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Abstract: Treatment of Post-Traumatic Stress Disorder (PTSD) is complicated by the presence of drug
use disorder comorbidity. Here, we examine whether conditioned fear (PTSD model) modifies the re-
warding effect of mephedrone and if repeated mephedrone injections have impact on trauma-related
behaviors (fear sensitization, extinction, and recall of the fear reaction). We also analyzed whether
these trauma-induced changes were associated with exacerbation in metalloproteinase-9 (MMP-9)
and the GluN2A and GluN2B subunits of N-methyl-D-aspartate (NMDA) glutamate receptor ex-
pression in such brain structures as the hippocampus and basolateral amygdala. Male adolescent
rats underwent trauma exposure (1.5 mA footshock), followed 7 days later by a conditioned place
preference training with mephedrone. Next, the post-conditioning test was performed. Fear sensitiza-
tion, conditioned fear, anxiety-like behavior, extinction acquisition and relapse were then assessed to
evaluate behavioral changes. MMP-9, GluN2A and GluN2B were subsequently measured. Trauma-
exposed rats subjected to mephedrone treatment acquired a strong place preference and exhibited
impairment in fear extinction and reinstatement. Mephedrone had no effect on trauma-induced
MMP-9 level in the basolateral amygdala, but decreased it in the hippocampus. GluN2B expression
was decreased in the hippocampus, but increased in the basolateral amygdala of mephedrone-treated
stressed rats. These data suggest that the modification of the hippocampus and basolateral amygdala
due to mephedrone use can induce fear memory impairment and drug seeking behavior in adolescent
male rats.
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1. Introduction

Post-Traumatic Stress Disorder (PTSD) is psychiatric illness triggered by shocking,
dangerous, or life-threatening events, that are either experienced or witnessed [1]. Char-
acteristic symptoms of PTSD are the appearance of, among others, anxiety, and a sense
of threat in response to a previously acquired stimulus. Recently, the understanding of
the pathophysiology of PTSD has been advanced by including the analysis of learning
mechanisms related to fear conditioning and extinction [2,3]. According to conditioning
theories, PTSD symptoms are caused by fear responses, such as avoidance, that occur
when exposed to trauma-related cues. Additionally, maintenance of PTSD symptoms is
hypothesized to involve disruption of fear extinction processes [4].

High rates of comorbidities suggest that PTSD and substance use disorders (alcohol,
nicotine, cocaine) are functionally related to one another [5–7], and such comorbidities can
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alter the development, maintenance and treatment of these disorders [7]. Furthermore,
recently, it has been reported that adolescents with a history of traumatic events have
found to be self-dosing with 3,4-methylenedioxymethamphetamine (MDMA) after the
first occurrence of PTSD symptoms [8]. Of note, many recent papers show that MDMA
could be useful in PTSD treatment [9]. Stress can modulate the initial rewarding effects
of additive drugs, reinstate drug seeking, and cause relapse to substance use. On the
other hand, substance use can alter biological response to stress [10–12], thus changing
stress responses in addicted individuals. These drug effects are further complicated by the
many demonstrations that abuse substances have effects on memory. These effects can
include promoting or impairing memory, depending on the receptor systems, and signaling
cascades that the substance affects [7].

Mephedrone (4-methylmethcathinone) is a semi-synthetic derivative of cathinone, a
psychoactive compound found in the leaves of Catha edulis. Cathinone derivatives show
great structural similarity to neurotransmitters such as adrenaline, noradrenaline and
dopamine, as well as exogenous substances classified as psychostimulants: amphetamine,
methamphetamine and MDMA (ecstasy). The pharmacological similarity of mephedrone
to the illegal MDMA was one of the most important reasons for the widespread popular-
ity of mephedrone among young users, especially those participating in long-hour club
events. Mephedrone is abused by club drug users, predominantly adolescents and young
adults [13,14], in a binge-like fashion [15] to induced reward effects. Long-term mephedrone
consumption drives addiction potential and dependency symptoms, cravings and with-
drawal syndromes [16]. Our previous preclinical studies confirm that mephedrone pos-
sesses abuse potential and shows deleterious impact on memory processes. In these effects
of mephedrone, both the matrix metalloproteinase-9 (MMP-9) and N-methyl-D-aspartate
(NMDA) receptors are engaged [17,18]. The negative effect of mephedrone on memory
processes is particularly strong when mephedrone is combined with ethanol [18,19].

MMP-9 is a proteolytic enzyme zinc-dependent endopeptidase that is expressed
throughout the body, mediating both physiological (e.g., tissue growth) and pathological
(e.g., stroke) processes. In the central nervous system (CNS), MMP-9 is responsible for
the remodeling of nervous tissue, which enables neurogenesis, dendritic tree expansion,
synaptogenesis and myelination. MMP-9 is one of the key enzymes involved in the
processes of neuroplasticity, therefore, its participation is essential in learning and memory
processes, and changes in its expression have also been described in states associated with
the experience of severe stress, which then triggered pathological reactions within the
CNS [20]. MMP-9 has emerged as a physiological regulator of NMDA receptor dependent
synaptic plasticity and memory [21].

