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Abstract: The vascular endothelium plays a vital role during embryogenesis and aging and is a
cell monolayer that lines the blood vessels. The immune system recognizes the endothelium as its
own. Therefore, an abnormality of the endothelium exposes the tissues to the immune system and
provokes inflammation and vascular diseases such as atherosclerosis. Its secretory role allows it to
release vasoconstrictors and vasorelaxants as well as cardio-modulatory factors that maintain the
proper functioning of the circulatory system. The sealing of the monolayer provided by adhesion
molecules plays an important role in cardiovascular physiology and pathology.
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1. Introduction

The vascular endothelium is much more than just a physical barrier at the interface
between the circulating blood and the vascular wall [1–3]. In the 1960s, the vascular
endothelium was considered a passive barrier protecting the vascular wall from circulating
blood [2–4]. In the 1980s, it emerged as a multifunctional endocrine organ, playing an
essential role in regulating cardiovascular tone [2,5–9].

2. The Vascular Endothelium

The vascular endothelium is a simple tissue in its morphology but complex in its
function. Although it is formed as a single monolayer, it is capable of sensing hemodynamic
and rheologic changes as well as responding to these modifications of its environment.
Vascular tone is maintained by balancing vasodilating and vasoconstricting factors released
by the endothelium. In addition, the endothelium plays a key role in controlling the
migration and proliferation of VSMCs [2].

The integrity of the endothelial monolayer is essential to regulate vascular permeability
and protect the vessel against platelet deposition and thrombus formation. Furthermore,
the integrity of this monolayer requires that the morphology and the contacts between ECs
do not change.

3. Origin and Differentiation of the Vascular Endothelium

The endothelium is the first cell type to constitute blood vessels. The formation of
blood vessels and vasculogenesis result from the differentiation of the mesodermal cells into
angioblasts due to the presence of specific proteins. These angioblasts are the precursors of
endothelial and blood cells. The physiological primitive angiogenesis takes place to form
the vascular tree, which gives birth to buds of the branches that give birth to the heart,
including its endocardial endothelial cells. Then, remodeling of the vascular tree takes
place to form capillaries and veins, including large arteries [2,10,11]. The endothelium of
these newly formed blood vessels differs depending on the type of vessels. For example,
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fibroblast growth factor (FGF) receptors seem to be expressed only in large vessels [12].
Several ligands and their corresponding receptors are implicated in the differentiation and
formation of the endothelium, including vascular endothelial growth factor (VEGF) and its
receptors 1 and 2 [10].

The heart’s formation is more than a deformation of blood vessels, and differentiation
of vascular endothelium into endocardial endothelium forms the left (arterial) and right
(venous) endocardial endothelium layers. Both endocardial and vascular endothelium are
separated from their muscle cells by a basal lamina membrane [2]. Vasculogenesis occurs
during early embryonic development, whereas angiogenesis happens during adulthood.
Angiogenesis is usually associated with diseases [11]. Several endothelial markers exist,
such as VE-cadherin, PECAM-1, Tie-1 and 2, and flk1. Notch family activation plays an
essential role in defining the characteristics and identities of arterial endothelial cells [13].
Although the molecular aspect of the arterial specification is more precise, little is known
concerning the venous specification [13]. For example, the vascular endothelium can adapt
its function depending on the environment. Still, it does not change its phenotype, such
as in transplanted arterial and venous vessel grafts, where the graft vessel’s endothelium
matches the host vessels’ characteristics [14,15].

4. Role of the Endothelium in Vascular Physiology

All blood vessels contain endothelial cells that form the intima. Two types of blood
vessels only have endothelial cells: capillaries and venules. The intima is formed by contin-
uous and discontinuous (fenestrated) layers of endothelial cells. Examples of continuous
endothelium are arteries and veins. Tight, adherent junctions connect the continuous
layer of endothelium side by side. Transport molecules go through this sealed mono-
layer of the endothelium via a transcytosis mechanism, such as caveolae (caveolin-1)
and vesiculo-vacuolar organelles [16]. A fenestrated, discontinuous layer of endothelium
permits extensive transport of molecules toward tissues such as the liver.

