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Abstract: This work demonstrates the potential of calcium- and nickel-crosslinked Gellan Gum (GG)
microspheres to capture the Six-Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) directly
from complex Komagataella pastoris mini-bioreactor lysates in a batch method. Calcium-crosslinked
microspheres were applied in an ionic exchange strategy, by manipulation of pH and ionic strength,
whereas nickel-crosslinked microspheres were applied in an affinity strategy, mirroring a standard
immobilized metal affinity chromatography. Both formulations presented small diameters, with
appreciable crosslinker content, but calcium-crosslinked microspheres were far smoother. The most
promising results were obtained for the ionic strategy, wherein calcium-crosslinked GG microspheres
were able to completely bind 0.1% (v/v) DM solubilized STEAP1 in lysate samples (~7 mg/mL). The
target protein was eluted in a complexed state at pH 11 with 500 mM NaCl in 10 mM Tris buffer, in a
single step with minimal losses. Coupling the batch clarified sample with a co-immunoprecipitation
polishing step yields a sample of monomeric STEAP1 with a high degree of purity. For the first time,
we demonstrate the potential of a gellan batch method to function as a clarification and primary
capture method towards STEAP1, a membrane protein, simplifying and reducing the costs of standard
purification workflows.

Keywords: STEAP1; Gellan gum microspheres; batch method; capture; co-immunoprecipitation

1. Introduction

Prostate cancer (PCa) is the second most frequently occurring cancer in males world-
wide. According to Globocan, PCa is predicted to rise and become the most prevalent
malignancy in males in 2040 with upwards of 2.4 million new cases per year [1]. Indeed,
PCa is diagnosed through the levels of prostate-specific antigen (PSA). However, PSA often
fails to distinguish between PCa and benign prostatic hyperplasia or prostatitis, giving rise
to false positives [2,3]. Current treatment options, such as prostatectomy, androgen ablation,
radiation and chemotherapy, seem to work for early stage PCa. Nevertheless, when PCa
progresses to an androgen-independent metastatic phase or in the case of biochemical
recurrence, these treatments become largely ineffective and low overall survivability is
observed, making new approaches an imperative necessity [4,5].

The Six-Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1), first discov-
ered in 1999 [2], is a membrane protein overexpressed in PCa, while being mostly absent
from other tissues or vital organs [2,6]. Due to the secondary structure of STEAP1 and
localization at the cell surface in tight- and gap-junctions, it has been suggested to function
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as a transmembrane channel, transporting ions and small molecules, while also playing
a role in cell adhesion and intercellular communication [5–8]. Further, when associated
in heterotrimers with other STEAP family members, it seems to have metal reductase
functions, being involved in the reduction and uptake of iron and copper [9–11]. Moreover,
STEAP1 has been linked with oxidative stress responses and elevated levels of reactive
oxygen species, which in turn, activate redox-sensitive and pro-invasive genes [12]. In
addition, STEAP1 overexpression has been suggested to be a driving force for tumor
initiation and progression [3]. Overall, STEAP1 seems to enhance tumor proliferation
and aggressiveness, making it a potential PCa biomarker and therapeutic target. Indeed,
STEAP1 has been appointed as a tumor-associated antigen that can function as a target for
immunotherapy. In fact, [89Zr]Zr-DFO-MSTP2109A anti-STEAP1 antibody proved to be
well tolerated and adequate for positron emission tomography bioimaging in PCa, being
able to track changes in STEAP1 expression, and consequently, tracking the progression
of PCa [13–15]. Further, the conjugation of anti-STEAP1 antibodies with monomethyl
auristatin E, a potent antimitotic agent, has shown potential in reducing tumor volume
and delaying castration-resistant PCa [16–18]. Another emerging strategy is the priming of
cytotoxic T lymphocytes with STEAP1-derived epitopes for enhanced immune response.
This approach has been associated with higher T cell infiltration in the tumor microenvi-
ronment [19], reduced metastases [20] and tumor inhibition [21]. Although promising, the
development of immunotherapies is in its early days, and the efficacy is modest, being
only a matter of time until the immunosuppressive nature of the tumor microenvironment
rejects these therapeutics. It has also been shown that STEAP1 directly contributes to this
immunosuppression [22]. Furthermore, although a STEAP1 structure has been deposited
in the Protein Data Bank (PDB; https://www.rcsb.org/; accessed on 28 September 2022)
with the accession code 6Y9B [10], it is incomplete, lacking both N- and C-termini. Indeed,
several sites have been predicted in both these domains for post translational modifications
(PTM) [23]. PTMs have also been proposed as one of the major differences between non-
neoplastic PNT1A and neoplastic LNCaP cells, the latter being far more stable [23]. Thus, a
complete crystallized STEAP1 structure is mandatory, both for in silico modeling, as well
as to potentially increase the effectiveness of current immunotherapy approaches through
better structural understanding. However, current purification approaches are scarce and
seem to be mostly based on sequential chromatographic steps of immobilized metal affinity
chromatography (IMAC) and size exclusion chromatography (SEC) [9,10]. This purification
workflow has shown promise in the crystallization of other membrane proteins [24]. For
instance, stable crystals were obtained from lysine-specific permease [25] and CdsD [26]
extracts purified by IMAC and SEC in preliminary X-ray diffraction studies. Nonetheless, in
the case of STEAP1, this approach appears to not be yielding enough protein concentration
for crystallization studies, prompting the development of new isolation bioprocesses.