Glutamatergic transmission is engaged in the pathophysiology of PTSD, particularly
in the effects on NMDA signaling in the synaptic plasticity underlying learning and mem-
ory [22]. NMDA receptors are comprised of two GluN1 subunits and two GluN2 (A–D)
and GluN3 (A, B) subunits. In adults, GluN2A and GluN2B are the main subunit receptor
complexes with GluN1 at excitatory synapses. GluN2B-containing NMDA receptors play
a preferential role in inducing synaptic plasticity, which is critical for the extinction of
fear memories [23]. Systemic injection of GluN2B-specific NMDA antagonists ((RS)-3-(2-
carboxypiperazin-4-yl)-propyl-1-phosphonic acid, ifenprodil) can impair the retention of
fear extinction learning. GluN2B-containing NMDA receptors in both the amygdala and
medial prefrontal cortex are also involved in reducing fear during extinction, whereas
GluN2A-containing NMDA receptors play a greater role in the initial formation and/or sta-
bilization of learned fear [23]. Rodent studies demonstrate that GluN2B subunit-containing
NMDA receptors play pivotal roles in fear extinction learning.

Fear conditioning is one of the leading animal models used in PTSD research [24–26].
This task measures both hippocampus-dependent and hippocampus-independent learn-
ing [27–30]. Learning to associate the context with the shock unconditional stimulus
(US) is hippocampus-dependent and amygdala-dependent [28,30]. For the hippocampus-
dependent part of the task, animals (rats, mice) are required to use stimuli from the envi-
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ronment to form the association with the shock. In contrast, the hippocampus-independent
portion of the task requires an association to be formed between an auditory conditioned
stimulus (CS) and the shock. This is dependent on amygdala function [28].

The aim of the current study was to evaluate bidirectionality of trauma and reward sys-
tem functioning in adolescent rats. For this purpose, adolescent rats (PND30) were exposed
to high intensity (1.5 mA) footshock in a fear conditioning chamber (PTSD model [25,26]).
Next, the animals were subjected to the mephedrone-induced conditioned place preference
(CPP). We assessed: (1) whether conditioned fear (PTSD model) modifies the reward-
ing effect of mephedrone, and (2) if repeated mephedrone injections have impact on
trauma-related behaviors (fear sensitization, extinction, and recall of the fear reaction), or
(3) whether NMDA receptor subunits (GluN1, GluN2B) and MMP-9 in such brain struc-
tures as the hippocampus (HIPP) and basolateral amygdala (BLA) are involved in these
behavioral effects (Figure 1).
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Figure 1. Experimental design.

2. Results
2.1. Stage 1: Impact of Footshock Stress on the Acquisition of Mephedrone-Induced CPP in
Adolescent Rats

Two-way ANOVA of the results presented as the difference between the time of
animals spent in the compartment associated with the mephedrone administration on the
day of the Test and the Pre-test (score) showed the statistically significant effect of the
mephedrone factor [F (1,24) = 3.476, p < 0.0001] and stress factor [F (1,24) = 7.880, p < 0.01],
without the statistically significant interactions between them [F (1,24) = 3.476, p > 0.05].

The Bonferroni’s multiple comparisons test showed statistically significant differences
in preference score between previously stressed animals receiving mephedrone during
conditioning, and stressed animals receiving saline (p < 0.001), and between stressed
animals receiving mephedrone and animals that also received mephedrone, but were not
previously stressed (p < 0.05) (Figure 2).
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(5 mg/kg)—induced CPP in adolescent rats. Data are expressed as scores (the differences between
post-test and test time spent in the drug-associated compartment). Data represent mean ± SEM
(N = 7 rats/group). # p < 0.05 Stressed/Mephedrone vs. Stressed/ Saline; *** p < 0.001 Stressed/
Mephedrone vs. Non-stressed/Mephedrone.

2.2. Stage 2: Impact of Repeated Mephedrone Injections on Fear Sensitization in Adolescent Rats.
Anxiety-like Behavior Based on an Elevated Plus-Maze Test

Two-way ANOVA of the freezing time of the animals in context B (day 16, 0.4 mA
footshock) revealed the statistically significant influence of the stress factor [F (1,24) = 141.4,
p < 0.001]. Two-way ANOVA, however, did not show the significant effect of mephedrone ad-
ministration [F (1,24) = 1.577, p > 0.05], nor interaction between these factors [F (1,24) = 0.5563,
p > 0.05]. The Bonferroni post-hoc test showed statistically significant differences in the
freezing time between the stressed animals that received mephedrone in the CPP procedure
and non-stressed animals that also received mephedrone (p < 0.001). Furthermore, significant
differences were found between stressed animals receiving saline in the CPP procedure and
control animals that received saline, but were not stressed (p < 0.001). Differences between
mephedrone-treated and saline-treated stressed animals were not significant (Figure 3A).
Two-way ANOVA of the freezing time of the animals in the context of A (day 17, no footshock)
showed the statistically significant effect of the stress [F (1,24) = 19.72, p < 0.001] and the
mephedrone factor [F (1,24) = 7.100, p < 0.05]. Two-way ANOVA, however, did not show
statistically significant interaction between these factors [F (1,24) = 3.721, p > 0.05]. The Bonfer-
roni’s multiple comparisons test showed statistically significant differences in the freezing
time between stressed animals that received mephedrone in the CPP procedure and stressed
animals that received saline (p < 0.01). Significant differences were also observed between
stressed animals that received saline and rats that received vehicle but were not previously
stressed (p < 0.001) (Figure 3B).
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in adolescent rats: (A) sensitization of freezing behavior in context B (day 16); (B) freezing behavior
in context A (day 17, morning); (C) freezing behavior in context B (day 17, afternoon) and (D) anxiety
index recorded during the EPM test. Data represent mean ± SEM (N = 7 rats/group). ** p < 0.01
Stressed/Saline vs. Non-stressed/Saline; *** p < 0.001 Stressed/Saline vs. Non-stressed/Saline;
### p < 0.001 Stressed/Mephedrone vs. Non-stressed/Mephedrone; $$ p < 0.01 Stressed/Saline vs.
Stressed/Mephedrone; ˆˆˆ p < 0.001 Non-stressed/Saline vs. Non-stressed/Mephedrone.

