expansion node, the algorithmic process probes for fresh
prospects for modifying the compound (or an intermediary molecule), retrospectively.
This embodies an ‘in-scope’ protocol where the workability of a modification is appraised
depending upon 12.4 million conversion axioms from the scientific documentation [139].
In order to foretell the best modification for the compound (or intermediary molecule)
available, and hence pilot the selection of expansion routes, training the neural networks is
imperative. As the literature copiously contains positive data, a modification is deemed
less workable if its reverse reaction provides a high yield. Also, choosing high-yielding
conversions also facilitates in excluding the chances of by-products [74]. For the rollout
node, the ‘in-scope’ protocol is analogous to that in the expansion node, with the exception
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that only commonly documented conversion axioms are utilized. This approach permits
a gradual and meticulous hunt for the optimized conversion alternatives at the time of the
expansion period, but swifter scrutiny of position values during the rollout phase [140]. For
the update node, the appraisal of a distinct roadmap is amalgamated into the search tree.
In the case of a molecule deposited for retrosynthesis scrutiny, these nodes are executed
repetitively to explore for conversions with the greatest scores. The latter can ultimately
determine feasible precursors associated with the complete reaction pathway [74].

Along with the determination of a reaction route, the time expended to arrive at
a solution is also a vital parameter of algorithm execution. A time constraint could be
imposed to evaluate the fraction of issues which an algorithm is able to tackle. The
achievement of MCTS on the test group of compounds was better than various available
software. MCTS tackled 80% of retrosynthesis issues when a 5s per molecule time constraint
was imposed [74], and the frequency of arriving at a solution can surpass 90% if the time
constraint is extended to 60 s. More attractively, the speed for each molecule for 3N-MCTS
is 20-times swifter compared to the conventional Monte Carlo approach [74].

Prediction of Yield of Reaction and Understanding of Reaction Scheme

AI packages can not only depict synthesis pathways but in addition can adequately
foretell the products with yields of organic reactions depending upon the molecular charac-
teristics of the reactants. Previously, foretelling the result of complex chemical reactions
was associated with a sizable bottleneck [133]. Quantum chemistry methods, for instance,
the “Hartree–Fock Method” [134], semi-empirical processes (AM1, PM3), and density
functional theory, will possibly surmount such an obstacle, and in various scenarios the
result of tests can be optimally simulated in silico. Many studies engaging AI schemes
to automate, advance, and establish yield prediction have of late been documented for
this sector [141–144], and Doyle and Dreher testified that ML can be engaged to foretell
the returns of a Buchwald–Hartwig coupling reaction [145]. The aforementioned reaction
engenders carbon–nitrogen bonds amid aryl halides and amines, utilizing the catalyst
palladium, and has been extensively practiced for the total synthesis of pharmaceuticals
where aryl amine bonds are pervasive. For this scenario, the vibrational frequencies
and dipole moments computed by quantum chemistry were considered as descriptors,
and the ultimate product returns from a provided group of reactants were generated by
high-throughput experimental syntheses. A RF scheme was then utilized to probe the
association among the input descriptors and product returns [133]. At the time of utilizing
reactant variants, the algorithm also presaged the yields of other anticipated products with
great precision [145].

Synthesis Methods Digitized and Standardized

There are enterprising plans to harness AI to mechanize chemical syntheses with lim-
ited manual processes. Recently proven technologies, like the ‘solid phase’ scheme where
the growing polymer chain is attached to an insoluble matrix, have mechanized the genera-
tion of many classes of agents inclusive of peptides [146] as well as oligonucleotides [147].
But these depend on distinct protocols due to the shortage of standardized digital mecha-
nization methods for computer monitoring of chemical reactions, and no universal software
is present for computational governance of chemical operation systems [148] (Table 1). The
“Chemputer platform” [149] was newly advanced as a standard benchmark which inte-
grated codified standard recipes, or chemical codes, for compound synthesis. The scheme
was executed with the “Chempiler program” [149], one that obtains codified methods
from a scripting language “Chemical Assembly (ChASM)”, which also regulates distinct
low-level execution rules for the modules that make up the structure of the robotic sys-
tem. ChASM draws upon a chemical descriptive language (XDL) which exclusively and
methodically amasses the complete obligatory information for a synthesis operation [149].
The physical modules (e.g., the source flask and the target flask) and their network ar-
rangement and portrayal are depicted as a directed graph by engaging an open-source
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markup language termed “GraphML” [150]. With “GraphML”, “Chempiler” is capable
of governing the robotic procedures in a manner that users can exactly execute chemical
syntheses without manual restructuring. This system had been approved by the fruitful
synthesis of three pharmaceutical molecules: diphenhydramine hydrochloride, rufinamide,
and sildenafil, bereft of any human interference, and with outputs and pureness of products
commensurate with or superior to those accomplished manually [149]. This work epito-
mizes a leap towards the full mechanization of bench-scale chemistry with supplementary
benefits of augmented replicability, security, and availability of complex compounds.

Table 1. Enumeration of AI-Aided Computational Tools for Facilitating Drug Discovery.

Tools Feature(s) Website(s) Reference(s)

AlphaFold Protein 3D (tertiary) structure
presage employing DNN

https://deepmind.com/blog/alphafold
(accessed on 28 November 2022)

https://www.sciencemag.org/news/2018/12/
google-s-deepmind-aces-protein-folding

(accessed on 28 November 2022)

[151]

Chemputer

An exhaustive regulated schema
for documenting a chemical

synthesis method
(Furnishes comprehensive

compound synthesis recipe)

https://zenodo.org/record/1481731
(accessed on 28 November 2022) [149]

Conv_qsar_fast Foretells molecular attributes
aided by CNN algorithm

https:
//github.com/connorcoley/conv_qsar_fast

(accessed on 28 November 2022)
[130]

Chemical VAE
Mechanized chemical crafting

employing variational
autoencoder (VAE)

https://github.com/aspuru-guzik-group/
chemical_vae

(accessed on 28 November 2022)
[133]

DeepChem

A Python-aided AI technique for
various drug discovery workflow

predictions utilizing a DL
algorithm for molecule recognition

https://github.com/deepchem/deepchem
(accessed on 28 November 2022) [152]

DeepNeuralNet-QSAR Foretells molecular activity
engaging multilevel DNN

https:
//github.com/Merck/DeepNeuralNet-QSAR

(accessed on 28 November 2022)
[153]

DeepTox Toxicity predictions of chemical
agents utilizing a DL algorithm

www.bioinf.jku.at/research/DeepTox
(accessed on 28 November 2022) [154]

DeltaVina

Presages small molecule
interaction affinity with drug

employing an amalgamation of
random forest (RF) as well as
AutoDock scoring function)

https://github.com/chengwang88/deltavina
(accessed on 28 November 2022) [111]

Hit Dexter

ML schemes for the presage of
compounds that could be sensitive
to biochemical assays by engaging

ML techniques

http://hitdexter2.zbh.uni-hamburg.de
(accessed on 28 November 2022) [155]

InnerOuterRNN
Foretells the chemical, physical,

and biological attributes utilizing
inner- and outer RNNs

https://github.com/Chemoinformatics/
InnerOuterRNN

(accessed on 28 November 2022) [156]

JunctionTree VAE
De novo molecule origination

utilizing junction tree variational
autoencoder (VAE)

https://github.com/wengong-jin/icml18-jtnn
(accessed on 28 November 2022) [157]

https://deepmind.com/blog/alphafold
https://www.sciencemag.org/news/2018/12/google-s-deepmind-aces-protein-folding
https://www.sciencemag.org/news/2018/12/google-s-deepmind-aces-protein-folding
https://zenodo.org/record/1481731
https://github.com/connorcoley/conv_qsar_fast
https://github.com/connorcoley/conv_qsar_fast
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/deepchem/deepchem
https://github.com/Merck/DeepNeuralNet-QSAR
https://github.com/Merck/DeepNeuralNet-QSAR
www.bioinf.jku.at/research/DeepTox
https://github.com/chengwang88/deltavina
http://hitdexter2.zbh.uni-hamburg.de
https://github.com/Chemoinformatics/InnerOuterRNN
https://github.com/Chemoinformatics/InnerOuterRNN
https://github.com/wengong-jin/icml18-jtnn
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Table 1. Cont.