Several physiological functions are attributed to vascular endothelium, independent
of their localization in the vascular tree, such as tuning the level of vascular endothelial
cells (VECs) vasoconstrictors and vasorelaxers [2,17], regulation of coagulation and inflam-
mation [3,18], and playing an essential role as a gatekeeper of fatty acids transport [19–24].

Among the vasoconstrictive factors released by the vascular endothelium are endothelin-
1 (ET-1), thromboxane A2 (TxA2), as well as angiotensin-II (AngII) [2,16,17,25,26]. On the
other hand, the most vasorelaxant factors released by the endothelium are nitric oxide
(NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing factor (EDHF) [2,27].

The blood vascular system consists of a circuit of vessels in which the continuous
movement of the heart pump maintains the blood flow. Blood vessels distribute nutrients,
oxygen, and hormones to all organs and tissues and transport the products of cellular
metabolism. The walls of arteries and veins, such as the thoracic aorta, used commonly in
the literature, consist of three concentric tunics that are firmly joined from the inside out [2]
(Figure 1): (1) The intima is the thin innermost layer that lines the various vascular walls,
including those of the capillaries and venules. It is composed of a monolayer of endothelial
cells (ECs) in direct contact with the blood and forming the vascular endothelium. The ECs
provide a smooth inner surface that minimizes friction, which facilitates blood flow. The
vascular endothelium is supported by a basal lamina and a thin connective tissue formed
by collagen and some elastic fibers;

(2) The media is the thickest intermediate layer of the vascular wall. It consists of
vascular smooth muscle cells (VSMCs), collagen, and elastin. This layer is absent in the
capillaries and venules; (3) The adventitia is the outermost layer of the vascular wall. It
is absent in capillaries and venules. This layer is formed of supporting connective tissue
consisting mainly of collagen. It is also crossed by numerous nerve endings controlling
the activity of the muscle fibers as well as the blood vessels feeding the vascular wall,
called vasa vasorum (vessels of the vessels). The relative importance of these three layers
varies according to the type of blood vessel [2]. In conclusion, all blood vessels have an
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endothelium but not necessarily adventitia or VSMCs, hence the importance of studying
and learning more about the vascular endothelium.
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5. Structure of the Vascular Endothelium of Arteries and Veins

A monolayer of flat cells forms the vascular endothelium of arteries and veins, with a
central nucleus measuring 10–20 µm in diameter. VECs are characterized by extensive inter-
cellular overlap and long, deep slits that contribute to the integrity of the vascular endothe-
lium [2]. The integrity of this monolayer is ensured by a dynamic cytoskeleton [2,28–30]
as well as by contacts between cells and between these cells and the extracellular ma-
trix [2,31,32]. In vivo and in situ morphology studies have shown the presence of tight
junctions, adhesion junctions, and gap junctions between adjacent VECs (including aortic
VECs) [32–34]. In addition, several roles have been attributed to junctional communication
at the vascular endothelium level, including intercellular nutrient exchange, regulation of
growth and differentiation, coordination of cellular response to exogenous and endogenous
stimuli, and maintenance of vascular tissue homeostasis [35–38].

The cytoskeleton is well-developed in ECs. It contributes to vascular homeostasis
and seems to play an essential role in the repair and integrity of these cells [28–30]. VECs
contain the actin protein in its filamentous polymeric form, called F-actin, and in its globular
monomeric form, called G-actin [39,40]. Therefore, F- and G-actin play a role in the shape
of ECs. The balance between the monomeric and polymeric forms could be altered during
stimulation of ECs and contribute to the modulation of intercellular junctions that affect
the vascular permeability of the endothelial layer. Indeed, during the migration of VECs,
G-actins increase compared to F-actins [41]. The migration of these cells also involves
the redistribution of centrosomes [28]. Actin microfilaments are localized within the cell
as short, thin stress fibers and form a continuous band at the periphery [28,39]. In situ
studies have also demonstrated the presence of the protein myosin at the level of these
microfilaments [42,43], which plays an essential role in cell adhesion, and facilitates the
adaptation of the vascular wall to variations in blood flow pressure [28]. The presence or
absence of an actin isoform allows the identification of ECs. Therefore, the presence of
α-actin in VECs is considered to be a marker for this type of cell [44].