Two-way ANOVA of the freezing time of the animals in the context of B (day 17,
no footshock) showed the statistically significant effect of the stress [F (1,24) = 8.327,
p < 0.001], mephedrone factor [F (1,24) = 8.714, p < 0.01] and interaction between these
factors [F (1,24) = 10.67, p < 0.01]. The Bonferroni’s multiple comparisons test showed sta-
tistically significant differences in the freezing time between stressed animals that received
mephedrone in the CPP procedure and stressed animals that received saline (p < 0.01).
Significant differences were also observed between stressed animals that received saline
and rats that received vehicle, but were not previously stressed (p < 0.01) (Figure 3C).

Two-way ANOVA of the results obtained in the EPM (day 18) calculated as the anxiety
index indicated a statistically significant influence of the stress [F (1,24) = 23.78, p < 0.001],
mephedrone factor [F (1,24) = 17.94, p < 0.001] and significant interaction between these
factors [F (1,24) = 16.60, p < 0.001]. The Bonferroni’s multiple comparisons test showed
statistically significant differences in the anxiety index between non-stressed animals that
received mephedrone and non-stressed animals that received saline (p > 0.001). Post-hoc
test also revealed a significant difference between stressed animals that received saline
and the animals that also received saline but were not previously stressed (p < 0.001).
Differences between mephedrone-treated and saline-treated stressed animals were not
significant (Figure 3D).

2.3. Stage 3: Impact of Repeated Mephedrone Injections on Extinction, Recall, and Retention of
Fear Memory

Three-way ANOVA of the results obtained in the extinctions phase (Days 20–23)
indicated a statistically significant effect of the stress [F (1,96) = 8.409, p < 0.01], mephedrone
[F (3,96) = 7.888, p < 0.01], time factor [F (3,96) = 28.94, p < 0.01], stress x time [F (3,96) = 3086,
p < 0.05] and stress x mephedrone [F (1,96) = 23.86, p < 0.001] interactions. The Bonferroni’s
multiple comparisons test showed statistically significant differences in the freezing time
measured on day 20 (p < 0.001; 1st day of extinction) and day 21 (p < 0.01; 2nd day of
extinction) of the experiment between the stressed animals that received mephedrone in
the CPP procedure and non-stressed animals that received saline. Statistically significant
differences were also observed on day 20 (p < 0.001; 1st day of extinction) and day 21
(p < 0.01; 2nd day of extinction) of the experiment between the stressed animals that
received saline in the CPP procedure and non-stressed animals that also received saline
(Figure 4A).

Two-way ANOVA of the freezing time of the animals in context A (day 24, 0.15 mA
foot-shock) showed the statistically significant influence of the stress factor [F (1,24) = 10.42,
p < 0.01], the mephedrone factor [F (1,24) = 7.45, p < 0.05] and interactions between them
[F (1,24) = 5.805, p < 0.05]. The Bonferroni’s multiple comparisons test showed statistically
significant differences in the time of freezing between the stressed animals that received
mephedrone in the CPP procedure, and stressed animals that received saline (p < 0.01).
Post-hoc test also revealed significant difference between stressed animals that received
saline in the CPP procedure and animals that also received saline, but were not previously
stressed (p < 0.01) (Figure 4B).

Two-way ANOVA of the freezing time of the animals in the context of A (day 25, no
foot-shock) showed the statistically significant influence of the stress factor [F (1,24) = 17.17,
p < 0.001], mephedrone factor [F (1,24) = 12.39, p < 0.01] and interaction between these
factors [F (1,24) = 8.942, p < 0.01]. The Bonferroni’s multiple comparisons test showed
statistically significant differences in the freezing time between the stressed animals that
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received mephedrone in the CPP procedure and stressed animals that received saline
(p < 0.001). Post-hoc test also revealed significant difference between stressed animals that
received saline in the CPP procedure and animals that also received a saline, but were not
previously stressed (p < 0.001) (Figure 4C).
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Figure 4. Impact of repeated mephedrone (5 mg/kg) injections on: (A) extinction; (B) recall (day 24)
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2.4. ELISA Assays: Impact of Footshock Stress and Repeated Mephedrone Injections on the
Expression of NMDA Receptor Subunits (GluN2A and GluN2B) and MMP-9 in the HIPP
and BLA