Tools Feature(s) Website(s) Reference(s)

Neural Graph
Fingerprints

Attribute augury of novel
molecules employing

CNN algorithms

https://github.com/HIPS/neural-fingerprint
(accessed on 28 November 2022) [158]

NNScore

Foretells the affinity of
protein–ligand binding utilizing

neural network-aided
scoring function

http://rocce-vm0.ucsd.edu/data/sw/hosted/
nnscore/

(accessed on 28 November 2022)
http://www.nbcr.net/software/nnscore

(accessed on 28 November 2022)

[159]

Open Drug Discovery
Toolkit (ODDT)

An exhaustive toolkit utilized for
chemoinformatics and molecular

modelling employing random
forest score (RF)-Score as well

as NNScore

https://github.com/oddt/oddt
(accessed on 28 November 2022) [160]

ORGANIC

A competent molecular generation
tool to originate molecules with
favourable attributes employing

ML schemes

https:
//github.com/aspuru-guzik-group/ORGANIC

(accessed on 28 November 2022)
[161]

PotentialNet Foretells ligand-binding affinity
engaging graph CNN

https://pubs.acs.org/doi/full/10.1021/
acscentsci.8b00507

(accessed on 28 November 2022)
[162]

PPB2
Poly-pharmacology prediction

employing nearest neighbour as
well as ML schemes

http://ppb2.gdb.tools/
(accessed on 28 November 2022) [163]

QML

A Python toolkit for quantum ML
(utilizing qubits leading to

incremented computational speed,
data storage capacity, and

learning optimization)

https://www.qmlcode.org
(accessed on 28 November 2022)

https://github.com/qmlcode/qm
(accessed on 28 November 2022)

[164]

REINVENT

De novo design of molecule
employing RNN (recurrent neural

network) as well as RL
(reinforcement learning)

https:
//github.com/MarcusOlivecrona/REINVENT

(accessed on 28 November 2022)
[165]

SCScore
A scoring scheme to figure out the

synthesis complexity of
a compound

https://github.com/connorcoley/scscore
(accessed on 28 November 2022) [166]

SIEVE-Score

An upgraded technique of
structure-aided virtual

screening through
interaction-energy-based learning

https://github.com/sekijima-lab/SIEVE-Score
(accessed on 28 November 2022) [167]

AI-Enabled Mechanized Reaction Space Sampling

Synthesis robots in conjunction with AI can also be utilized to examine the uncharted
reaction space. Of late, Leroy Cronin and group employed a synthesis robot to execute reac-
tions with non-premeditated substrates where the choice of substrates was communicated
as a vector depiction that was accepted as the input for the SVM model [168]. Employing
mechanized reaction appraisal of the sample with infrared (IR) and NMR spectroscopy,
the model implemented a dual categorization of the reactivity of each substrate duo. The
reaction database was then revised appropriately, and a Linear Discriminant Analysis
(LDA) [169] algorithm was trained on the chemical space to foretell the possibility of the
reactions left. LDA explores a linear amalgamation of chemical characteristics that foretell
whether a reaction occurs or does not occur. This repetitive workflow was determined to
foretell the reactivity of roughly 1000 reaction combinations demonstrating ~ 80% accuracy

https://github.com/HIPS/neural-fingerprint
http://rocce-vm0.ucsd.edu/data/sw/hosted/nnscore/
http://rocce-vm0.ucsd.edu/data/sw/hosted/nnscore/
http://www.nbcr.net/software/nnscore
https://github.com/oddt/oddt
https://github.com/aspuru-guzik-group/ORGANIC
https://github.com/aspuru-guzik-group/ORGANIC
https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507
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employing real-time information from only a few experiments [170]. When this ‘self-
driving’ methodology was further brought to bear upon Suzuki–Miyaura reactions [171],
the predicted reactive combinations were tracked manually by a chemist, with subsequent
uncovering of four hitherto uncharted reactions. Following comparison with the reactants
and products of millions of reactions, the Tanimoto similarity scores [172] of the four al-
ready unknown reactions were determined to be in the top 10 percentile, proposing the
concept that these reactions are separate from others selected at random [170]. This method
is a crucial step in the digitization of chemistry that might permit real-time exploration of
chemical space to be an actuality, and facilitate chemists in uncovering fresh drug leads in
a more time- and cost-effective fashion.

2.4. In Silico Assessment of ADME/T Attributes
2.4.1. Physico-Chemical Characteristics

Early recognition of compounds with undesirable physico-chemical characteristics
in a drug discovery channel indubitably decreases the possibility of loss. Various DL-
based algorithms have been advanced on this issue [173]. Duvenaud et al. employed the
CNN–ANN to foretell the solubility by extricating data straight from the molecular graph
with a compelling predictive capability outcome (MAE is 0.53 ± 0.07) [158]. The high point
of this approach rests in its tractability. As an instance, the pieces endowing molecule
solubility like hydrophilic R-OH substituent can be realized by model backtracking. En-
couraged by Duvenaud’s effort, the research group of Coley et al. used a tensor-dependent
convolutional inlay of associated molecular graphs schema to foretell the molecular aque-
ous solubility, which outclassed Duvenaud’s scheme (MAE is 0.424 ± 0.005) [130]. The
scheme used a molecular tensor assimilating the bond-level as well as atom-level character-
istics to chronicle associated molecular graph. In comparison with Duvenaud’s paradigm,
Coley’s scheme employed greater atom-level data to foretell the aqueous solubility of
the compound.

Due to the fact that a strong relationship was identified among oral drug absorption
and Caco-2 permeability coefficient (Papp) [174,175], presaging the candidate drug Papp per-
forms a crucial role in appraising the pharmacokinetic characteristics of candidate agents.
1272 molecules have been culled with Caco-2 permeability information by utilizing Boost-
ing, Support Vector Machine (SVM) regression, Partial Least Squares (PLS), and Multiple
Linear Regression (MLR) to establish the presaging algorithms with 30 descriptors [176].
The Boosting model displayed the best outcomes with compelling predictive capability
(R2 = 0.81, root mean square error (RMSE) = 0.31) for the test compound group, and this
model rigorously adopted the Organization for Economic Co-operation and Development
(OECD) axioms pertinent to QSAR/QSPR [177]. A train of processes adhering to the OECD
tenets assure the coherence and reliability of the paradigm.

2.4.2. Pharmacokinetic Parameters (Absorption, Distribution, Biotransformation
and Excretion)

Drug absorption is the mechanism by which medications get into the bloodstream
from the administration location. Bioavailability is a critical pharmacokinetic attribute
that embodies the quantum of absorption. Foretelling the bioavailability of a compound
can facilitate the medicinal chemist to refine its absorption characteristics. A research
group garnered a dataset containing 1014 compounds and utilized the MLR paradigm to
presage bioavailability aided by structural fingerprints as well as molecular attributes [178].
Genetic function approximation method was utilized to determine the choice of molecular
attributes employed for process training in an automated manner, and the outcomes
provided a compelling predictive accomplishment, the correlation coefficient and RMSE
being 0.71 and 0.2355, respectively.