6. Role of the Endothelium in Vascular Activity

ECs respond to chemical and physical stimuli by synthesizing and releasing various
vasoactive and growth factors [2] (Figure 2). The endothelium possesses anti-adhesive sub-
stances that prevent blood from clotting. The anticoagulant and antithrombotic properties
of the vascular endothelium, which are essential for vascular homeostasis, are due to the
synthesis of vasodilatory factors such as nitric oxide (NO) and prostacyclin [5,16,42,45,46]
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(Figure 2). On the other hand, the vascular endothelium secretes several vasoconstrictor sub-
stances (Figure 2), including endothelin-1 (ET-1), prostaglandins, and several components
of the renin-angiotensin system (RAS), such as angiotensin II (Ang II). Ang II [25,26,47,48]
and ET-1 [49–51] act at the plasma and nuclear membranes of ECs and induce an increase
in the intracellular calcium level via activation of their respective receptors, AT1/AT2 and
ETA /ETB receptors. This increase in [Ca2+]i may, in turn, modulate the secretory function
of ECs [2,52] and survival [26,50]. Furthermore, a balance between the different factors
secreted by the EV is essential for maintaining intracellular homeostasis and wall integrity.
Any disturbance in this balance leads to endothelial dysfunction, characterized by a de-
creased capacity for relaxation of the vessel, an increase in the adhesion of blood cells to
the vascular wall, and a disturbance in the tunica medial [1,5,9,20,53–56]. This endothe-
lial dysfunction is generally observed during aging and in several vascular pathologies,
such as hypertension, hypotension, atherosclerosis, and heart failure [26,57,58]. All VECs
synthesize and secrete von Willebrand factor (vWF), a multifunctional protein involved
in the typical arrest of hemorrhage [59]. Indeed, through its interaction with extracellular
matrix proteins and membrane receptors, vWF plays a prominent role in blood coagulation,
platelet aggregation, and platelet adhesion to the extracellular matrix [60,61]. vWF can
also bind to the pro-coagulant co-enzyme, factor VIII, contributing to its stability and,
indirectly, to the production of fibrin [60,61]. vWF is stored in small vesicles characteristic
of endothelial cells, the Weibel–Palade bodies [60–62]. The latter contain other proteins,
such as ET-1 [62,63] and interleukin-8 [64]. In addition, vWF is used as a marker of ECs
in vitro [65].
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Figure 2. The endothelium produces vasoactive factors that cause either relaxation or contraction of
the vascular smooth muscle. Ang I and II: angiotensin I and II, ACE: angiotensin-converting enzyme,
Ach: acetylcholine, BK: bradykinin, cAMP/cGMP: cyclic adenosine/guanosine monophosphate,
ECE: endothelin-converting enzyme, EDRF: endothelium-derived relaxing factor, ET-1: endothelin-
1, 5HT: 5-hydroxytryptamine (serotonin), L-Arg: L-arginine, NO: nitric oxide, NOS: nitric oxide
synthase, PGH2: prostaglandin H2, PGI2: prostacyclin, TGFβ1: transforming growth factor beta 1,
Thr: thrombin, and TXA2: thromboxane A2. Circles represent receptors (AT: angiotensin receptor,
B: bradykinin receptor, ET: endothelin receptor, M: muscarinic receptor, IP: purinergic receptor,
S: serotonin receptor, T: thrombin receptor, and TX: thromboxane receptor).



Int. J. Mol. Sci. 2023, 24, 1998 5 of 13

7. Inter-Endothelial Junctions

Junctions between ECs are formed by a transmembrane protein called occludin, which
connects to a group of intracellular proteins such as zonula occludin-1 (ZO-1), ZO-2,
cingulin, and a new protein linked to GTP, rab13 [66,67]. Their main biological functions
are: (1) to form a barrier to paracellular permeability, (2) to maintain the apical-basal
polarity of cells, and (3) to assist in intercellular adhesion [68]. In vascular tissue, tight
junctions are distributed according to the permeability of the endothelial monolayer in
different vascular beds [69]. Figure 2 shows three different types of endothelial junctions.