Two-way ANOVA show significant effect of repeated mephedrone administration
[F (1,24) = 6.430, p < 0.05], but not footshock stress [F (1,24) = 0.7969, p > 0.05] on the MMP-9
expression in the HIPP. However, two-way ANOVA revealed significant interaction of
these factors [F (1,24) = 23.49, p < 0.001]. In addition, Bonferroni’s multiple comparisons
test showed statistically significant differences in the hippocampal MMP-9 expression
between stressed animals that received mephedrone and stressed animals that received
saline (p < 0.001). Post-hoc test also revealed significant differences between stressed and
non-stressed saline-treated animals (p < 0.01) (Figure 5A).
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Figure 5. Impact of repeated mephedrone (5 mg/kg) injections on: the expression of (A) MMP-9;
(B) GluN2A and (C) GluN2B in the HIPP, as well as (D) MMP-9; (E) GluN2A and (F) GluN2B in
the BLA in the fear conditioned rats. Data represent mean ± SEM (N = 7 rats/group). * p < 0.05
Non-stressed/Saline vs. Stressed/saline; ** p < 0.01 Non-stressed/Saline vs. Stressed/saline;
### p < 0.001 Stressed/Mephedrone vs. Non-stressed/Mephedrone; $$ p < 0.01 Stressed/Saline vs.
Stressed/Mephedrone; $$$ p < 0.001 Stressed/Saline vs. Stressed/Mephedrone.

Furthermore, two-way ANOVA did not show any significant effect of repeated
mephedrone administration [F (1,24) = 0.2494, p > 0.05], footshock [F (1,24) = 0.3456,
p > 0.05] nor interactions between these factors [F (1,24) = 0.7664, p > 0.05] on GluN2A
expression in the HIPP. Moreover, Bonferroni’s multiple comparisons test did not reveal
any significant differences between groups (Figure 5B).

Moreover, two-way ANOVA revealed no significant effect of footshock stress
[F (1,24) = 0.96, p > 0.05], nor repeated mephedrone administration [F (1,24) = 3.418,
p > 0.05] on GluN2B expression in the HIPP. However, two-way ANOVA showed sig-
nificant interaction of these factors [F (1,24) = 11.22, p < 0.01]. Bonferroni’s multiple
comparisons test revealed significant differences in the hippocampal GluN2B expression
between the stressed saline- and mephedrone-treated (p < 0.01) rats, and saline-treated
non-stressed and stressed (p < 0.05) rats (Figure 5C).

Two-way ANOVA did not show any significant effect of repeated mephedrone admin-
istration [F (1,24) = 10.96, p > 0.05] on the MMP-9 expression in the BLA. However, two-way
ANOVA revealed significant impact of footshock [F (1,24) = 18.31, p < 0.001], but no interac-
tion between these factors [F (1,24) = 0.0035, p > 0.05]. In addition, Bonferroni’s multiple
comparisons test showed statistically significant differences in the MMP-9 expression in the
BLA between non-stressed and stressed saline-treated animals. Furthermore, post-hoc test
revealed significant differences between non-stressed and stressed mephedrone-treated
rats (Figure 5D).

What is more, two-way ANOVA did not show any significant effect of repeated
mephedrone administration [F (1,24) = 0.044, p > 0.05], footshock [F (1,24) = 0.0043, p > 0.05]
nor interactions between these factors [F (1,24) = 0.0028, p > 0.05] on GluN2A expression
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in the BLA. Also, Bonferroni’s multiple comparisons test did not reveal any significant
differences between groups (Figure 5E).

Finally, two-way ANOVA revealed significant effect of repeated mephedrone adminis-
tration [F (1,24) = 8.862, p < 0.01], but no significant effect of footshock [F (1,24) = 0.0741,
p > 0.05] on GluN2B expression in the BLA. Moreover, two-way ANOVA showed significant
interaction of these factors [F (1,24) = 8.106, p > 0.01]. Bonferroni’s multiple comparisons
test revealed significant differences in the GluN2B expression in the BLA between stressed
saline- and mephedrone-treated rats (p < 0.01) (Figure 5F).

3. Discussion

The present study provides evidence for fear conditioning extinction in trauma-
exposed (footshock stressed) adolescent rats subjected to repeated mephedrone admin-
istrations. The results suggest that repeated mephedrone administration produced im-
pairment of fear conditioning memory. Moreover, trauma-exposed rats showed stronger
mephedrone-induced CPP, indicating that these rats were more vulnerable to addictions.
We found that the repeated mephedrone administration induces changes in MMP-9 and
the GluN2B subunit of the NMDA receptor in the HIPP and BLA that could have impact
on rat behavior.