Drug distribution is the method by which drug molecules move in blood to interstitial
fluid, as well as intracellular fluid consequent to drug penetration [179]. The steady-state
distribution (VDss) of a medication is the ratio between its dose in vivo to its steady-
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state plasma concentration (CPss). The VDss signifies the measure to which a medicinal
molecule is disseminated in the tissue and happens to be a crucial parameter to appraise
drug distribution. Foretelling VDss can facilitate medicinal chemists to implement struc-
tural alterations for superior pharmacokinetic characteristics. A research group amassed
a dataset containing 1096 molecules and built-up Partial Least Squares (PLS) and Random
Forest (RF) paradigms to foretell VDss [180]. The presage outcomes of their algorithm
on the external test group were disappointing, as only about 50% of the molecules were
within two-fold error. Ostensibly, it is problematic to presage VDss value purely from
molecular architectural data as there happen to be multiple unidentified parameters which
may influence VDss.

Following the administration of the drug into the body, it will initially encounter
the metabolic process with resultant attrition of drug effects, or, in a few instances, origi-
nation of toxic metabolites. Foretelling the location of biotransformation with great pre-
cision can facilitate the structural refinement for assuring the metabolic endurance of
the moiety. A colossal quantum of information associated with drug metabolism has
been culled, and multiple ML schemes have been utilized to foretell the loci where
molecules are bio-transformed by disparate metabolic enzymes, like cytochrome P450s
(CYP450s), aldehyde oxidase, and Uridine 5′ diphosphoglucuronosyltransferases (UGTs).
As an instance, on the basis of a neural network approach, “XenoSite” [181] can deliver
the determination of the location of small compounds biotransformed by CYP450s with
a gross accuracy of 87% [182]. Moreover, the “XenoSite”scheme also employs a neural
network trained upon a vast database of UGT biotransformation to foretell UGT loci of the
molecule biotransformation [183].

Drug excretion is the mechanism by which medications and their bio-transformed
metabolites are disposed of from the system. Bio-transformed metabolites of medications
are generally water-soluble and can be readily discarded from the body while some drugs
can be directly disposed of without biotransformation [184]. Lombardo et al., employed the
Principal Components Analysis (PCA) approach to foretell primary clearance pathway and
the algorithm exhibited good discrimination outcomes among various approaches, with
a predictive precision of 84% [185]. Depending upon the elimination process prediction
paradigm, this group engaged the PLS algorithm to foretell the gross human clearance and
the PLS paradigm worked satisfactorily and was comparable to animal scaling approaches.

2.4.3. Toxicity and the ADME/T Multi-Task Neural Network

In the course of development of fresh drugs, pre-clinical and clinical toxicity accounts
for the reduction of roughly 33% of leading moieties [186]. Hence, foretelling the toxic ef-
fects of compounds is invaluable in facilitating the refinement of lead moieties and trimming
the hazard of loss in the course of drug development. Conventionally, drug toxicity charac-
teristics (e.g., hepatotoxicity and nephrotoxicity) are foretold by axiom-dependent expert
knowledge and architectural flags, which appear to engender false positives and are inca-
pable of broadly encapsulating all mandatory structural characteristics. Currently, owing
to the capability of handling varied chemical entities and the virtue of extracting attributes
in an automated fashion, the DL algorithms churn out compelling performance on toxicity
presage. As an instance, based upon the “Molecular Graph Encoding-Convolutional Neu-
ral Networks (MGE–CNN)”, Xu et al. crafted an acute oral toxicity prediction paradigm,
and the presage outcomes were superior to the hitherto documented approaches based
on SVM [187]. In the MGE–CNN scheme, the molecular ciphering, attribute extrication
and model building is executed by methods analogous to the neural networks training.
Also, the MGE–CNN algorithmic scheme is quite adjustable since molecular fingerprints
can be tailored as per the specific issues. A research group correlated the toxicological
characteristics of fingerprints back to atomic levels and gathered several highlighted pieces
that conform to structural flags characterized in the “ToxAlerts” [188]. Hence, due to
analogy with Duvenaud’s model, this paradigm by Xu et al. is also explicable. Another
group originated a multi-task DNN algorithm named “DeepTox” to foretell the toxic ef-
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fects and the “DeepTox” system certainly outclassed numerous contenders in the Tox21
competition [163]. By accepting the identical criteria, the multi-task neural network algo-
rithm was trained to foretell numerous disparate discrete assignments that are strikingly
connected. In comparison to single-task neural network, the execution of multi-task neural
network is customarily superior owing to sharing of the criteria of various assignments in
facilitating the multi-task algorithm for ingraining added familiar attributes.

Pharmacokinetic processes (drug absorption, distribution, biotransformation, excre-
tion) and drug toxicity in the human system have some congruity and the multitasking
neural networks can enhance the predictive capability of such assignments. ADME/T
experimental datasets of Vertex Pharmaceuticals have been utilized to match the capabil-
ities of the single-task and multi-task neural networks, and their outcomes implied that
multi-task algorithms would yield superior results as anticipated [189].

3. Machine Learning Schemes and Usable Algorithms for Drug Design Scenarios

The representation of molecules has been of interest to scientists since the nineteenth
century. Traditionally, molecules are represented as structure diagrams with bonds and
atoms, and this is likely the representation most people cognize when they contemplate
about molecules. But, alternative representations are imperative for the computational
processing of chemical structures in cheminformatics. The advent of computers led to the
development of a wide array of machine-readable chemical representations. Computers
permitted the rapid digital storage and querying of compounds and their structures, swift
modifications of digital data, and augmented physical storage efficiency. Algorithms were
implemented to visualize compounds as 2D depictions and the computational visualization
of compounds in 3D space was popularized with the advent of specialized programs.

The lead optimization step of drug discovery is fundamentally a low-data problem.
When biological studies provide proof that a particular molecule can modulate essential
pathways to achieve therapeutic activity, the discovered molecule often fails as a potential
drug for numerous reasons including toxicity, low activity, or low solubility. The central
problem of small-molecule-based drug-discovery is to refine the candidate molecule by
locating analogue molecules with enhanced pharmaceutical activity and reduced risks to
the patient. Yet, with only a small amount of biological data available on the candidate
and related molecules, it is challenging to form accurate predictions for novel compounds.
Recent work has established that standard ML techniques such as random forests and
simple deep-networks are capable of learning meaningful chemical information from only
a few hundred compounds. Other recent advances in ML have demonstrated that in some
circumstances, nontrivial predictors may be learned from only a few data points. These
methods work by using related data to learn a meaningful distance metric over the space of
possible inputs. This sophisticated metric is used to compare new data points to the limited
available data and subsequently predict properties of these new data points. More broadly,
these techniques are termed as “one-shot learning” methods. In ML, generalization usually
refers to the ability of an algorithm to be effective across various inputs. It means that
the ML model does not encounter performance degradation on the new inputs from the
same distribution of the training data. Cross-validation (CV) is a technique for evaluating
a ML model and testing its performance. CV is commonly used in applied ML tasks. It
helps to compare and select an appropriate model for the specific predictive modeling
problem. CV is easy to understand, easy to implement, and it tends to have a lower bias
than other methods used to count the model’s efficiency scores. All this makes cross-
validation a powerful tool for selecting the best model for the specific task. Despite the fact
that DL models outclass various conventional ML algorithms, they still invoke many more
parameters and unrelated architectures, which leads to several problems during training,
specifically in the situations when the samples are inadequate or the feature matrix is
meagre. This section of the review details the aforementioned drug design approaches
utilizing ML algorithms. Many open-source execution platforms for AI-facilitated drug
design paradigms have been outlined in Table 1.
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3.1. Approaches for Molecular Depiction