The endothelium of the cerebral microcirculation is well sealed (continuous endothe-
lium) with an extensive network of tight junctions between cells to form the blood-brain
barrier [70]. ECs are more widely spaced, with relatively fewer tight intercellular junctions
in muscle capillaries (fenestrated endothelium) [71,72]. On the other hand, the endothe-
lium in postcapillary venules is highly discontinuous, with very few tight intercellular
junctions, to allow more interactions between blood and interstitial tissue (discontinuous
endothelium) [69].

Adhesion junctions allow ECs to act as strong structural units by linking the cytoskele-
tal elements of one cell to another [73,74]. These junctions are composed of two categories
of proteins: (1) intracellular attachment proteins that connect the junctional complex to the
actin filaments and (2) cadherins bind one or more intracellular attachment proteins, and
their extracellular domains containing Ca2+ binding motifs interact with the extracellular
domains of cadherins from another cell. Cadherins allow homophilic and Ca2+-dependent
adhesion between cells [73,74].

The adhesion molecule PECAM is essential for EC activities, such as angiogenesis and
control of leukocyte extravasation [75]. Integrins are receptor proteins of importance be-
cause they play an essential role in the interaction of ECs with leukocytes during inflamma-
tion [76]. The gap junction of ECs consists of connexons in the contact plasma membranes
of two cells and forms a microchannel that allows intracellular ions and molecules of low
molecular weight (<1000 Daltons) to be exchanged between ECs. One crucial role of gap
junctions between ECs is that this microchannel permits the propagation of Ca2+ waves
between cells and allows electrical coupling between ECs [77,78]. Connexin types include
Cx43, Cx37, and Cx40 [79–82]. In addition, specific adhesion molecules such as N-cadherin
and E-cadherin are essential in establishing coupling between contacting ECs.

8. Ionic Transporters in Vascular Endothelium

In addition to acting as a barrier between circulating blood and vascular smooth muscle
cells, the main role of VECs is the secretion of vasoconstrictors and relaxing factors. In turn,
these released endothelial vasoactive factors regulate endothelial excitation-secretion cou-
pling. Secretion generally depends on the increase of intracellular Ca2+ (Figure 2) [2,26,48].
Calcium plays a significant role in all cell types, including VECs. Regulation of Ca2+

homeostasis in vascular endothelium relies on Ca2+ influx through Ca2+ channels, the
ER, mitochondria, and the nucleus, as well as indirectly through the Na+/Ca2+ exchanger
(NCX) [2,27]. In addition, the level of Ca2+ release via the ER IP3 and ryanodine-sensitive
pools highly contributes to the excitation-secretion coupling of VECs [2,27,44]. The level
of intracellular Ca2+ also depends on the density of the plasma membrane and ER Ca2+

pumps [9,83].
In the early 1980s, it became apparent that different calcium currents coexisted in sev-