3.1. Acquisition of Mephedrone-Induced CPP in Rats with Footshock Stress

Adverse life experiences may render individuals more prone to abuse addictive sub-
stances [31–34]. In experimental animals, it has been demonstrated that exposure to stres-
sors (i.e., social defeat stress, social isolation, maternal separation, immobilization stress,
footshocks stress, etc.) can produce behavioral and neurochemical adaptations that ren-
der animals more vulnerable to initiation, maintenance and escalation of drug consump-
tion [34–38]. These effects were observed either with the CPP paradigm [39], with the
two-bottle free choice paradigm [40,41] or with the self-administration paradigm [42].
However, other authors showed that stress does not necessarily lead to potentiate the
effect of the drug or increase its consumption, for such drugs as cocaine [43,44] or metham-
phetamine [45]. The findings indicate that stress-induced drug consumption seems to be
dependent on the type of stress applied [46,47]. Our data indicated striking association
between footshock trauma and mephedrone-induced CPP procedure. The trauma-exposed
animals subjected to the mephedrone CPP procedure developed more significant pref-
erence for the mephedrone-paired compartment than non-stressed rats. Our results are
in accordance with the outcomes of previous studies demonstrating that stress enhances
amphetamine and cocaine CPP [48–50] and intake of these drugs [51,52]. Furthermore,
prior exposure to stress seems to increase the rewarding effects of MDMA in the CPP
paradigm in adolescent mice [53]. Thus, our data suggest that trauma exposed adolescent
rats are more vulnerable to mephedrone addiction.

3.2. Impact of Repeated Mephedrone Exposure on Fear Sensitization and Anxiety-like Behavior

Fear sensitization is a form of non-associate learning and a hallmark of PTSD [54].
It can be assessed in rodents (mice, rats) by measuring acoustic startle response [55], by
exposing them to a neutral tone in a neutral chamber [54] or by conditioning animals using
a low intensity footshock, and re-exposing them, at least 24 h later, to the conditioning
context [56]. So far, published data showed that the stressed group displays more fear
(fear sensitization) compared with the non-stressed group [57–59]. Our results confirm
the latest data. The repeated saline or mephedrone (5 mg/kg) administration did not
have an impact on freezing behavior in non-stressed animals. However, stressed animals
show sensitization to lower (0.4 mA) aversive stimulus in a new context (context B). This
sensitization is non-associative because it does not depend on a CS and US association.
These results suggest that prior exposure to a shock stress, independent of a contextual fear
memory, enhances subsequent fear memory when footshock is present. Furthermore, the
repeated mephedrone administrations did not potentiate this fear response when the shock
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is present, but decreases freezing behavior on the next exposure (next day), suggesting a
deleterious effect of mephedrone on the conditioning memory. Additionally, footshock
stressed animals that were mephedrone- but not saline-treated and re-exposed to a trauma
context without footshock showed a significant decrease in freezing time (Figure 3B). These
data suggest that repeated mephedrone administration produces retrograde amnesia in
trauma-exposed animals.

Like fear sensitization, anxiety is often reported in PTSD patients [60]. Interestingly,
published results indicated that anxiety sensitivity and PTSD symptom severity were
reciprocally related such that anxiety sensitivity predicted subsequent PTSD symptom
severity and symptom severity predicted later anxiety sensitivity. Such findings have both
theoretical and clinical implications [61]. Our EPM results indicated that stressed animals
exhibit increased anxiety compared to non-stressed rats. Pre-exposure to mephedrone
did not modify anxiety index in stressed animals, but it increased this index in non-
stressed rats. These results suggest that mephedrone possesses anxiogenic-like properties.
Published data demonstrated that synthetic cathinones, in addition to their addictive
potential, often cause adverse psychiatric sequelae, including anxiety [62,63]. However,
repeated psychostimulant administration induces anxiety-related behavior after 1 to 8 days
of withdrawal [64–66]. Yet, another study demonstrated that chronic administration of
psychostimulants such as methamphetamine or 4-metylethcathinone can reduce anxiety
in EPM after two weeks of withdrawal [67]. Our EPM experiments were performed
4 days after the last dose of mephedrone administration, therefore we suppose that anxiety
observed in our study may be the result of mephedrone withdrawal.

3.3. Fear Extinction

Fear extinction is defined as a decline in conditioned fear response following non-
reinforced exposure to feared CS. Behavioral evidence indicates that extinction is a form
of inhibitory learning. Extinguished fear responses reappear with the passage of time
(spontaneous recovery), a shift of context (renewal), and unsignaled presentations of the
unconditioned stimulus (reinstatement) [68]. We investigated this possibility through a
series of behavioral experiments examining the recoverability of conditioned fear follow-
ing extinction. Our results indicated that rats exposed to context A exhibit decreasing
freezing behavior during four days of extinction procedure. On day 4 of the extinction
freezing time of each group of tested animals, the decline was less than 10% of session
time. Prior repeated mephedrone administration did not affect the extinction process in
the trauma-exposed rats. Mephedrone-treated animals (like non-stressed rats) did not
recognize context A as a stressful environment, probably because of mephedrone-induced
amnesia. In the subsequent 24 h, the animals were subjected to fear recall in context A with
a very low footshock intensity. This stimulus by itself did not induce freezing behavior
in non-stressed rats, but reinstated it in stressed animals. Of note, mephedrone-treated
stressed rats did not show any freezing behavior. These results suggest that fear memory
in saline-treated animals is persistent and, even if it is extinguished, it could be recalled
with stimulus even with very low intensity. Furthermore, 24 h later, the animals exposed to
context A with no aversive stimulus were found to be still fearful. Repeated mephedrone
administration impaired this process.

