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Abstract: A considerable amount of literature has been published on antidepressants and cardiac ion
channel dysfunction. The antidepressant paroxetine has been associated with Brugada syndrome
and long QT syndrome, albeit on the basis of conflicting findings. The cardiac voltage-gated sodium
channel (NaV1.5) is related to both of these syndromes, suggesting that paroxetine may have an effect
on this channel. In the present study, we therefore carried out patch clamp experiments to examine
the effect of paroxetine on human NaV1.5 channels stably expressed in human embryonic kidney
293 (HEK-293) cells as well as on action potentials of isolated rabbit left ventricular cardiomyocytes.
Additionally, computer simulations were conducted to test the functional effects of the experimentally
observed paroxetine-induced changes in the NaV1.5 current. We found that paroxetine led to a
decrease in peak NaV1.5 current in a concentration-dependent manner with an IC50 of 6.8 ± 1.1 µM.
In addition, paroxetine caused a significant hyperpolarizing shift in the steady-state inactivation of the
NaV1.5 current as well as a significant increase in its rate of inactivation. Paroxetine (3 µM) affected
the action potential of the left ventricular cardiomyocytes, significantly decreasing its maximum
upstroke velocity and amplitude, both of which are mainly regulated by the NaV1.5 current. Our
computer simulations demonstrated that paroxetine substantially reduces the fast sodium current
of human left ventricular cardiomyocytes, thereby slowing conduction and reducing excitability in
strands of cells, in particular if conduction and excitability are already inhibited by a loss-of-function
mutation in the NaV1.5 encoding SCN5A gene. In conclusion, paroxetine acts as an inhibitor of
NaV1.5 channels, which may enhance the effects of loss-of-function mutations in SCN5A.

Keywords: antidepressant drugs; NaV1.5 channels; sodium current; action potential; cellular
electrophysiology; patch clamp recordings; HEK-293 cells; cardiomyocytes; computer simulations

1. Introduction

Pharmaceutical drugs play a crucial role in today’s society. Life expectancy is in-
creasing, new diseases are emerging, and new improved drugs are being developed and
marketed. This is reflected by the increasing trend in drug prescriptions [1]. The rising inci-
dence of drug development is a double-edged sword: on the one hand, a broader spectrum
of drugs is available, but on the other hand, these new drugs can be associated with as
yet unknown side effects [2]. The safety profile is assessed during drug development, but
the safety of a drug can never be fully guaranteed because it is tested in a highly selected
patient population [3]. This can lead to a drug being marketed and a potentially dangerous
side effect not being noticed until several years later [2].

A potentially dangerous side effect of a drug is the occurrence of a cardiac arrhyth-
mia [4,5], i.e., a condition in which the heart cannot regulate its rhythm correctly. A
disturbed cardiac rhythm or conduction pattern can give rise to various symptoms, includ-
ing sudden cardiac arrest [6,7]. It is now well established from a variety of studies that
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certain drugs can cause arrhythmias [8]. Even among commonly used drugs to treat a spe-
cific non-cardiac disease, differences in risk of out-of-hospital cardiac arrest (OHCA) may
exist. To illustrate, in a recent study on the association between various antidepressants
and OHCA, it was found that several antidepressants can increase the risk of OHCA [9].

An either congenital or acquired abnormality in the cardiac voltage-gated sodium
channel (NaV1.5), which is responsible for the rapid upstroke of the myocardial action
potential (AP), can cause a potentially life-threatening cardiac disorder, e.g., long QT syn-
drome (LQTS) or Brugada syndrome (BrS) [10,11]. Although the antidepressant paroxetine,
a selective serotonin reuptake inhibitor (SSRI), was not overrepresented in OHCA cases
using antidepressants [9], it has been associated with both BrS and LQTS. In a case report on
a syncopal episode of a patient taking a daily dose of 10 mg paroxetine, Sawhney et al. [12]
showed that paroxetine withdrawal led to complete resolution of the clinically observed
BrS type 1 ECG pattern. Of note, the daily dose of 10 mg is a rather low dose given the
regular dosage range of 20–50 mg once daily [13], up to doses of 62.5 and 80 mg/day
reported by Dunner et al. [14] and Reis et al. [15]. This holds even more so because of
the disproportionate and highly nonlinear increase in plasma drug levels upon increasing
doses of paroxetine [16].

Data on the association of paroxetine with LQTS are somewhat conflicting. Edwards
et al. [17] studied the electrocardiographic effects of a four week treatment with a regular
daily dose of paroxetine (30 mg) in 20 patients (11 on paroxetine and 9 on placebo). Apart
from a small but significant increase in QRS width (see below), they did not observe any
changes in electrocardiographic parameters, including the QTc interval. From a systematic
search on the risk of QT prolongation among SSRIs, Funk and Bostwick [18] concluded that
the use of paroxetine per se is not sufficient to induce a clinically significant QT prolongation,
although it may induce or enhance QT prolongation in combination with other drugs. In
particular, Lim et al. [19] found that paroxetine enhanced the QT prolongation induced by
the class Ic antiarrhythmic agent flecainide, which is a potent inhibitor of the cardiac sodium
current [20] and has therefore been used as a provocative challenge to unmask BrS and
thereby identify patients at risk [21]. Erfurth et al. [22] reported serious QT prolongation in
response to paroxetine in two patients with a rather complex medical history. Furthermore,
maternal use of paroxetine has been associated with QTc interval prolongation in exposed
neonates [23,24]. Paroxetine has also been implicated in cases of torsade de pointes, but
always in the setting of additional risk factors [25].