Gellan Gum (GG) is a natural linear anionic exopolysaccharide secreted by Sphin-
gomonas paucimobilis, which consists of four repeating carbohydrates, including two β-D-
glucoses, one α-L-rhamnose, and one β-D-glucuronic acid [27,28]. Due to its properties of
biocompatibility, biodegradability, hydrophilicity, mucoadhesive features and good gelling
capacity, GG has found remarkable success in the fields of food [29], tissue engineering [30],
bioremediation [31], biosynthesis [32] and drug delivery [33]. Indeed, GG-based materials
have been shown to promote strong adsorption of small drug molecules [34]. Recently, our
research group demonstrated that GG microspheres can efficiently capture soluble catechol-
O-methyltransferase (COMT) [35] and plasmid DNA [36]. Current microsphere-based
methods being developed for protein capture are mostly based on magnetic microspheres,
which quickly enhance the complexity and cost of bioprocesses [37–40]. Contrarily, GG
microspheres are cost-effective and production methods are easier to scale up [41]. Fur-
ther, and until now, protein capture mediated through microparticles seems to be solely
restricted to soluble proteins. Certainly, the difficulties associated with membrane protein
purification, such as loss of stability and natural conformation, act as a deterrent for new
capture procedures [42]. In fact, out of 195,858 structures deposited in PDB, only 10,229 cor-
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respond to membrane proteins (accessed on 28 September 2022). Nonetheless, membrane
proteins play a pivotal role in biological processes and emerging capture, and purification
strategies should be explored towards structural determination.

Considering the necessity for novel bioprocesses and the efficacy previously demon-
strated by GG microspheres in the capture of other biomolecules, the main purpose of
the present work was to explore the potential of GG microspheres to capture recombinant
human STEAP1, a highly relevant membrane protein, from Komagataella pastoris lysates,
through a simple batch method. To achieve this, GG microspheres were reinforced with cal-
cium and nickel ions, and two different approaches were studied. For calcium-crosslinked
GG an ionic exchange strategy was conducted by the manipulation of pH and ionic strength.
For nickel-crosslinked GG, an affinity approach was performed, mirroring IMAC.

2. Results
2.1. Characterization of Gellan Gum Microspheres

GG microspheres produced through W/O emulsion were crosslinked with calcium
and nickel ions. Calcium was chosen as it is the most widely used crosslinker for GG
microspheres by researchers, with proven efficacy in drug delivery [43], immobilization
of cells and enzymes [32,44] and degradation of pollutants [31]. Nickel was selected
since our research group had previously demonstrated this ion yielded the best capture
and purification results for COMT, through a similar GG batch method [35]. Indeed,
because nickel-crosslinked GG microspheres had already been described elsewhere, they
were excluded from further characterization. Calcium-crosslinked GG microspheres were
characterized in regard to size, morphology and elemental composition, through semi-
optical microscopy, SEM, EDX and FTIR.

The mean diameter for calcium-crosslinked GG microspheres was attained through the
average of six (n = 6) snapshots from semi-optical microscopy. The obtained mean diameter
was of 330.37 ± 11.38 µm. Nickel-crosslinked GG microspheres had been previously
described with a mean diameter of 239.06 ± 5.43 µm [35]. Representative snapshots can be
seen in Figure 1.
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Further, the morphology and geometry of calcium-crosslinked microspheres was as-
sessed through SEM. The microspheres present a consistent and uniform structure with
spherical shape. Nickel-, magnesium- and copper-crosslinked GG microspheres had also
been previously reported with a spherical shape. However, the aforementioned micro-
spheres presented clear rugosity, cavities and irregularities in their surface [35,36]. By
comparison, calcium-crosslinked GG microspheres are far smoother, with no apparent
pores, cavities or cracks (Figure 1D). Following SEM, microspheres were analyzed by EDX
to unveil the main elemental composition. A summary of the results can be found in Table 1.
As previously mentioned, GG is mainly comprised of carbohydrates, which validates that
the major chemical elements in the microspheres are carbon and oxygen. Further, calcium
was detected at an appreciable level in calcium-crosslinked GG microspheres, confirming
appropriate crosslinking. When compared to nickel-crosslinked GG microspheres, the
normalized ion percentage levels seem to differ nearly two-fold. Indeed, when comparing
copper-, magnesium-, nickel- and calcium-crosslinked microspheres by crosslinker per-
centage, it seems that transition metals are incorporated in higher degrees than alkaline
earth metals [35,36]. This stronger crosslinker concentration can induce the formation of
a tighter mesh network, resulting in more compact microspheres, which can justify why
nickel-crosslinked microspheres are smaller than calcium-crosslinked microspheres [45].

Table 1. Elemental composition of GG microspheres through EDX.

Element
Calcium-Crosslinked GG Microspheres Nickel-Crosslinked GG Microspheres

C Norm. [wt%] C Atom. [at%] C Norm. [wt%] C Atom. [at%]

Carbon 31.87 38.72 39.19 47.13
Oxygen 66.54 60.70 57.73 52.12
Calcium 1.59 0.58 - -
Nickel - - 3.08 0.76

Total 100.0 100.0 100.0 100.0

Ref. - [35]

Then, FTIR analysis was performed to evaluate the chemical integrity of GG after
microsphere assembly, as well as to detect the chemical interactions between GG and
calcium. The recorded FTIR spectra for both GG powder and calcium-crosslinked GG
microspheres can be seen in Figure 2. The spectrum of GG powder showed characteristic
peaks at 3333 cm−1, due to the stretching of hydroxyl groups (-OH) from glucopyranose
rings. The peak at 2912 cm−1 is assigned to -CH vibrations [46,47]. Further peaks at
1605 cm−1 and 1400 cm−1 correspond to the presence of carboxylate anions (COO−). The
peak at 1026 cm−1 is linked to hydroxylic C-O stretching [46,47]. The spectrum for calcium-
crosslinked GG microspheres displays similar peaks, although with slight variations in
absorbance. Indeed, the rise of a peak at 1743 cm−1 and the disappearance of the peak at
1400 cm−1 suggests an interaction between the carboxyl groups from GG with calcium ions.
Further, the quenching of the peaks at 3333 cm−1 and 1026 cm−1 might suggest that calcium
could also interact with the glucopyranose rings of glucose and with the negatively charged
components of glucuronic acid, respectively. It appears that all subunits of GG are involved
in the coordination of calcium binding and this change in FTIR spectra corroborates EDX
results, confirming calcium crosslinking.