Researchers show a variety of effects of psychostimulants on fear memory extinctions.
However, psychostimulants (e.g., d-amphetamine, methylphenidate, cocaine or modafinil)
dose-dependently affect fear memory and learning: they enhance long-term memory at low
clinically relevant doses, but impair long-term memory at high, abused doses [69–71]. A
limitation of our study is that we cannot evaluate the dose-dependent effect of mephedrone
administration because we only used one dose of this drug. However, the applied dose
did not induce a rewarding effect in non-stressed animals. Therefore, we can suppose that
in stressed animals, this dose of mephedrone possesses effects similar to high doses of
psychostimulants. Because extinction is a form of new learning dependent on BLA [72,73],



Int. J. Mol. Sci. 2023, 24, 1941 10 of 17

one might expect that mephedrone impairs this new learning. Thus, mephedrone cannot
be used as a self-medication for PTSD due to its amnestic effects and addiction potential.

3.4. Effects of Post-Stress Repeated Mephedrone Exposure on MPP-9, as Well as GluN2A and
GluN2B Subunits of NMDA Receptor Expression in Trauma-Susceptible Rats

It has been shown that MMP-9 is involved in fear learning, particularly in contex-
tual fear conditioning [74], which is generally accepted to be disturbed in PTSD [75]. In
addition, the MMP-9 inhibitor, doxycycline, was found to significantly reduce experimen-
tally acquired threat memories in a non-clinical sample of human subjects [76]. Although
these studies reveal MMP-9 as a promising candidate molecule for PTSD, there are only
two studies on MMP-9 expression in PTSD patients. One found an elevation in MMP-9
enzymatic activity in PTSD veterans [77]. In contrast, the other study revealed that serum
MMP-9 levels slightly increased in response to stress in the total cohort comprising both
PTSD patients and healthy controls (HC), and to be unaltered in PTSD patients, both at
baseline and 90 min after exposure to mental stress [78]. On the contrary, a loss in serum
MMP-9 after psychosocial stress was reported in HC [79] and in patients with coronary
artery disease [80]. Thus, MMP-9 level can depend on the type of stress that is encountered.

In pre-clinical studies, acute psychosocial stress paradigm produces an increment in
MMP-9 enzyme levels in the HIPP [81]. In turn, contextual fear conditioning markedly
increases MMP-9 transcription, followed by enhanced enzymatic levels in the three ma-
jor brain structures implicated in fear learning, i.e., the amygdala, HIPP and prefrontal
cortex [74]. Our experiments confirm that footshock stress increases MMP-9 expression
in saline-treated trauma-exposed rats in the HIPP and BLA. However, mephedrone ad-
ministration decreased the MMP-9 expression in the HIPP, but not in the BLA. Herein, the
decrease of MMP-9 in the HPP can be correlated with memory impairment observed in the
mephedrone-treated rats during reconsolidation of fear conditioning [82].

MMP-9 has emerged as a physiological regulator of NMDA receptor-dependent synap-
tic plasticity and memory [21]. Our results show up-regulation of the GluN2B subunit in
the HIPP in trauma-exposed rats that were mephedrone—but not saline-treated before
extinction. Thus, such outcome can support reconsolidation of fear memory in saline
treated rats after low footshock exposure. A similar effect was observed in trauma-exposed
rats in the BLA. Synaptic plasticity mediated by NMDA glutamate receptors is thought to
be a primary mechanism underlying the formation of new memories. Published data sug-
gest that GluN2A receptor activation and associated long-term potentiation (LTP) may be
involved specifically in the initial formation and/or stabilization of a learned fear response,
whereas GluN2B receptor activation and associated long-term depression may facilitate the
suppression of Pavlovian fear response during extinction [23]. Up-regulation of the GluN2B
subunit can be a response to deficits in glutamate signaling. Thus, an up-regulation of
GluN2B subunit in the BLA in mephedrone-treated trauma-exposed rats can be responsible
for disruption of the reconsolidation of conditioned fear memory.

In summary, the present study provides evidence that mephedrone abuse may in-
duce retrograde amnesia of PTSD-like fear, similarly to high doses of MDMA. Moreover,
trauma-exposed adolescent rats showed stronger mephedrone-induced CPP, indicating that
these rats were more sensitive to mephedrone effects. According to our results, repeated
mephedrone administration impaired new learning and fear extinction-reconsolidation that
could suggest an inability to retrieve warning signals and risk factors. These mephedrone
effects involved changes in the MMP-9 and GluN2B subunits of the NMDA receptor in the
HIPP and BLA, two brain structures involved in fear learning and memory. However, it
is worth mentioning that our study was only done on male adolescent rats, which consti-
tutes one of its major limitations. For our data to gain more translational value, the same
experimental procedures need to be applied on female rats as well.