Molecular fingerprints, numbers, ASCII strings, and graphs that depict the compounds
may be utilized as the input attributes of ML algorithms for drug design. Such molecular
fingerprints cipher the molecular features as a sequence of binary bits (“1” expressing that
the molecular feature prevails, and “0” signifies that the molecular feature is nonexistent).
In the arena of drug design, molecular fingerprints are continually employed to foretell
compound characteristics and compute molecular resemblance since it is a straightforward
and powerful approach to express the compounds. Currently, the molecular fingerprints
often utilized as the neural network inputs are structure-based 2D molecular fingerprints,
like the Molecular ACCess System (MACCS) [190], the Extended-Connectivity Fingerprint
(ECFP) [191], the Functional Class Fingerprint (FCFP) and the Molprint2D [192]. As
an instance, MACCS has been engaged in training an Adversarial AutoEncoder (AAE)
algorithm to hunt for anti-neoplastic moieties [105].

Chemists have long employed 2D molecular graphs to depict molecular architec-
tures and scrutinize molecular characteristics qualitatively. Strikingly, the progress of AI
renders it feasible to compute this mechanism. CNN is a compelling engine to extricate
characteristics from the molecular graph in an automated manner that can be utilized for
engendering compound depiction in presaging of bioactivity [193], toxicity [187], physic-
ochemical attributes [158] and protein-ligand affinity [113]. In comparison to ECFP, the
graph-convolutional approaches have been more adaptable as the graph architecture can be
tailored depending upon the assigned tests. Moreover, the graph-convolutional architecture
is amenable to amalgamation with neural networks so as to foretell the molecular attributes,
rendering the training mechanism, molecular attribute elicitation and model development
accomplishment concurrently. The molecular graph CNN fingerprints comprise Duve-
naud’s graph convolutional fingerprints grounded on atomic radiation technique [158],
Kearnes’ graph convolutional fingerprints established upon atoms, bonds and pairwise
interconnections [194], and Coley’s graph convolutional fingerprints established upon
the molecular tensor. The fundamental tenet of Duvenaud’s graph convolutional finger-
prints is akin to the ECFP fingerprints and both these progressively enhance molecular
substructures by atomic radiation techniques. Notably, Duvenaud et al., first ciphered
atomic attributes (e.g., valence, atomic identity, and number of hydrogens) and bond char-
acteristics into vectors, and then utilized the atomic and bond attribute vectors to build the
atomic neighbor attributes to originate the earliest molecular architecture vectors. CNN
may be employed to elicit the characteristics from the aforementioned antecedent attribute
vectors with individual repetition, and these quantities are then aggregated as the molec-
ular fingerprints. The intrinsic atomic and bond attributes are expert-crafted instead of
learning from the molecular graph through the AI process. The superiority of Duvenaud’s
graph CNN rests in its strength to engender the molecular fingerprints satisfactorily for
a prescribed assignment, and it is explicable as the molecular pieces associated with the dis-
tinct molecular characteristics that can be captured by backtracking via the neural network
nodes. Such a scheme has been executed in the “DeepChem” toolbox and the outcomes
of “MoleculeNet” benchmark assessments indicate that the graph CNN can comprehend
fruitful molecular characteristics and it frequently yields superior results compared to
other models [195]. Apart from CNN, the recursive neural networks are also amenable
for molecular depiction employment. As an instance, Gregor Urban et al. advanced the
inner and outer recursive neural networks for graph portrayal of the compound [156]. In
comparison with Kearnes’ method, this approach commonly yields superior prediction
outcomes on public data groups of the “MoleculeNet” benchmark assignments [195].

The string depictions of small compounds incorporate the Wiswesser Line-formula
Notation (WLN) [196], SYBYL line notation (SLN) [197], SMILES [198] and the Interna-
tional Chemical Identifier (InChI) [199]. Out of them, SMILES is more extensively em-
ployed backed by multiple software algorithms (like ChemDraw, Cheopy, and RDKit)
and databases (e.g., PubChem and ZINC). PubChem (NCBI) happens to be the world’s
most comprehensive assortment of freely usable chemical information. It’s the database
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of chemical molecules and their actions in biological assays. ZINC database (UCSF) is
a curated assortment of commercially handy chemical moieties prepared specifically for
virtual screening. Recurrent Neural Networks (RNN) can be utilized to comprehend the
coding grammar of SMILES [77], which may be transformed to the molecular graph. More-
over, SMILES can be directly employed as an input component of RNN in foretelling the
molecular characteristics [200].

Molecular descriptors traditionally relate to the structural or physicochemical at-
tributes of a compound, which can be accessed by molecular ciphering or via typical
experiments [201]. The comprehensive characterization of these descriptors has been
reviewed elsewhere [202]. The appropriate choice of the descriptors is crucial for ML,
which can decrease the computational load, augment the model universalization capability
and boost the conduct and characterizability of the algorithm [203]. The usual software
to compute molecular descriptors comprises Dragon [204], Cheopy [205], PaDEL [206]
and Cinfony [207].

3.2. Transfer Learning Engagement for Low Data

The DL schemes have demonstrated a healthy promise in drug design owing to the
powerful data mining competence. But the DL approaches generally depend upon a high
quantum of training data, that has limited its application customarily. As an instance, with
only a restricted quantum of the activity data at one’s disposal, it is problematic to foretell
the bioactivity of the fresh compounds since low data is unable to ensnare a sufficient
chemical space. A transfer learning approach can be utilized in ironing out issues by taking
advantage of extant knowledge acquired from other associated data repositories. It is
known that human experts can apply already acquired knowledge to sort out new issues
and the capability aids us in solving the vexing issue optimally. A recommendation of AI
study is to mimic this capacity by a transfer learning approach [208]. The fundamental
tenet of transfer learning is to utilize the knowledge probing from some former exercises
to a pertinent target assignment with sparse training data. Moreover, “one-shot learning
scheme” has been recommended which alludes to the DL approach that depends upon only
a few training items. This is able to pass on information among pertinent, but unrelated
assignments by learning a purposeful distance metric [209]. A research group evolved
and advanced a one-shot learning scheme that melded the repetitive sophistication of
long short-term neural networks engaging the graph CNN for low data training [12,210].
The model performs better than the RF and other techniques on the “Tox21” and “SIDER”
dataset. But, when the toxicity data is engaged for training a scheme in foretelling a side
effects datafile, it will fully fail as the congruity among the two datasets is quite feeble.