Int. J. Mol. Sci. 2023, 24, 1949 5 of 19

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 20 
 

 

Total 100.0 100.0 100.0 100.0 

Ref. - [35] 

Then, FTIR analysis was performed to evaluate the chemical integrity of GG after 

microsphere assembly, as well as to detect the chemical interactions between GG and cal-

cium. The recorded FTIR spectra for both GG powder and calcium-crosslinked GG micro-

spheres can be seen in Figure 2. The spectrum of GG powder showed characteristic peaks 

at 3333 cm−1, due to the stretching of hydroxyl groups (-OH) from glucopyranose rings. 

The peak at 2912 cm−1 is assigned to -CH vibrations [46,47]. Further peaks at 1605 cm−1 and 

1400 cm−1 correspond to the presence of carboxylate anions (COO−). The peak at 1026 cm−1 

is linked to hydroxylic C-O stretching [46,47]. The spectrum for calcium-crosslinked GG 

microspheres displays similar peaks, although with slight variations in absorbance. In-

deed, the rise of a peak at 1743 cm−1 and the disappearance of the peak at 1400 cm−1 sug-

gests an interaction between the carboxyl groups from GG with calcium ions. Further, the 

quenching of the peaks at 3333 cm−1 and 1026 cm−1 might suggest that calcium could also 

interact with the glucopyranose rings of glucose and with the negatively charged compo-

nents of glucuronic acid, respectively. It appears that all subunits of GG are involved in 

the coordination of calcium binding and this change in FTIR spectra corroborates EDX 

results, confirming calcium crosslinking. 

 

Figure 2. FTIR spectra (absorbance vs. wavenumber) of calcium-crosslinked GG microspheres (A) 

and GG powder (B). 

2.2. Optimization of the Batch Method for the Capture of STEAP1 

As previously mentioned, the batch method employed follows a simple sequence of 

binding, washing and elution steps. It was intended to take advantage of the high pre-

dicted STEAP1 isoelectric point of approximately 9.2 (Compute pI/Mw–Expasy; 

https://web.expasy.org/compute_pi/; accessed on 11 January 2022) to separate it from the 

remainder K. pastoris proteome with an average isoelectric point of 6.46 (Proteome-pI da-

tabase; [48]). Although K. pastoris X33 Mut+ were used for STEAP1 production, instead of 

the listed K. pastoris strain GS115 in the Proteome-pI database, no significant changes were 

expected in isoelectric point since X33 is derived from GS115 [49]. So, the explored initial 

Figure 2. FTIR spectra (absorbance vs. wavenumber) of calcium-crosslinked GG microspheres (A)
and GG powder (B).

2.2. Optimization of the Batch Method for the Capture of STEAP1

As previously mentioned, the batch method employed follows a simple sequence
of binding, washing and elution steps. It was intended to take advantage of the high
predicted STEAP1 isoelectric point of approximately 9.2 (Compute pI/Mw–Expasy; https:
//web.expasy.org/compute_pi/; accessed on 11 January 2022) to separate it from the
remainder K. pastoris proteome with an average isoelectric point of 6.46 (Proteome-pI
database; [48]). Although K. pastoris X33 Mut+ were used for STEAP1 production, instead
of the listed K. pastoris strain GS115 in the Proteome-pI database, no significant changes were
expected in isoelectric point since X33 is derived from GS115 [49]. So, the explored initial
strategy was an ionic exchange, based solely on pH manipulation for both microspheres,
where it was intended to bind STEAP1 to GG microspheres at pH 6.2 in 10 mM MES buffer,
wash off most impurities at pH 8 in 10 mM Tris buffer and then start eluting STEAP1 at
pH 9.2 or higher in 10 mM Tris buffer, either by charge neutralization or charge repulsion.
The expected molecular weight of the recombinant STEAP1 produced by K. pastoris in mini-
bioreactor cultures is ~35, or ~48 and ~63 kDa due to some aggregation events. However,
as can be seen in Figure 3, protein samples recuperated from the initial batch with both
microsphere crosslinkers presented an elevated molecular weight of >245 kDa. Indeed,
it appears that STEAP1 tended to form complexes with GG microspheres, and in turn,
present high molecular weight aggregates. It had been previously reported that sample
boiling prior to Western blot for other transmembrane proteins resulted in similar large
molecular weight complexes in immunoreactive assays [50]. To evaluate this condition,
batch samples were left at room temperature, whereas their equivalent counterparts were
boiled at 100 ◦C for 5 min prior to detection, however no change was detected for either
condition (data not shown). Therefore, a series of optimizations were conducted to improve
protein stability and solubility, namely, detergent solubilization, initial lysate concentration
screening and microspheres volume ratios.

https://web.expasy.org/compute_pi/
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Figure 3. SDS-PAGE and Western blot of the recovered supernatants from the initial batch for both
calcium- and nickel-crosslinked microspheres (35 mL GG microspheres for both ions represented).
MW—molecular weight; I—sample that did not bind to GG microspheres at 10 mM MES pH 6.2;
II—washing step with 10 mM Tris pH 8; III—elution step with 10 mM Tris pH 9.2; IV—elution step
with 10 mM Tris pH 11; arrows indicate STEAP1 complexes.

First, and since solubilization of membrane proteins is of the utmost importance for
proper stabilization and conformation outside the natural lipidic environment [51,52],
several mild nonionic detergents that our group had previously tested for STEAP1 at a
0.1% concentration (data not shown), were selected for solubilization assays. Following
cell lysis and the STEAP1 recovery procedure, the resulting pellets were resuspended in
10 mM MES buffer at pH 6.2 with either 0.1% (v/v) of 5-Cyclohexyl-1-Pentyl-β-D-Maltoside
(CYMAL-5), n-Decyl-β-D-Maltoside (DM), Nonidet P-40 (NP-40) or Genapol X-100 (GEN).
In Figure 4A, it is observed that the Maltoside-based detergents were more effective in
solubilizing STEAP1, with DM exhibiting the strongest band intensity. As for GEN and
NP-40, very little difference can be observed from the control sample. In fact, it seems that
GEN actually causes some degradation of STEAP1.