Int. J. Mol. Sci. 2023, 24, 1941 11 of 17

4. Materials and Methods
4.1. Animals

Adolescent (PND30) male Wistar rats (OMD, Lublin, Poland) weighing 120–170 g at the
first day of the study were employed as experimental subjects. All animals (n = 28/7 per group)
were maintained in cages (55 cm × 33 cm × 20 cm) under standard laboratory conditions (12 h
light/dark cycle, room temperature 21 ± 1 ◦C), and free access to drinking water and standard
laboratory chow (Sniff Spezialdiäten GmbH, Soest, Germany). To reduce their stress levels in
response to experimental manipulations, rats were handled for 5 min per day for 5 consecutive
days prior to initiation of behavioral tests. Experiments were conducted between 8:00 a.m.
and 7:00 p.m. All procedures were approved by the Local Ethic Committee (No. 31/2021)
and were carried out according to the National Institute of Health Guidelines for the Care and
Use of Laboratory Animals of 22 September 2010 (2010/63/EU). The study was conducted in
accordance with ARRIVE guidelines.

4.2. Drugs

Mephedrone hydrochloride (Tocris Bioscience, Bristol, UK) was dissolved in sterile
0.9% saline (0.9% NaCl, Baxter, Warsaw, Poland). Saline solutions of mephedrone was
prepared ex tempore before each administration. Rats were treated intraperitoneally (i.p.),
with mephedrone (5 mg/kg) according to previous study [83].

4.3. Behavioral Apparatus and Procedures
4.3.1. Fear Conditioning

The PTSD model was induced using a Fear Conditioning apparatus [44]. The animals
were placed in a soundproof cage for conditioning (Ugo Basile, Italy) with dimensions of
55 cm × 60 cm × 57 cm. Such a cage is equipped with a light emitting bulb, a loudspeaker
and a floor made of metal rods to conduct electricity. The conditioned, neutral stimulus
(CS) was the sound signal emitted by the loudspeaker inside the cage, with an intensity
of 80 dB and a duration of 28 s. Additionally, the striped walls and the floor provided a
context (context A) which, like the sound signal, constituted a CS. The sound signal and
the context were associated with the aversive US (the irritation of the animals’ paws with
an electric current of 1.5 mA) for the last 2 s after the sound signal. Then, after a short
break, the procedure was repeated. Thus, during each training session, the animals were
subjected to two sequences of the CS–US. The animal was then left in a soundproof cage
for 60 s for memory consolidation, after that, the rat was returned to its home cage. Half of
the studied animals (n = 14) were treated with electric shock (stressed), while the other half
was treated only with CS (non-stressed). The experimental procedures were performed
according to previously described methods [84] with modifications. The timeline of the
research procedures is presented in Figure 1.

4.3.2. CPP Paradigm

The CPP unbiased paradigm was performed according to the method described
earlier [18,83] with minor modifications. The apparatus designed to perform the CPP test
consists of 6 cages divided into two compartments, 65 cm × 35 cm × 30 cm in size, differing
in the color of the walls. Between the compartments of the cages there is a square opening
closed with a guillotine door, which allows the passage of animals between the two sectors
of the cage. One of the compartments has solid black, smooth walls, while the other has
black and white vertical stripes. The CPP paradigm was performed in three phases, which
include: pre-test, conditioning and test.

Pre-test. Each test animal was placed randomly in one of the compartments of the
apparatus. Rats were allowed to explore both parts for 15 min. This phase of CPP paradigm
consisted in determining the time spent by rats in each of the compartments. If the animals
showed no primary preference for any of the parts, they were qualified for further phases
of the CPP.
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Conditioning. The qualified animals were conditioned twice daily (morning and after-
noon sessions) for five consecutive days with at least a 3 h rest period between sessions. In
the morning, all animals were injected with saline and placed into the drug-free compart-
ment for 30 min. In the afternoon, rats received mephedrone (5 mg/kg, i.p.), or equivalent
volume of saline and were then placed for 30 min into the drug-paired compartments with
the guillotine doors closed.

CPP test. The rats were confined individually in the apparatus and left for 15 min,
having free access to both compartments. No drugs were administered during this phase.
The time spent by the animals in each compartment was measured and recorded.

4.3.3. Elevated Plus Maze (EPM)

This procedure was carried out according to methodology described earlier [84–86].
The plus-shaped maze apparatus for rats was made of wood and positioned at a height
of 50 cm above the floor in quiet laboratory surroundings. Two opposite arms were open
(50 cm × 10 cm) and the other two were enclosed with high walls (50 cm × 10 cm × 40 cm).
The level of illumination was approximately 100 lx at floor level of the maze. The experi-
ment was initiated by placing the rat in the center of the plus-maze facing an open arm,
after which the number of entries and time spent in each of the two arms were recorded for
a period of 5 min. An “arms entry” was recorded when the rat entered the arm with all
four paws. The maze was carefully cleaned with 10% v/w ethanol after each test session to
remove the odor cues.