3.3. The Process of Cross-Validation

The cross-validation process is utilized to assess the conduct of the scheme and the tra-
ditional custom is the random-split cross-validation. But the random-split cross-validation
approach is usually too buoyant for the evaluation of model predictive outcome as it
undermines the covariate alterations in drug development via combining unrelated series’
data [211]. On the other hand, the paradigm of the time-split cross-validation was put
forward where the datasets were apportioned into training and test groups depending
upon the experimental time order of the data [212]. Sheridan et al. compared varied
cross-validation algorithms employed to assess the conduct of the QSAR model and their
outcomes indicated that the R2 value obtained by time-split cross validation scheme was
more representative of the actual prospective predictive value [213]. Steered by this out-
come, Ma et al., engaged the time-split cross-validation instead of traditional random-spilt
cross-validation to appraise the conduct of the deep neural network (DNN) in mimicking
the pragmatic hit-to-lead schema [8]. For all of these studies, experimental time is a crucial
vital attribute, and time-split cross validation must be executed in drug discovery when
the data of experimental time information is at one’s disposal.
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3.4. What It Takes to Train the Deep Neural Networks

Despite the fact that DL models outclass various conventional ML algorithms, they
still invoke many more parameters and unrelated architectures, which leads to several
problems during training, specifically in the situations when the samples are inadequate
or the feature matrix is meagre. The training process might only obtain a ‘local optimum’
and the accurateness is inadequately valid. For combating this issue, the unsupervised
pre-training approach like “deep belief network” has been recommended to upgrade the
parameter booting, and the outcomes hint that the approach has been extra efficacious in
comparison with the random initial values [153]. A study hinted that the dropout blueprint
could efficiently avert overfitting during the QSAR dataset training [8]. Furthermore, in
comparison with the “sigmoid action function”, “Rectified Linear Unit (ReLU)” action
function has added relevance in the context of the QSAR assignments due to its benefits in
forestalling the ‘gradient disappear’ as well as ‘local optimum’.

3.5. The Accessible Drug Design AI Source Code

In the pharmaceutical sector, the business advantages of computer software driven
drug design is proven. But a great many software originators are motivated to dissem-
inate their programs on GitHub or various open-source repositories, to combine the AI
algorithms with drug design approaches. Many open-source execution platforms for
AI-facilitated drug design paradigms have been outlined in Table 1. Such open-source
repositories will boost the pervasive operationalization of AI technologies in this arena.

4. Contribution of AI in the Lifecycle of Pharmaceutical Items

This section outlines AI solutions in pharmaceutical products’ lifecycle that could find
numerous implementations, but none of the available market solutions cover them all. Nat-
ural Language Processing (NLP) allows document summarization, document generation,
and Named Entity Recognition (NER) based on novel Bidirectional Encoder Represen-
tations from Transformers (BERT) and Generative Pre-trained Transformer (GPT). It can
be used for Real World Evidence (RWE)-based trials, reports, and summaries generation.
Random Forest (RF), Naive Bayes (NB), and Support Vector Machine (SVM), as well as
other methods, could be used for a large amount of unstructured information analysis for
new drug target identification. Deep Neural Networks (DNNs), Reinforcement Learning
(RL), and Principal Component Analysis (PCA) are most useful for novel molecule genera-
tion in silico and their activity prediction. Drug repositioning and repurposing could be
done with text mining, coupled with Feed-forward Neural Network (FNN). Generation
of synthetic biology is based mostly on NLP implementations for RNA-based sequencing.
Clinical trials utilize Real World Data (RWD) and RWE approaches with AI, NLP, and
NER support. Image classification with Convolutional Neural Networks (CNNs) can auto-
matically discover, generate, and learn features of images which are useful in pre-clinical
and clinical trial results processing. Personalized therapy could be aided with Neural
Network (NN) patient risk prediction and multiple factors analysis, including genetics.
Drug dispensing control is based on Electronic Medical Record (EMR) analysis for coun-
terindications and drug combination interactions. Additionally, ML and AI technologies
could be used for monitoring and predicting epidemic outbreaks around the world to align
pharmaceutical development.

4.1. AI in Promoting Pharmaceutical Product Advancement

The identification of a novel drug compound depends upon its consequent embodi-
ment in a proper dosage formulation with preferred delivery attributes. From this aspect,
AI can oust the earlier trial and error method [214]. Many computational techniques can
iron out issues experienced in the formulation design aspect, like stability problems, poros-
ity, dissolution, etc., utilizing Quantitative Structure Property Relationship (QSPR) [215].
Decision-support systems invoke rule-grounded algorithms to decide the class, attributes,
and amount of the excipients banking upon the physicochemical features of the medica-
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tion and act via a feedback system to supervise the whole mechanism and periodically
adjust it [216].

An amalgamation of “Model Expert Systems (MES)” with ANN to engender a mixed
approach for the advancement of direct-stuffing of hard gelatin piroxicam capsules in
conformity with the stipulations of its dissolution parameters has been reported. The MES
determines options and propositions for formulation advancement depending upon the
input feed criteria. On the contrary, ANN employs backpropagation training to connect
formulation criteria to the preferred feedback, managed with the control module in tandem,
to assure convenient formulation advancement [214].

Multiple mathematical means, such as Computational Fluid Dynamics (CFD), Discrete
Element Modeling (DEM), and the Finite Element Method (FEM) have been employed
to probe the effect of the flow characteristics of the powder upon the die-stuffing and
method of tablet compression [217,218]. In addition, CFD could be employed to examine
the influence of tablet shape/size upon the dissolution parameters [219]. The amalgamation
of such mathematical paradigms with AI may turn out to be of great benefit for the swift
manufacture of pharmaceutical items.

4.2. Contribution of AI towards Manufacturing of Pharmaceutical Products

In view of the rising intricacies of production systems coupled with an incremental need
for optimization and improved product standards, contemporary production approaches
are attempting to transfer human know-how to machines, frequently transforming the pro-
duction aspects [220]. The integration of AI in manufacturing systems can hold a plethora
of advantages for the pharmaceutical sector. Aids like CFD engage “Reynolds-Averaged
Navier-Stokes” solvers technique which probes the effect of agitation and stress grades
in various equipage (like stirred tanks), harnessing the mechanization of a multitude of
pharmaceutical processes. Identical processes, like ‘direct numerical simulations’ as well as
‘large eddy simulations’, employ cutting-edge schemes to iron out convoluted flow issues
in production [217].

The innovative“Chemputer”system facilitates digital mechanization in the synthesis
and production of molecules, unifying many chemical signatures and executing by utilizing
a scripting software code named “Chemical Assembly (ChASM)” [221]. This has been
utilized opportunely for the formation and production of diphenhydramine hydrochloride,
rufinamide, and sildenafil, with the harvest and cleanness notably identical to hand-
operated synthesis [151]. The predicted achievement of granulation in granulators of
volumes varying between 25–600 L could be accomplished effectively by AI technical
knowledge [222]. The technical knowledge and neuro-fuzzy logic links vital parameters
to their output. This system formulated a polynomial relationship for the prognostication
of the ratio of the granulation fluid to be poured, desired speed, as well as the impeller
diameter parameters in both geometrically identical and non-identical granulators [223].

“Discrete Element Modeling (DEM)”is extensively employed in the pharmaceutical
sector, such as in evaluating the partition of powders constituting a binary mixture, the
fallout of altering blade speed and geometry, foretelling the probable route of the tablets
for the encapsulation procedure, together with scrutiny of time expended by tablets in the
spray section [217]. ANNs, coupled with fuzzy paradigms, examined the interrelationship
among machine settings as well as the issue of capping to pare tablet capping on the
production line [224].