In the initial batch, a lysate dilution of 1:4 was used, as previously described [35].
However, since this lysate dilution, and therefore total initial protein concentration, resulted
in the formation of large molecular weight bands exceeding 245 kDa, it was decided to
assess if the total protein concentration was inducing aggregation events. So, a simplified
batch, with only three steps consisting of binding (10 mM MES buffer at pH 6.2), washing
(10 mM Tris pH 8) and elution (10 mM Tris pH 11) steps, was utilized to screen an array of
initial lysate dilutions ranging from 1:4 to 1:20. Results are displayed in Figure 4B. Indeed, it
seems that 1:4 dilution forms large molecular weight complexes and compromises analysis.
Starting from 1:6 (total protein concentration of ~7 mg/mL), and moving forwards, some
migration of STEAP1 to ~63 kDa was observed. Further, the bands at the top of the
membranes remain present even at the most diluted samples of 1:20 (~2.15 total protein in
mg/mL). This might indicate that STEAP1 aggregation is not the main driving force for
the formation of these high molecular weight complexes. Nevertheless, considering the
information of both screenings, from this point forward, all batches were performed with
an initial lysate dilution of 1:6, since this dilution degree allows for the clarification of the
highest amount of STEAP1 in each batch run. Also, 0.1% (v/v) DM was included in all
buffers in order to solubilize and maintain STEAP1 stability throughout the batch runs.
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Figure 4. Western blot of the detergent screening for solubilization of STEAP1 (control represents
insolubilized lysate samples) (A) and recovered supernatants from the initial batch lysate dilu-
tion screening following a simple three step sequence per dilution: binding—10 mM MES pH 6.2;
washing—10 mM Tris pH 8; elution—10 mM Tris pH 11 (B).

In fact, just applying these two optimized parameters in conjunction to the initial
batch workflow with calcium-crosslinked GG microspheres, it was possible to bind the
great majority of STEAP1 and start eluting it at pH 9.2, by charge neutralization (Figure 5).
Moreover, up until this point, different microsphere volume ratios were tested. These were
20 mL and 35 mL of GG microspheres to 6 mL of buffer applied in each batch step. The
35 mL of GG microspheres exhibited better binding results for our membrane protein target
and were selected for further analysis. The results from the ionic exchange strategy were
very similar for nickel-crosslinked microspheres, in regard to elution profiles and protein
content in each batch step (data not shown).
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Figure 5. SDS-PAGE and Western blot of the recovered supernatants from the optimized batch for
calcium-crosslinked GG microspheres (35 mL GG microspheres); I—sample that did not bind to GG
microspheres at 10 mM MES pH 6.2; II—washing step with 10 mM Tris pH 8; III—elution step with
10 mM Tris pH 9.2; IV—elution step with 10 mM Tris pH 11.
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2.3. Batch Method for the Capture of STEAP1
2.3.1. Affinity Strategy for STEAP1 Capture Using Nickel-Crosslinked GG Microspheres

Because the results from the ionic exchange strategy yielded equivalent results for both
types of microspheres it would be redundant to develop the same approach for nickel- and
calcium-crosslinked GG microspheres. Instead, nickel-crosslinked GG microspheres were
used to capture recombinant STEAP1 through its 6xHis-Tag, simulating IMAC retention
mechanisms, where elution would be prompted by increasing imidazole concentrations.
Previous internal data had demonstrated that STEAP1 in a nickel IMAC column following
an imidazole stepwise elution scheme (10 mM, 50 mM, 175 mM, 300 mM, 500 mM; elution
profile adapted from [53]) started eluting at 175 mM imidazole (data not shown). Therefore,
in the present work it was decided to set up a batch roadmap with fixed pH at 9.2 to
eliminate or reduce any electrostatic interaction as much as possible. The latter optimized
batch through lysate dilution, DM solubilization and microsphere ratio tuning exhibited
positive results, yet a large degree of complexation was still present. To tackle this issue, a
moderate amount of salt was also added to the buffers, to promote a slight salting-in effect
and promote STEAP1 stabilization. Salt stabilization had been previously demonstrated
for Rhodopsin, a structurally similar transmembrane protein [54]. The affinity batch was
set up with a binding step consisting of 10 mM Tris at pH 9.2 with 150 mM NaCl and 5 mM
imidazole and elution steps with the same amount of salt but with increasing concentrations
of imidazole, corresponding to 175, 300 and 500 mM imidazole in 10 mM Tris pH 9.2.
Following this gradient step mode, STEAP1 seemed to elute equally in all elution steps,
suggesting that our target does in fact start eluting at 175 mM similar to IMAC. However,
unlike IMAC, 175 mM imidazole was not enough to fully elute STEAP1 in a single step
(data not shown). To address this elution profile, the batch was condensed to three steps,
where binding would remain equal, followed by a washing step with 50 mM imidazole
to remove any non-specific protein binding that may have occurred in the microspheres,
and then a final elution step with 500 mM imidazole (the highest concentration from
previous batch).

Highlighted in Figure 6, with the described conditions, most of STEAP1 was captured
through an affinity approach. However, it seems that over half was eluted in the supposed
washing step with 50 mM imidazole. This indicates that a 3.5 times lower imidazole
concentration can elute STEAP1 in a GG batch method as opposed to the necessary 175 mM
in IMAC. Furthermore, a great deal of degradation (~17 kDa) was observed for the first
time in all batch runs. Due to the degradation and the fact that it was not possible to recover
the majority of STEAP1 in a single step, the samples recovered from nickel-crosslinked GG
microspheres batches were excluded from further purification.