eral excitable cell types [27,52,83,84]. In VSMCs, two types of calcium currents are present:
L-type (high threshold) and T-type (low threshold) [27]. Compared with type L, the T
current activates and inactivates relatively quickly from the more negative membrane po-
tentials. Furthermore, the inactivation of the L-type calcium channel is calcium-dependent,
whereas the T-type channel is not [27]. There do not appear to be any L- or T-type calcium
channels in endothelial cells [27,44,52,85]. In contrast, a voltage-dependent and G-protein
coupled calcium channel called the R-type calcium channel has been identified in human
VECs, rabbit and human aortic smooth muscle cells, the renal artery, and cardiac ventric-
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ular cells [27,44,86,87]. The existence of this calcium channel was initially suggested by
Baker et al. (1971) [88]. They showed that this type of calcium channel allows the passive
entry of Ca2+ into the cell during a long-term depolarization of the membrane. It was
named the resting potential calcium channel by DiPolo in 1979 [89]. Unlike the L-type
calcium channel, the resting-type (R) calcium channel has no inactivation gates [44,90].
The latter is activated during sustained depolarization of the cell membrane of VSMCs
and has a conductance of 24 pS [27,44]. By measuring free intracellular calcium levels
using techniques such as microfluorometry and imaging, sustained membrane depolar-
ization produces a rapid, transient increase in intracellular calcium that is followed by
a sustained phase [91]. The first phase is abolished by L-type calcium channel blockers
such as nifedipine and L- and R-type blockers such as isradipine [87,91]. However, the
sustained phase is insensitive to nifedipine, caffeine, and other blockers but sensitive to
isradipine and the calcium chelator EGTA [91]. In addition, the R-type calcium channel
is responsible for sustained increases in calcium during sustained contraction of vascular
smooth muscle in response to various vasoactive and proinflammatory agents such as
PAF (Platelet Activating Factor), endothelin-1, as well as insulin [44,90,91]. In addition,
calcium influx via the R (resting) channel is primarily responsible for maintaining normal
physiological intracellular calcium concentration and the basic tone of vascular smooth
muscle [27]. Finally, this channel seems to be involved in basal secretion phenomena of the
vascular endothelium [44].

Several calcium channels were suggested to be present in vascular endothelium,
such as transient receptor potential channels 1–7 (TRPC1-7), store-operated channels,
receptor-operated channels (SOCs), receptor-operated calcium channels (ROC), ryanodine
calcium release receptors (RyR), IP3 receptor calcium release channels (IP3R), and storage-
operated calcium entry (SOCE) [89,92–96]. Except for RYR and IP3R, all other reported
calcium transporters were indirectly suggested to be present in vascular endothelium
because it is difficult to prove their presence and contribution to Ca2+ homeostasis due
to the absence of specific pharmacological blockers and because they cannot be recorded
using biophysical techniques. Thus, their presence and contribution to intracellular Ca2+

homeostasis are questionable.

9. Morphological and Functional Remodeling of Vascular Endothelium

As mentioned in the previous section, the vascular endothelium secretes substances
that cause relaxation and others that cause contraction [6,9,18,21,24,25,97,98] (Figure 2), and
a balance between these substances is a significant determinant of vascular homeostasis.
Therefore, any activation or damage to endothelial cells, as in cardiovascular diseases such
as atherosclerosis, hypertension, and cardiac failure, may cause disequilibrium in their
secretory functions and hence contribute to the different symptoms associated with these
diseases [6,9,19,20,23,30,92,94,98].

In the last decade, several studies investigating endothelial function have provided
strong evidence for the role of endothelial dysfunction in both large conduit and small
resistance vessels in patients with heart failure [99]. These studies have shown attenuated
endothelium-dependent vasodilation in patients with chronic heart failure [99]. Further-
more, a study has shown coronary endothelial dysfunction in patients with new-onset
idiopathic dilated cardiomyopathy, suggesting that changes in endothelial function occur
early in the course of the disease [100].

Recent work showed that high sodium salt-induced hypertension induced glycoca-
lyx destruction and morphological remodeling in human VSMCs [101]. Since the glyco-
calyx plays an essential role in VE function, its collapse will cause morphological and
functional remodeling, thus affecting VSM function and promoting the remodeling of
VSMC [102]. In addition, it was reported in hereditary cardiomyopathy that morphological
remodeling takes place early in life before the development of cardiac hypertrophy [103]
(Figure 3). Thus, remodeling of the endothelium could be considered a marker of heredi-
tary cardiomyopathy.
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ship (B) of the voltage-dependent steady-state R-type Ca2+ channel in human aortic VSMCs recorded
using the patch clamp technique (modified from Bkaily et al. 1997) [44].