AI capabilities such as meta-classifier and tablet-classifier could facilitate the manage-
ment of the quality benchmark of the ultimate output, like pointing to a probable aberration
in tablet production [225]. A patent has been applied for, establishing a process skillful
in identifying the most exclusive amalgamation of drug and dosage schedule for indi-
vidual patients, employing a processor culling patient data, and configures the preferred
transdermal patch as required [226].
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4.3. Role of AI in Managing and Ensuring Quality

Production of the preferred item from the raw goods requires a harmonization of
multiple criteria [225]. Stringent quality checks on the items, as well as upkeep of batch-
to-batch constancy, behooves hand-operated intervention. This might not be the ideal
method in each instance, signifying the necessity for AI engagement during this time [217].
The FDA updated the “Current Good Manufacturing Practices (cGMP)” by suggesting
a ‘Quality by Design’ scheme to comprehend the pivotal activity and explicit standards
that regulate the ultimate nature of the pharmaceutical product [227]. A blend of human
endeavor and AI have been utilized, wherein first-round data from manufacturing sets
were scrutinized and decision trees originated. They were subsequently transliterated into
axioms and explored by the operators to facilitate the manufacturing cycle afterwards [225].
A scientific document reviewed the dissolution characteristics, a barometer of batch-to-
batch constancy of theophylline pellets with the help of ANN, that accurately presaged the
dissolution of the examined formulation, the inaccuracy being< 8% [228].

AI can also be executed for the governance of in-line production schemes to accomplish
the preferred product quality [227]. ANN-facilitated surveillance of the freeze-dehydrating
approach is utilized, which implements a merger of self-adaptive evolvement together
with local search as well as backpropagation algorithms. Such methods can be employed
to foretell the temperature and desiccated-cake thickness at a later time point (t +Dt) for
a specified group of operating characteristics, ultimately facilitating in imposing a vigil on
the eventual product standards [229].

An automatic data entry algorithm, like an “Electronic Lab Notebook”, in concert with
refined, resourceful mechanisms, can secure the quality guarantee of the produce [230]. In
addition, data mining and multiple knowledge discovery methodologies in the “Total Quality
Management (TQM)” expert process may be utilized as worthwhile avenues in arriving at
convoluted judgments, crafting advanced technologies for astute quality management [231].

4.4. Role of AI Algorithms in Determining Clinical Trial Blueprints

Clinical trials are aimed at demonstrating the safety and efficacy of a medication in
humans for a specific ailment and need 6–7 years together with a significant financial
outlay. But only 10% molecules tested in such trials achieve fruitful approval, which is
a gigantic failure for the industry [232]. These losses can arise due to incorrect patient
choice, paucity of technical infrastructure, and poor facilities. But, with the colossal digital
medical information accessible, these setbacks may be curtailed by utilizing AI [233].

The recruitment of patients consumes about 33% of the clinical trial duration. The
fruition of a clinical trial may be facilitated by appropriate patient enrollment, which
contrarily results in ~86% of non-fruition scenarios [234]. AI may help in choosing only
a selective diseased populace for Phase II and III clinical trial enrollment by utilizing patient-
pertinent genome-exposome feature scrutiny, which could facilitate advanced augury of
the existing drug targets in the subjects chosen [59,233]. Preclinical scrutiny of molecules
and also identifying lead compounds prior to the initiation of clinical trials by employing
adjunct attributes of AI, like predictive ML and alternative inferencing algorithms, aid in
the advanced forecasting of lead molecules which would make the cut in clinical trials in
the chosen patient population [233].

Drop out of patients in clinical trials contributes to the non-fruition of about one-third of
clinical trials, resulting in auxiliary enrolment needs for the culmination of the trial, with
consequent improvidence of time and finances. Such issues can be obviated by tight surveil-
lance of the patients and facilitating them in complying with the rightful protocol of the
clinical trial [234]. Mobile software has been introduced by “AiCure” which checked usual
medication use by schizophrenia patients in a Phase II trial, with consequent augmenta-
tion of the compliance frequency of patients by 25%, assuring a fruitful conclusion of the
clinical trial [59].



Int. J. Mol. Sci. 2023, 24, 2026 26 of 40

4.5. Role of AI in Pharmaceutical Product Management
4.5.1. Role of AI in Market Positioning

Market alignment is the scheme of engendering a uniqueness of the marketed prod-
uct to entice buyers to purchase it, making it a mandatory component in most business
tactics for organizations to build their own novel niche [235,236]. This strategy was uti-
lized for marketing of prime brand Viagra, in which the marketing firm targeted it not
only for addressing men’s erectile impairment, but also for adjunctive issues influencing
quality of life [237].

Utilizing technology coupled with e-commerce as a launchpad, it has become smoother
for organizations to acquire an instinctive acclaim of their brand identity in the public
sphere. Firms harness search engines among many available technological pulpits to take
up an eminent place in online marketing and aid in the market alignment of the product,
as also established by the “Internet Advertising Bureau”. Firms repeatedly endeavor to
classify their websites better than those of competitor firms, providing identity to their
brand in an abbreviated timeline [238].

Other approaches, like statistical assessment techniques, particle swarm optimiza-
tion schemes (documented in 1995 by Eberhart and Kennedy) together with NNs, gave
a superior opinion about markets. Such approaches can aid in selecting the marketing
blueprint for the product attuned to precise consumer-demand prognostication [239].

4.5.2. Role of AI in Market Forecasting and Scrutiny

The prosperity of a firm rests upon the ongoing advancement and augmentation of
its commercial interests. Even with outlay of massive funds, R&D harvest in the pharma-
ceutical sector is declining owing to the inability of firms to adapt to current marketing
methodologies [240]. The evolution of digital technologies, named the “Fourth Industrial
Revolution”, is facilitating novel digitalized marketing through a multimodal decision-
making scheme, which obtains and evaluates statistical and mathematical data and executes
human interpretations to enable AI-enabled decision-making paradigms hunt for fresh
marketing prospects [241].

AI also facilitates a detailed scrutiny of the core needs of a product from a customer’s
viewpoint and also in comprehending the requirement of the market, which helps in
decision-making utilizing prediction models. This process is also capable of foretelling
sales and evaluating the market. Software engaging AI employ consumers and engender
knowledge among healthcare professionals by exhibiting commercials targeting them to the
product section with one click [242]. Moreover, these approaches engage natural language-
processing (NLP) algorithms to scrutinize keywords fed by buyers and link these to the
possibility of buying the product [243,244].

Many businesses to business (B2B) firms have declared self-use platforms that permit
free survey of health products, readily located by providing its specification, accept orders,
as well as monitor their transportation logistics. Pharmaceutical organizations are also
putting forward their online sites like “1 mg”, “Medline”, “Netmeds”, and “Ask Apollo”,
to address the unfulfilled patient requirements [241]. Prognostication of the selling space
is also imperative for many pharmaceutical trading firms, with the capability to execute
AI in the field, in the manner of “Business intelligent Smart Sales Prediction Analysis”,
which utilizes a merger of time series prediction and real-time utilization. This assists
pharmaceutical firms to foretell the trade of products aforetime to forestall expenses of
surplus buildup or avert buyer disadvantage due to shortfall [245].

4.5.3. Role of AI in Product Cost

Depending upon the market assessment and cost acquired in the advancement of
the pharmaceutical goods, the organization decides the ultimate cost of the item. The
crucial notion in implementing AI to resolve this cost is utilizing its prowess to simulate
the cognition of a human specialist to evaluate the criteria that govern the valuation of
a product following its production [245]. Issues, like financial outlay in the course of
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research and advancement of the medication, rigorous price control plans in the relevant
country, period of the exclusivity duration, market stake of the improvised agent after
a year prior to patent expiration, costing of the reference item, and price-determining
statutes control the cost of branded as well as generic medications [246].