2.3.2. Ionic Strategy for STEAP1 Capture Using Calcium-Crosslinked GG Microspheres

Similar to the affinity strategy, for the ionic batch strategy using calcium-crosslinked
GG microspheres, salt was introduced to attain the same salting-in effect. However, instead
of a fixed concentration of 150 mM, this assay explored the increase in intra-step NaCl
levels in order to streamline the batch method to mimic a standard ionic exchange chro-
matography. In the optimization batch, it was noticed that although STEAP1 eluted mostly
at pH 9.2, there was still a fraction of STEAP1 only being eluted at pH 11 buffer base. To
recover as much target protein as possible in a single step, a switch to a single elution step
and the replacement of the previous elution step at pH 9.2 with an additional washing
step were made, in order to enhance the removal of impurities. In this manner, the ionic
exchange batch remained a four-step batch with the conditions underlined in Figure 7A. In
the binding step, practically all STEAP1 bound to calcium-crosslinked GG microspheres at
pH 6.2 with no salt. Then, the minimal losses that were observed for the initial wash step at
pH 8 with 100 mM NaCl, quickly turned into substantial losses by the increase to 200 mM
NaCl at the same pH level. As intended, the bulk of STEAP1 was recovered in the final
step by charge repulsion induced by the highest amount of salt.
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Figure 6. SDS-PAGE and Western blot of the recovered supernatants from affinity batch
with nickel-crosslinked GG microspheres; I—sample that did not bind to GG microspheres at
10 mM Tris pH 9.2 with 150 mM NaCl and 5 mM imidazole; II—washing step with 10 mM Tris
pH 9.2 with 150 mM NaCl and 50 mM imidazole; III—elution step with 10 mM Tris pH 9.2 with
150 mM NaCl and 500 mM imidazole.
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Figure 7. SDS-PAGE and Western blot of the recovered supernatants from the ionic exchange batch
for calcium-crosslinked GG microspheres for both a four-step batch (A) and condensed batch (B)
(35 mL GG microspheres); I—sample that did not bind to GG microspheres at 10 mM MES pH 6.2;
II—wash step with 10 mM Tris pH 8 and 100 mM NaCl; III—elution step with 10 mM Tris pH 8 and
200 mM NaCl; IV—elution step with 10 mM Tris pH 11 and 500 mM NaCl.

Although a clearer sample was obtained in the end of the four-step batch system, a
significant loss was observed in line III. To tackle this issue, the batch was condensed into
three steps by removing the washing step with 200 mM NaCl and by concentrating this
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sample at pH 11 with 500 mM NaCl. However, when swapping to the condensed batch,
mixed results were observed. As highlighted in Figure 7B, while all of STEAP1 was retained
during the binding step and remained bound during the washing step, target samples
returned to a fully complexed state in the elution step, even with all the optimizations
previously described. Considering all the results thus far and GGs molecular weight of
500 kDa [55], we suspected that STEAP1 was forming complexes with the microspheres
beyond simple ionic interactions. To assess the strength of this complexation, fully com-
plexed samples were coupled with a co-immunoprecipitation polishing step. Indeed, it
appears the antibody-STEAP1 interaction is stronger than GG-STEAP1, since post Co-IP
STEAP1 was recovered in its monomeric form (Figure 8). SDS-PAGE of Co-IP STEAP1
shows a high degree of purity, although a major unidentified protein can be seen between
~63 and ~75 kDa. By analysis of the proteome from Komagataella pastoris X-33 reported by
Huang and coworkers [56] and by taking into account proximity to the expected molecular
weight and isoelectric point, we were able to identify Ferric and cupric reductase (FRE2)
and Ferrioxamine B (SIT1) as possibilities for this unidentified protein. Summarizing the
presented results, it appears that a simple GG batch can successfully act as a primary
purification step. Even in the worst case scenario, where STEAP1 fully complexes with GG
microspheres, a Co-IP polishing step can be applied to obtain a purified sample. Further,
Co-IP seems to also be able to fix the aggregation issues derived from upstream stage
(~63 kDa in lysate to ~35 kDa monomeric form).
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Figure 8. SDS-PAGE and Western blot of the entire purification workflow: the initial total protein
content in K.pastoris lysate, the clarified sample from calcium-crosslinked GG batch and the purified
co-immunoprecipitated STEAP1.

3. Discussion

STEAP1 has been appointed as a putative biomarker and therapeutic agent in a pleni-
tude of cancers, with higher expression levels in PCa. Unlike other STEAP family members
(2–4), STEAP1 does not contain an N-terminal NADPH binding domain. Instead, it has a
long tail that sits in the intracellular domain with undiscovered functions. Further, STEAP1
has been predicted to play a role in a slew of signaling pathways [57–60] and we speculate
this STEAP1 disposition could be related to signal transduction. As previously mentioned,
it is imperative to uncover the full STEAP1 structure, in order to explore the role this protein
plays in biological systems. For this, improvements to current bioprocesses are necessary.
Earlier, our research group made strides in optimizing the production of recombinant
human STEAP1 in a mini-bioreactor platform [61]. The produced recombinant protein
fractions increased the proliferation of prostate cancer cell lines, indicating they acquire
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active conformation [61]. Here, we tackled the downstream portion in an attempt to im-
prove purification yields, resorting to a simple batch method with GG microspheres. Both
calcium- and nickel-crosslinked GG microspheres were produced through a previously
optimized W/O emulsion method, resulting in average diameters of 330.37 ± 11.38 µm
and 239.06 ± 5.43 µm, respectively. These values are lower than those reported for GG mi-
crospheres produced by ionotropic gelation [45,62]. In fact, these values are approximately
two-fold lower than those reported by Narkar and coworkers, using similar methodology
and processing parameters [62]. Indeed, as the size of microspheres decreases, it is expected
an improvement in specific surface area, and consequently an improvement in adsorption
capacity [63]. However, no evident change was observed between calcium and nickel
microspheres after the ionic optimization batch (data not shown).