As mentioned, the VECs are separated from the VSMCs by a basal membrane and
an internal elastic lamina. However, VECs develop a finger-like projection into the basal
membrane, and hypertrophic cell remodeling will promote physical contact between VECs
and VSMCs, which promotes cytosolic and nuclear calcium increase. Figures 4 and 5 show
examples [104,105].
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Figure 4. Increase in the volume of endocardial endothelial cells (EECs) in young and old hereditary
cardiomyopathic hamsters (HCMHs). (A–D) Freshly isolated and cultured EECs from 10-week-old
normal hamsters (NH) (A), 10-week-old HCMH (B), 32-week-old NH (C), 32-week-old HCMH, and
(D) show an increase in the volume (in µm3) of EECs in HCMHs compared to those of age-matched
NHs. In panels A–D, the white scale bar is in µm (modified from Jacques and Bkaily 2019) [104].
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Figure 5. Modulation of cytosolic and nuclear calcium levels of human VSMCs by physical contact
with human VECs. Quantitative 3D confocal microscopy images showing the distribution of cytosolic
and nuclear Ca2+ in hVSMCs in pure culture of hVSMCs without contact (A) and in contact with
other hVSMCs (B), as well as in co-culture with hVECs (C). The pseudo-color scale represents the
level of fluorescence intensity of the Fluo-3–Ca2+ complex from 0 (black, absence of fluorescence) to
255 (white, maximum fluorescence) in panels A, B, and C. The white scale bar value is in micrometers
(modified from Hassan et al., 2018) [105].

10. Atherosclerosis

Atherosclerosis is a disease that starts at the endothelial cell level. Several major risk
factors for atherosclerosis, such as hypercholesterolemia [19,22,24], angioplasty resteno-
sis [56], hypertension, and diabetes [9,20,24], are characterized by abnormal arterial vascular
endothelium function, leading to an increase in the inter endothelial cell junction. VECs
injury, platelet adhesion/degranulation, invasion of the subendothelium by leucocytes
from the circulating blood, and proliferation of contractile and non-contractile VSMCs
from the media are critical early events in atherogenesis [9,20,30]. The leading risk factor
for atherosclerosis is chronic hypercholesterolemia-induced monocyte attachment to the
vascular endothelium, leading to an increase in vascular permeability, which permits entry
of immune cells and blood-circulating factors and promotes VSMC proliferation (Figure 6).
When immune-inflammatory cells come into contact with VSMCs, they become activated
and release cytokines, platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF-α),
IL-1, IL6, and eicosanoids. These factors stimulate the release of endothelium factors such
as endothelin-1, PAF, and PDGF. In addition, all these factors promote the proliferation of
contractile VSMCs (Figure 6). All these factors can be considered pathological first messen-
gers for atherosclerosis. In addition, most, if not all, of these factors induced an increase
of intracellular Ca2+ via stimulation of R-type calcium channels, leading to secretion and
activation of Ca2+-dependent intracellular signaling and hypertrophy of VECs.
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Figure 6. Activation of immune cells induces the release of factors that modulate the function and
junctions between VECs, which permits the infiltration of activated neutrophils/eosinophils, and
polymorphonuclear cells (PMN). The remodeling of the vascular endothelium induces the secretion of
factors that induce either relaxation or contraction of VSMCs. The activated monocytes/macrophages
and VECs’ released factors promote the proliferation of contractile and non-contractile VSMCs that
characterize atherosclerosis (modified from Bkaily, 1994) [27].

One of the critical phenomena of atherosclerosis is endothelial denudation. Studies
have suggested a loss of gap junctions between ECs in the early development of this
disease [105]. Later, gap junctions increase in volume concomitantly with endothelial
regeneration [106]. Thus, ECs appear to maintain their gap junctional contact under
stressful conditions, even during their migration and proliferation to fill and seal the
lesion [107,108].

11. Conclusions

Knowing the physiology of the endothelium helps us better understand the role
of these secretory cells in cardiovascular pathology and to determine their involvement
in many diseases, such as hypertension, diabetes, obesity, inflammation, atherosclerosis,
and even cancer. This allows us to develop more targeted treatments for these diseases
involving the endothelial system. In addition, knowing the different contact systems and
their roles in the cardiovascular system’s pathophysiology deserves more studies to design
treatments to preserve the endothelial layer seal.
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