4.3.4. ELISA Assays

Right after the behavioral procedures, the animals were decapitated, and the dissected
brain structures were subjected to biochemical experiments to evaluate the influence of
PTSD model and mephedrone on MMP-9 and NMDA receptors subunits expression in the
BLA and HIPP according to experimental design (Figure 1). Quantitative measurement of
MMP-9, GluN2A, and GluN2B in the HIPP and BLA was performed using a rats MMP-9
ELISA Kit (Reddot Biotech, Kelowna, BC, Canada), a rat glutamate [NMDA] receptor
subunit epsilon-1 ELISA Kit (E1205Ra; Bioassay Technology Laboratory, Shanghai, China),
and a rat glutamate [NMDA] receptor subunit epsilon-2 ELISA Kit (E1204Ra; Bioassay
Technology Laboratory, China), respectively, following manufacturers’ protocols. Firstly,
frozen rat brain structures were homogenized in ice-cold PBS pH 7.4 containing cocktails
of protease and phosphatase inhibitors (Sigma-Aldrich, San Luis, MI, USA) using a homog-
enizer ball (Bioprep-24, Aosheng, Hangzhou, China) (10 s at rpm). Then, homogenates
were centrifuged for 5 min at 5000× g and the supernates were immediately removed.
Duplicates of each sample and series of standards were transferred to ELISA plates. The
absorbance was measured at a wavelength of λ = 450 nm using a Multiskan Spectrum
spectrophotometer (Thermo LabSystems, Philadelphia, PA, USA). The concentration of
proteins was calculated from a standard curve and expressed as ng/mg of protein. For pro-
tein measurement, the bicinchoninic acid assay (BCA) protein assay kit (Serva, Heidelberg,
Germany) was used.

4.4. Procedures
4.4.1. Stage 1: Impact of Footshock Stress on the Acquisition of Mephedrone-Induced CPP
in Adolescent Rats

To evaluate the impact of footshock stress (PTSD model) on the rewarding effect
of mephedrone, in the first stage of the experiments, the animals were fear conditioned
(day 1, PND30) as described above. Next, following 7 days of the incubation period, on
day 8 (PND37), the rats were subjected to CPP procedure. On day 8, the CPP pre-test was
performed. According to unbiased procedures, animals that did not show preference to any
compartments (half of the animals from the CS and US groups) were assigned to either the
mephedrone-conditioned or saline-conditioned group (days 9–14). Ultimately, four research
groups were established: (1) Non-stressed/saline; (2) Non-stressed/Mephedrone (5 mg/kg,
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i.p.); (3) Stressed/Saline; (4) Stressed/Mephedrone (5 mg/kg, i.p.). The mephedrone dose
was based on previously published data [83] that show an impact of stress on the rewarding
effect of this drug in the CPP paradigm. On day 15 of the experiment the CPP test was
conducted (PND44).

4.4.2. Stage 2: Impact of Repeated Mephedrone Injections on Fear Sensitization in
Adolescent Rats. Anxiety-like Behavior Based on an EPM Test

On day 16 (PND45), all rats (previously stressed and non-stressed) underwent fear
conditioning in a different context B (colorless walls, no signal sound), using free footshocks
of 1 s at a lower intensity (0.4 mA). Freezing behavior was recorded (absence of movement
except for respiration) and expressed as the percentage of time that the animal spent
motionless in the apparatus. This stage of the experiment was performed to evaluate
the impact of repeated mephedrone administration on fear memory in the new context B
(fear sensitization) of animals previously received footshock. On day 17 (PND46), in the
morning, freezing behavior was tested by placing the rats in the context A with the signal
sound, but with no electric stimulus. In the afternoon, 6 h after the first test, rats were
placed back in the context B (with no tone and shock) and freezing behavior was measured.
One day later (day 18, PND47), anxiety-like behavior was assessed in the EPM.

4.4.3. Stage 3: Impact of Repeated Mephedrone Injections on Recall and Retention of Fear
Memory in Adolescent Rats

Extinction of fear memory was conducted from day 20 to 23 of the experiment. Each
day, the animals were placed in the fear conditioning cage in the context A, but with no
exposure to foot shock. The fear memory was considered extinguished when freezing
behavior decreased to less than 10% of the time. Next, 24 h later (day 24), the animals were
re-exposed to trauma in the context A, but with a very low (0.15 mA) footshock intensity
(recall). The final test was conducted in context A with no electric shock at day 25.

4.5. Behavioral Scoring and Statistical Analysis

All behavioral procedures were performed and recorded using ANY-maze (Stoelt-
ing Co., Wood Dale, IL, USA). The results obtained in the experiment were statistically
processed using Graph-Pad Prism 8.3.0 (GraphPad Sofware, San Diego, CA, USA). The sta-
tistical analysis of the results was based on two-way and three-way ANOVA. Comparisons
between groups were made using the Bonferroni post-hoc test. Differences were considered
statistically significant if the determined p value was less than 0.05 (p < 0.05). The figures
show the average values in the studied groups with the standard errors of measurement
(±SEM). Results obtained in the CPP paradigm were expressed as scores (the differences
between post-test and test time spent in the drug-associated compartment). The results
obtained in EPM are presented as the anxiety index, calculated according to the following
formula described by Lguensat et al. [85]: 1 − [(time spent in the open arms/total time) +
(number of entrances to the open arms/total entries)/2].
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