The initial batch strategy was based on a very simple ionic interaction. In the ionic
approach, GG would always present a negative charge (pKa = 3.5; [64]) and STEAP1
would bind at pH 6.2 with a positive charge, and be eluted at >pH 9.2, by electrostatic
repulsion. However, in the initial batch, only large molecular weight bands were observed
in the immunoreactive assays. At first, it was suspected that STEAP1 might be getting
stuck inside or in certain cavities in GG microspheres. However, calcium-crosslinked GG
microspheres SEM images present a mostly smooth surface with no apparent pores or
cavities. Next, it was suspected that STEAP1 was forming large aggregates. To improve
STEAP1 stability during the batch, several optimizations were initiated. First, a series of
non-ionic detergents were applied in the solubilization of STEAP1. These detergents were
selected mainly because they are non-denaturant and can ensure the biological function of
membrane proteins, as opposed to ionic and zwitterionic detergents which are harsher and
often lead to deactivation or denaturation of membrane proteins [51,65]. From the selected
detergents, DM presented the best solubilization potential. Similar to most membrane
proteins, STEAP1 is best solubilized by alkyl maltopyranosides. Indeed, approximately
50% of membrane proteins in the Membrane Proteins of Known 3D Structure database were
solubilized by alkyl maltopyranoside detergents both in the purification and crystallization
phases of structure determination [66].

Thereafter, the influence of total protein content in the batch was assessed by screen-
ing an assortment of different dilutions from 1:4 to 1:20. Starting from a dilution of 1:6
(~7 mg/mL) and moving forwards, some migration was observed to ~63 kDa. This could
suggest that aggregation was in fact a contributing factor; however, even at dilutions of
1:20 (~2.15 mg/mL) the presence of large weight aggregates was constant throughout
immunoreactive assays. When applying both DM and 1:6 dilution in the optimized batch
(Figure 5), it was possible to minimize the large molecular weight complexes. Furthermore,
the remaining complexes were mainly localized at the elution step with pH 9.2, where the
majority of STEAP1 eluted. When the SDS-PAGE of all assays is compared, it is clear that
all lanes are very similar in protein composition. So, if hetero-aggregation was the cause, it
would be expected that other proteins would interfere with antibody detection of STEAP1.
Yet, the intensity of the complexes band seems to mimic the intensity to which STEAP1 is
present in each batch step. In addition, the presence of small STEAP1 aggregates (~48 and
~63 kDa) is not considered a concern, since they have been previously associated with the
recombinant production steps [61]. In fact, Kim and coworkers ventured as far as to call
them the dimeric and trimeric STEAP1 [9].

In order to further reduce the occurrence of complexation, the addition of salt was
carried out to promote a small salting-in effect and stabilize STEAP1. In the four-step
batch (Figure 7A), only a very modest benefit was observed in the reduction of complexes.
Later, when condensing to a three step batch to minimize STEAP1 losses, mixed results
were observed. Indeed, STEAP1 was fully collected in the intended elution step without
losses, but it came fully complexed. During the intra-step centrifugation steps and posterior
supernatant collection, it was observed that some GG microspheres did not sediment
completely and were recovered in the supernatant. Even with several optimization studies
onto this capture method, it was not possible to identify a schema that could fully separate
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the GG microspheres from the target protein, without substantially compromising target
protein yields and batch reproducibility. So, we suspect that GG with 500 kDa was forming
complexes with STEAP1 and increasing amounts of microspheres recovered would prompt
higher rates of complexation. Indeed, these complexes seem to originate outside the
scope of standard ionic interactions since electrostatic repulsion and 500 mM NaCl should
have been more than enough to disrupt these interactions. STEAP1 has been previously
predicted to act both as an ionic channel and to modulate the concentration of small ions,
calcium included [6,67]. Perhaps STEAP1 functions as a calcium transmembrane channel
and forms GG-STEAP1 complexes by the mediation of latent affinity towards the calcium
crosslinker. Further, nickel cellular uptake has been shown to be calcium dependent,
with some evidence suggesting that it crosses the plasma membrane through calcium
channels [68], which might suggest why nickel-crosslinked GG microspheres suffered
from the same complex formation. This phenomenon highlights the effect that inherent
biomolecule properties can have on establishing biointeractions with GG microspheres.
For instance, our research group has previously relied on similar GG microsphere batch
methods as the primary purification technique for the purification of soluble proteins [35]
and plasmid DNA [36], without the rise of any complexation issues.

Nevertheless, the sample recovered from the condensed ionic strategy batch was
coupled with a Co-IP polishing step, since this technique is highly specific and selective in
the detection of physical protein interactions [69]. Results indicated that the formation of the
antibody-STEAP1 immunoconjugates was stronger than the affinity between GG-STEAP1
complexes, as the latter complexes were disrupted and STEAP1 was recovered in its
purified monomeric form. Further, our Co-IP results for recombinant human STEAP1 were
very similar to those reported by a hydrophobic interaction chromatographic (HIC) step
coupled with Co-IP purification workflow, with lysates from LNCaP cells [69]. However,
when assessing the results reported by Oosterheert and coworkers [10], the sequential
chromatographic techniques employed, especially considering the stronger and more
selective affinity explored, yields samples with a substantially higher level of purity. On
the other hand, it is unclear how this workflow would react to the lysate concentration and
complexity level reported here. Our research group has recently reported the purification
of recombinant STEAP1 from mini-bioreactor cultures by coupling either an HIC or IMAC
primary purification step with a Q-Sepharose anion exchanger polishing step, yielding
comparable purification results, by SDS-PAGE analysis [70]. Unfortunately, considering
the inability to completely separate GG from STEAP1, the presence of glucose moieties in
the GG backbone and the fact that reducing sugars are a known interference in the BCA
protein quantification assay [71], it was not possible to quantify the recovered samples,
and therefore provide quantitative comparisons to current report methods. Furthermore,
STEAP1 needs to form heterotrimeric ensembles with other STEAP members to attain metal
reductase activity [10], making quantification via an enzymatic iron reduction approach
inaccessible, since recombinant STEAP1 was used in the batch method. Indeed, new
approaches that allow the quantification of the recovered samples should be addressed in
future research.