In ML, massive bodies of statistical data, like product advancement expenditure,
product need in the market, itemization record expenses, manufacturing expenses, and
competitors’ product cost, are evaluated using the algorithm, consequently evolving soft-
ware for predicting the product cost in the aftermath. AI algorithms such as “In competitor”,
floated by “Intelligence Node” (set up in 2012), is a total market competitive savvy package
that scrutinizes the competitor costing information and aids market players and brands
to govern the competition. “Wise Athena” and “Navetti PricePoint” facilitate the user to
set the costing of their item, implying that pharmaceutical establishments can embrace the
same to aid product pricing [247].

4.6. A Snapshot of AI-Based Advanced Implementations
4.6.1. Drug Delivery Technologies Engaging AI-Grounded Nanorobots

Nanorobots are composed of primarily integrated circuits, power source, sensors,
as well as a protected auxiliary data alternative, which are abetted by computational
know-how, like AI [248,249]. Such algorithms are trained to avert the encounter, target
determination, identification and association, and ultimately purging out from the body.
Advancements in nano/microrobots endow such contraptions with the capability to cruise
to the focused locus depending upon physiological circumstances, like pH, hence bettering
the efficacy and curbing adverse actions on body systems [249]. Evolution of body-fixable
nanorobots initiated for controlled distribution of medicaments and genes behooves review
of criteria like dose tailoring, continued drug transmission, and modulated release, as well
as the discharge of the drugs needing mechanization managed by AI algorithms, like NNs,
integrators, and fuzzy logic [250]. Body-fixable microchips are employed for programmed
drug transmission and to identify the position of the implant within the body.

4.6.2. Role of AI in Concerted Drug Delivery and Augury of Synergism/Antagonism

Several drug combinations have been authorized and offered for sale to counter
complex afflictions, like TB and cancer, since they are capable of furnishing a synergis-
tic action for swift improvement [251,252]. The choice of appropriate and promising
medications for combination needs high-throughput scrutiny of a sizable quantum of
medications, leading to a labor-intensive mechanism; for instance, cancer treatment needs
six or seven medicinal agents for combination chemotherapy. ANNs, network-dependent
modeling, and logistic regression could enable screening drug combos and upgrade general
dose schedules [251,253]. Rashid et al., proposed a ‘quadratic phenotype optimization
scheme (QPOS)’which identifies efficacious combination treatment for the management of
bortezomib-resistant multiple myeloma utilizing a selection of 114 FDA-authorized agents.
This paradigm endorsed the pairing of mitomycin C (MitoC), with decitabine (Dec) as
the leading two-agent combo and MitoC, mechlorethamine, with Dec as the preferred
three-agent combo [252].

Drug administration in combination may be more effective if assisted by information
on the synergism or antagonism of drugs transmitted concomitantly. The “Regulator Infer-
ence Algorithm utilizes ‘Master regulator genes’ to competently foretell 56% of synergistic
action. Alternative approaches, like Network-based Laplacian regularized Least Square
Synergistic (NLLSS) drug combination, as well as ‘random forest (RF)’, may also be utilized
for the purpose [253].

Li et al. advanced a synergistic drug assortment paradigm utilizing RF for the au-
gury of synergistic anticancer drug combos. This exemplar was engendered grounded
upon gene expression attributes and many networks, so that the researchers could ef-
fectively foretell 28 synergistic anticancer combos. They have documented three such
assortments, even if the rest could also ultimately turn out to be critical [66]. Furthermore,
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an ML implementation scheme, termed the Combination Synergy Estimation, is capable
of presaging promising synergistic antimalarial drug assortments from a library group of
1540 antimalarial drug molecules [254].

4.6.3. The Materialization of AI in Nanomedicine

Nanomedicines utilize nanotechnology and medications for the diagnosis, treatment,
and surveillance of convoluted afflictions, like malaria, cancer, HIV, many inflammatory
maladies, and asthma. Of late, nanoparticle-modulated drug delivery has assumed dom-
inance in the arena of therapeutics and diagnostics as they have improved therapeutic
effectiveness [252,255]. A merger of nanotechnology with AI may afford answers to various
issues in formulation advancement [256].

A nanosuspension of methotrexate has been algorithmically methodized by examining
the energy emanating from the admixing of the drug molecules, examining the factors that
could favor the formulation clumping [215]. ‘Coarse-grained simulation’, in concert with
chemical estimation, can assist the interactive evaluation of drug-dendrimer and appraisal
of drug encapsulation inside the dendrimer. Furthermore, software such as LAMMPS
and GROMACS4 could be utilized to probe the punch of surface chemistry on the cellular
uptake of nanoparticles [215].

AI enabled the formation of silicasomes, which is a blend of internalizing arginine-
glycine-aspartic acid sequences (iRGD), a tumor-penetrating peptide, and multifunctional
mesoporous silica nanoparticles charged with irinotecan. This internalization of silicas-
omes may be enhanced three- or four-fold as iRGD promotes silicasometranscytosis, with
enhanced treatment results and favorable long-term survival [255].

5. The Market Potential of AI Applications for Drug Discovery and Development

To curtail the fiscal expenses and possibility of losses which are associated with Virtual
Screening (VS), pharmaceutical enterprises are switching over to AI applications. The
AI market witnessed an upsurge from USD 200–700 million between 2015–2018, and
this is anticipated to rise by 2024 to USD 5 billion [257]. A 40% estimated surge from
2017–2024 implies that AI will possibly refashion the medical and pharmaceutical arenas.
Many pharmaceutical firms have devoted or/and are maintaining financial commitment in
AI and in addition cooperated with AI providers for engendering indispensable healthcare
paraphernalia. Cooperation between DeepMind Technologies, a branch of Google, and
the Royal Free London NHS Foundation Trust for the abatement of acute kidney injury,
has been an exemplary instance. Primary pharmaceutical firms and AI vendors have been
specified in Table 2 [258].

Table 2. Partnerships of AI establishments with pharmaceutical firms.

Company/Firm Utilization of AI Partnership with the
Pharmaceutical Establishment

Platform Advanced/Lead
Agents for Clinical Trials

Numerate
San Francisco,

CA 94107,
USA

A scheme for AI-facilitated
drug design addressing

oncology and
gastroenterology specialities

Takeda
Agent S48168 in Phase 1 of

clinical testing for Ryanodine
receptor 2

Numerate
San Francisco,

CA 94107, USA

A scheme for AI-facilitated
drug design addressing

oncology and
gastroenterology specialities

Servier

Drug advancement related to
oncology, central nervous

system, and
gastroenterologic maladies

Atomwise
San Francisco,

CA 94103, USA

A scheme for AI-enabled
structural modelling Lilly Agent BBT-401 in Phase 2 of

clinical testing
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Table 2. Cont.

Company/Firm Utilization of AI Partnership with the
Pharmaceutical Establishment

Platform Advanced/Lead
Agents for Clinical Trials

Atomwise
San Francisco,

CA 94103, USA

A scheme for AI-enabled
structural modelling Bridge Biotherapeutics

Augmentation of Pellino
Inhibitor Pipeline; Agent

BBT-401 evaluated in Phase-2a
of clinical testing

Benevolent AI
London, UK

AI-facilitated Judgement
Augmented Cognition System

(JACS) for originating and
advancing novel clinical lead

agents effective in
neurodegenerative ailments

Janssen
Fresh set of drug compounds

to be advanced via
such collaboration

Benevolent AI
London, UK

AI aided schemes to advance
novel clinical lead agents

effective in chronic
kidney ailments

AstraZeneca

Drug candidate evaluated in
Phase 2b clinical testing as

a lead agent effective in
chronic kidney ailments

Exscientia
Oxford, UK

A scheme for AI-enabled drug
discovery and lead refinement Sanofi

Drug Discovery Research in
obsessive-compulsive

disorder, Agent DSP-1181 in
Phase I clinical testing.