4. Materials and Methods
4.1. Materials

Ultrapure reagent-grade water was obtained from a Milli-Q system from Millipore/
Waters. Gellan Gum (Gelzan™, Gelrite®), glass beads, lysozyme, deoxyribonuclease I
(DNase), bromophenol blue, MES hydrate and MES sodium salt were acquired from Sigma-
Aldrich Co. (St. Louis, MO, USA). Tris-base, tween-20, glycine, imidazole, sodium chloride
(NaCl), nickel chloride hexahydrate (NiCl2.6H2O) and methanol were purchased from
ThermoFischer Scientific (Waltham, MA, USA). Calcium Chloride dihydrate (CaCl2.2H2O)
and sodium dodecyl sulfate (SDS) were obtained from PanReac Applichem (Darmstadt,
Germany). β-mercaptoethanol and N,N,N′,N′-Tetramethylethylenediamine (TEMED) were
acquired from Merck (Darmstadt, Germany). Bis-Acrylamide/Acrylamide 40% and NZY-
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Colour Protein Marker II were obtained from GRiSP Research Solutions (Oporto, Portugal)
and NZYTech (Lisbon, Portugal), respectively. All other reagents and supplies were of
analytical grade.

4.2. Gellan Microspheres Production

GG microspheres were produced through a water-in-oil (W/O) emulsion method,
previously optimized by our research group through a design of experiments approach [72].
Briefly, we dissolved a 1.41% GG solution at 90 ◦C and 300 rpm for 15 min. Then, the GG
solution was extruded drop by drop from a syringe with a 21G needle attached to a syringe
pump (Harvard Apparatus, Cambourne, UK). The flow rate was set to 75 µL/min and the
solution was dripped from a height of approximately 20 cm into 100% vegetable cooking oil
previously heated to 100 ◦C under strong agitation. Next, the microspheres were reinforced
with either Ca2+ or Ni2+, by the addition of a 200 mM crosslinker solution to the emulsions
at 750 rpm and room temperature during 30 min. Subsequently, excess oil was removed
with 70% ethanol in a vacuum filtration system with 11 µm pore size filter paper (VWR,
Radnor, PA, USA). Finally, GG microspheres were washed with water and stored in 10 mM
MES buffer pH 6.2, at 4 ◦C, until they were used in capture trials.

4.3. Gellan Microspheres Characterization

The produced GG microspheres were characterized following the procedures de-
scribed by Gomes and coworkers [35].

4.3.1. Semi-Optical Microscopy

First, the average diameter of GG microspheres was assessed through semi-optical mi-
croscopy. So, microspheres were seated into microscope slides and visualized at
10× magnification. Six different images (n = 6) with a total of 46 measurements were
obtained and the mean diameter was assessed.

4.3.2. Scanning Electron Microscopy (SEM)

Surface morphology of GG microspheres was evaluated through SEM, using a Hitachi
S-3400 N microscope (Tokyo, Japan). The microspheres were distributed onto an aluminum
support with a carbon base and frozen at −20 ◦C. Then, several representative images were
obtained using different magnifications, with a backscattered electron (BSE) 3D detector.

4.3.3. Elemental Analysis and Chemical Composition

To shed light on the elemental composition of produced microspheres, and confirm
the incorporation of calcium, energy dispersive X-ray spectroscopy (EDX) was conducted.
Still frozen, post SEM snapshot acquisitions, microspheres were analyzed via a QUANTAX
400 detector (Bruker, Billerica, MA, USA).

4.3.4. Fourier-Transformed Infrared Spectroscopy (FTIR)

FTIR was utilized to gauge the appropriate formation of GG microspheres and to
ensure divalent ion crosslinking. For this, samples were lyophilized, and spectra were ac-
quired using an FTIR spectrophotometer (Nicolet iS10; ThermoFischer Scientific, Waltham,
MA, USA) for both GG powder and GG microspheres. The equipment was managed in the
OMNIC Spectra software (ThermoFischer Scientific), and spectra were collected operating
in ATR mode with an average of 120 scans on wavenumbers ranging from 400–4000 cm−1,
at a resolution of 32 cm−1.

4.4. Mini-Bioreactor Production and Recovery of STEAP1

The production and lysis of recombinant STEAP1 was performed as described by
Duarte and coworkers [61]. Briefly, Komagataella pastoris X-33 Mut+ were selected on yeast
peptone dextrose (YPD) plates, at 30 ◦C. Then, a single colony was chosen and transferred
to shaker flasks with 100 mL of Buffered minimal glycerol medium (BMGH) and grown
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overnight at 30 ◦C and 250 rpm until OD600nm reached a value between 5–6. Then, an
appropriate volume was collected so that the initial fermentation OD600nm was equiva-
lent to 0.5 and was deposited into 750 mL vessels from a mini bioreactor platform with
250 mL of basal salt medium (BSM) supplemented with Zeocin™ and a trace metal solution
(SMT). The STEAP1 biosynthesis was divided into 3 main stages. First, a standard batch
occurred until depletion of glycerol, detected by a sharp increase in dissolved oxygen.
After, a glycerol fed-batch phase was carried out for 2 h, in order to improve biomass levels,
followed by a 1 h transition phase where methanol was introduced to the feed to prepare
the culture for a new carbon source. The third stage consists of a methanol feed strategy
inducing the AOX promoter in the cells and stimulating the expression of His-tagged
recombinant human STEAP1 (rhSTEAP1). Finally, the cells were retrieved by centrifugation
for 10 min at 1500× g and 4 ◦C.