Advance Centaur Chemist™
scheme for AI-enabled

drug discovery

IBM Watson Health
Cambridge, MA 02142, USA

Furnishes a scheme for clinical
and health-associated

data evaluation
Pfizer Accelerating drug discovery

efforts in immuno-oncology

IBM Watson Health
Cambridge, MA 02142, USA

Furnishes a scheme for clinical
and health-associated

data evaluation
Novartis

Real-time surveillance of
patients to augment breast

cancer patient
intervention results

Microsoft Redmond,
WA 98052, USA

A scheme for image
processing as well as cell and

gene-aided therapeutic
interventions

Novartis

Engendering an AI Innovation
lab to augment the drug

discovery mechanism as well
as its commercialization

Owkin
Broadway, New York,

NY, USA

Furnish a scheme for clinical
testing aided by ML technique Roche

Originated and advanced
Owkin’s Studio platform
utilizing AI technology

Sensyne health
Headington, Oxfordshire, UK

A tool serving clinical
AI schemes Bayer

Originated and advanced
Sensyne Health’s proprietary
clinical AI technology package

XtalPi
Shenzhen, Guangdong, China

A package enabling Target
identification and validation
incorporating QM as well as

ML schemes

Pfizer

Presage and refinement of
crystalline entities of drug

candidates utilizable in early
stages of drug screening

BioXcel therapeutics
New Haven, CT, USA

A scheme facilitating drug
discovery services

incorporating AI mechanisms
Pfizer

Lead agent BXCL501-in
assessment in Phase 3 clinical

testing; Drug agent
BXCL701-in assessment in
Phase 2 clinical assessment
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6. Continuing Bottlenecks in Accepting AI: Hints on Methods to Conquer

In spite of rapid advancements in AI and ML algorithm technologies implemented in
the pharmaceutical industry, there persist numerous threats regarding the implementation
and assimilation of these technologies into the drug discovery process specifically and the
pharmaceutical industry in general.

One problem is sloppy data integration. This issue arises from diversity existing
between datasets, which may constitute raw data, processed data, metadata, or candidate
data. Such datasets should be accumulated and collated for effective analysis, but presently,
there exists no validated method of doing so. This is imperative prior to initiation of the
drug discovery process, as without appropriately formatted data, the output of the ML
algorithms will be imprecise. More efficient methods for integrating available data into
data banks before the drug discovery process is initiated are therefore necessary.

A separate recognized issue is occupational and skillset immobility: many people
presently engaged in the pharmaceutical sector lack the mandatory skillsets or the qualifi-
cations required for operating AI systems. A good number of the workforce are proficient
in data science, while others in molecular chemistry and biology, though few are experts in
both domains, with the optimum amalgamation of skills to engage AI from a pharmaceuti-
cal context. An awareness of the underlying chemistry is imperative for the origination of
relevant algorithms, and vice versa.

Each firm applies their own proprietary AI algorithms which are unavailable in the
public domain. Thus, there is skepticism about ML and AI in the pharmaceutical indus-
try stemming out from a deficient comprehension about the methodology of algorithms,
termed as the “black box” phenomenon, and agnosticism for the results generated. Those
who are skeptical may be hesitant to engage the data originating from AI and ML, squan-
dering both time and money, and impeding the forward progression of the industry with
regards to efficiency.

The absolute triumph of AI banks upon the accessibility of a massive volume of data
as such data are utilized during consequent training subjected to the algorithm. Availability
of data from numerous database vendors can inflict additive costs to a firm, and the
data must also be dependable and excellent quality to assure precise outcome forecasting.
Further bottlenecks that hinder full-blown acceptability of AI in the pharmaceutical sector
comprise the dearth of trained manpower to implement AI-based systems, restricted
financial resource base for small establishments, worries of substituting humans with
subsequent job losses, lack of confidence in the data churned out by AI, as well as the
“black box effect” (i.e., the mechanisms contributing to the compiled outcomes which are
generated as a result of the AI algorithm) [18].

Mechanization of many steps in drug advancement, production, and supply networks,
clinical trials, and trading will occur over time, but all such activities get incorporated in
the umbrella of ‘narrow AI’; where AI has to be schooled utilizing a massive amount of
data and, hence, makes it appropriate for a specific assignment. Hence, human mediation
is compulsory for the effective application, advancement, and execution of the AI algo-
rithm. But the apprehension of retrenchment could be a delusion considering that AI is
recently assuming iterative tasks, while sparing liberty for human intellect to be utilized
for advancing more convoluted judgements and ingenuity.

Notwithstanding, AI has been accepted by numerous pharmaceutical organizations,
and it is anticipated that earnings of about USD 2.2 billion will be realized by 2022 via AI-
grounded fixes in the pharmaceutical arena, with a financing in excess of USD 7.20 billion
embracing 300+ pacts during 2013–2018 by the pharmaceutical business [259]. Pharmaceu-
tical businesses require transparency regarding the promise of AI algorithms in innovating
troubleshooting fixes to complications once it has been applied, in concert with comprehend-
ing the justifiable standards that can be accomplished. Talented data scientists, software
engineers equipped with a solid understanding of AI system tools, and a transparent com-
prehension of the objectives and R&D focus of business models will enable the advances
and engagement that the AI platform promises.
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7. Conclusions and Future Promise

The progress of AI, together with its impressive tools, regularly aiming to curtail
bottlenecks encountered by pharmaceutical organizations, affecting the drug advancement
pipelines in concert with the long-term lifecycle of the merchandise, may justify the spurt
in the quantum of start-ups in this arena [260]. The present healthcare arena is experiencing
numerous contorted threats, like the rising prices of medications and treatments, and society
requires definitive, noteworthy action in such fields. Consequent upon the incorporation of
AI in the production of pharmaceutical goods, personalized medications with the apt dose,
release attributes, and varied needed facets may be produced in accordance with individual
patient demand [234]. Utilizing the current AI-aided algorithms should abbreviate the
duration necessary for the goods to reach the market, as well as also enhance the quality of
goods and the comprehensive security of the manufacturing scheme, and lead to augmented
usage of accessible resources together with being cost-efficient through underscoring and
advancing the criticality of mechanization [261].

The most serious apprehension concerning the inclusion of these platforms is the job
cuts that are anticipated to emerge and the rigorous practices mandated towards application
of AI. But, these technologies are proposed in order to render the task effortless and not
to totally oust humans [262]. Apart from facilitating swift and issue-free hit compound
determination, AI may also furnish recommendations of synthesis pathways of these agents
together with the augury of the preferred chemical architecture and a comprehension of
drug-target associations and the pertinent SAR.

AI is also capable of proposing dominant inputs to the subsequent inclusion of the
originated drug in its pertinent dosage form and its refinement, in concert with facilitating
swift decision-making, culminating in rapid output of enhanced-quality goods together
with promise of batch-to-batch dependability. AI may in addition add to instituting the
safety and effectiveness of the agents in clinical trials, coupled with assuring optimum
alignment and pricing in the market via extensive market scrutiny and forecasting. Regard-
less of the truth that there are no drugs presently on the market originated with AI-enabled
schemes, distinct challenges prevail with regard to the application of this technology, it
is possible that AI will mature into a precious tool in the pharmaceutical sector in the
imminent future.
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