To recover STEAP1, K. Pastoris cells were resuspended in lysis buffer (50 mM Tris,
150 mM NaCl, pH 7.8) supplemented with a protease inhibitor cocktail (Hoffmann-La
Roche, Basel, Switzerland). Lysozyme (1 mg/mL) was added to the mix at room tempera-
ture for 15 min. After enzymatic digestion, the mixture was transferred to a falcon with
glass beads in a ratio of 1:2:2, respectively, 1 g biomass, 2 mL of lysis buffer and 2 g of beads.
Subsequently, mechanical lysis was executed through seven vortex cycles, interposed by
1 min intervals on ice. Next, the cell fragments and glass beads were separated by a
5 min 500× g centrifugation at 4 ◦C, forming a three layer system, consisting of supernatant,
pellet and glass beads. The supernatant was discarded and the pellet was resuspended
in lysis buffer. The glass beads are naturally separated from the solution by differential
density values, allowing recovery of the resuspended pellet. In turn, the recovered solution
was supplemented with DNase (1 mg/mL) and centrifuged at 16,000× g for 30 min at
4 ◦C. The supernatant was discarded, and the pellet was resuspended in the appropriate
binding buffer for the batch method capture step. The total protein content in the lysates
was quantified by the Pierce BCA Protein Assay Kit (ThermoFischer Scientific) following
the manufacturer’s instructions.

4.5. Batch Method for the STEAP1 Capture

The employed batch method was adapted from the batch described by Gomes and
coworkers for the capture of COMT [35]. First, GG microspheres were equilibrated with
an appropriate buffer for the capture step. Then, the batch consisted of three main stages:
binding, washing and elution. The binding or capture step was initiated by the addi-
tion of the lysate in an appropriate dilution to the microspheres. This step was carried
out for a total of 4 h, at 4 ◦C under gentle tube agitation. This was followed by a cen-
trifugation at 500× g for 8 min and recovery of the supernatant, corresponding to the
protein fractions that did not bind to the microspheres. The washing and elution steps
follow the same profile with adequate buffers during 1 h, yielding the eluted fractions.
The batch was applied to GG microspheres crosslinked with calcium or nickel ions. For
calcium, an ionic exchange strategy was chosen, by manipulation of pH, ranging from
6.2 to 11, and ionic strength, by manipulation of NaCl concentrations ranging from 0 to
500 mM, in order to recover STEAP1. For nickel, an affinity method similar to immobilized
metal affinity chromatography was used, where STEAP1 was bound to the microspheres
through its His-Tag and eluted by varying imidazole concentrations, ranging from 5 to
500 mM in total concentration. The recovered fractions were concentrated and desalted
with Vivaspin concentrators (10,000 MWCO) and stored at 4◦C until further purity or
immunoreactivity analysis.

4.6. Co-Immunoprecipitation

The clarified sample from the batch method was coupled with a final polishing co-
immunoprecipitation (Co-IP) step. Co-IP was performed following the manufacturer’s
protocol for Protein A/G PLUS-Agarose Immunoprecipitation Reagent (sc-2003, Santa Cruz
Biotechnology, Dallas, TX, USA) with slight modifications. Succinctly, STEAP1 clarified
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samples were incubated for 1 h at 4◦C with anti-STEAP1 mouse monoclonal antibody (B-4,
Santa Cruz Biotechnology, Dallas, TX, USA), followed by overnight incubation with agarose
beads with constant stirring. Conjugated complexes were recuperated by centrifugation at
1000× g for 5 min at 4 ◦C. Supernatant was discarded, the complexes were washed with
PBS and then resuspended in electrophoresis loading buffer (refer to Section 4.7). The
agarose beads were separated from the antibody-STEAP1 complexes by the combinatory
effect of sample boiling at 100 ◦C and 5% (v/v) β-mercaptoethanol.

4.7. SDS-PAGE and Western Blot

Reducing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed accord-
ing to the Laemmli method [73]. In essence, samples from the batch method were boiled
for 5 min at 100 ◦C and resolved in two 12.5% SDS-PAGE gels at 120 V. Then, one gel was
stained by Coomassie blue solution, while the other was transferred into a PVDF membrane
(GE Healthcare, Wauwatosa, WI, USA) at 750 mA for 90 min at 4 ◦C. The membranes were
blocked in 5% non-fat milk and incubated overnight with anti-STEAP1 mouse monoclonal
antibody 1:300. Afterwards, following a 2 h incubation with goat anti-mouse IgG-HRP
1:5000 (sc-2005, Santa Cruz Biotechnology, Dallas, TX, USA), STEAP1 immunoreactivity
was analyzed with ChemiDoc™ MP Imaging System after incubation with ECL substrate
(Bio-Rad, Hercules, CA, USA).

5. Conclusions

In summary, we developed a simple batch method using GG microspheres for the
capture of STEAP1 from mini-bioreactor Komagataella pastoris lysates, exploiting affinity
and ionic interactions. The affinity strategy using nickel-crosslinked GG microspheres
proved to be highly specific, binding most of STEAP1 through the nickel-histidine affinity
interaction. Yet, recovering the bound target in a single step was challenging, since the
formed interaction was highly sensitive, even to mild imidazole concentrations. On the
other hand, the ionic batch using calcium-crosslinked GG microspheres is a more robust
method, capable of yielding nearly all of STEAP1 in a single step, albeit often in a complexed
state. This complexation seems to be STEAP1-specific, and the chemical nature of such
strong complexes should be addressed in future research. Nevertheless, coupling a Co-
IP polishing step to the batch method yields STEAP1 with a high degree of purity and
completes the purification workflow. Still, it is relevant in future work to conduct structural
and functional biochemical assays to ensure the recovered monomeric STEAP1 retains
appropriate secondary structure and typical structural features, after being subjected to the
batch method and Co-IP workflow.

Overall, the ionic batch method is simple, fast, cost-effective and can be applied as a
primary capture step for STEAP1. Further, since the average isoelectric point of membrane
proteins seems to be between 8.5 to 9.0 [74], it is safe to assume that this simple ionic GG
batch method can be extended to the capture of other relevant membrane proteins with
clinical interest.
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