Both BrS and LQTS, more specifically LQTS type 3, are associated with loss-of-function
mutations in the SCN5A gene, which encodes the pore-forming α-subunit of the NaV1.5
channel [10,11]. Considering the association of paroxetine with both BrS and LQTS, an
effect of paroxetine on cardiac sodium channels is highly likely. This hypothesis seems
supported by findings of Yokota et al. [26] and Edwards et al. [17]. Yokota et al. [26] recorded
ECGs from anesthetized mongrel dogs and found a statistically significant 25% increase
in QRS width, which is importantly modulated by the cardiac sodium current [27], in
response to a high dose of paroxetine (10 mg/kg). In their aforementioned study, Edwards
et al. [17] found a small increase in QRS width in the paroxetine-treated group that was
significantly different from the small decrease that occurred in the placebo group. In line
with these observations, paroxetine is classified both as a “drug preferably avoided by BrS
patients” on the BrugadaDrugs.org website [28] initiated by Postema et al. [29] and as a
“drug to be avoided by congenital long QT patients” as well as a “drug with conditional
risk of torsade de pointes” on the CredibleMeds QTdrugs List [30] initiated by Woosley
and colleagues [31].

Furthermore, it has been found that paroxetine blocks the NaV1.4, NaV1.7, and NaV1.8
neuronal sodium channel isoforms [32–34]. Because these neuronal isoforms share great
homology with the cardiac sodium channel isoform, a reduced NaV1.5 current in response
to paroxetine is plausible. These findings raise the question of how paroxetine affects
the cardiac sodium channel, as no previous research has been conducted on the effects
of paroxetine on the amplitude or kinetics of the cardiac sodium current. Hence, in
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the present study, we examined how paroxetine affects the amplitude and kinetics of
the NaV1.5 sodium current. To this end, we carried out patch clamp experiments on
human embryonic kidney 293 (HEK-293) cells stably expressing human NaV1.5 channels.
Furthermore, we determined the effects of paroxetine on the AP of freshly isolated rabbit
left ventricular cardiomyocytes in perforated patch clamp experiments. Additionally, we
carried out computer simulations to assess the functional effects of the experimentally
observed paroxetine-induced changes in the amplitude and kinetics of the NaV1.5 current
on human left ventricular cardiomyocytes.

2. Results
2.1. Effects of Paroxetine on NaV1.5 Current in HEK-293 Cells
2.1.1. Effects of Paroxetine on Peak NaV1.5 Current

First, we analyzed how paroxetine affects the current-voltage relationship of the peak
NaV1.5 current in HEK-293 cells stably expressing human NaV1.5 channels. Figure 1a shows
typical whole-cell current traces of a single HEK-293 cell upon voltage clamp steps from a
holding potential of −120 mV to test potentials ranging from −80 to +35 mV (inset) in the
absence (left) or presence (right) of 10 µM paroxetine, demonstrating that 10 µM paroxetine
strongly inhibits peak NaV1.5 current. Figure 1b shows the average current-voltage rela-
tionship of the peak NaV1.5 current in the four HEK-293 cells to which we administered
paroxetine at a concentration of 3 µM. The peak NaV1.5 current reached its maximum
amplitude near −45 mV and was significantly decreased by paroxetine over a wide voltage
range (two-way repeated measures ANOVA), with a highly similar amount of block across
this voltage range. At −45 mV, the decrease in peak NaV1.5 current amplitude amounted
to 25.4 ± 3.7% (mean ± SEM, n = 4). The reversal potential in the absence and presence of
3 µM paroxetine did not differ significantly (−2.0 ± 1.8 mV (control) vs. −4.6 ± 2.4 mV
(3 µM paroxetine); p > 0.05, paired t-test). Thus, we exclude a reduction in driving force as
mechanism for the smaller NaV1.5 currents in the presence of paroxetine. At paroxetine
concentrations of 1 and 10 µM, this decrease was 13.9 ± 3.9% (n = 4) and 62.6 ± 4.5% (n = 3),
respectively (Figure 1b, inset), again with a highly similar amount of block over a wide
voltage range and again without a significant difference in reversal potential (not shown
in Figure 1b). Figure 1c shows the associated dose–response curve, which was obtained
by fitting the data to the Hill equation y = 1/{1 + ([paroxetine]/IC50)nH}, where y is the
normalized peak NaV1.5 current at −45 mV, IC50 is the half-maximal inhibitory paroxetine
concentration, and nH is the Hill coefficient. The thus obtained IC50 and nH amounted to
6.8 ± 1.1 µM and 1.14 ± 0.22, respectively (R2 = 0.98). The degree of inhibition was dose
dependent (p < 0.001, one-way ANOVA).

2.1.2. Effects of Paroxetine on Steady-State Activation

To determine the voltage dependence of activation of the NaV1.5 current, the current-
voltage relationships of each individual HEK-293 cell under control conditions and in the
presence of 3 µM paroxetine were corrected for driving force, normalized to maximum
peak current, and fitted to a Boltzmann curve, characterized by its half-activation voltage
(V1/2) and its slope factor (k). Fitting the average activation data in the absence or pres-
ence of paroxetine yielded Boltzmann curves that were virtually overlapping (Figure 2a),
indicating unaltered activation. This was corroborated by the V1/2 (top) and k (bottom)
values of Figure 2b (middle pair of bars), as obtained by fitting the activation data of the
four individual cells to a Boltzmann curve; neither V1/2 nor k differed significantly from
their paired controls (paired t-tests). Similar results were obtained in experiments with
higher and lower concentrations of paroxetine (Figure 2b, rightmost and leftmost pair of
bars, respectively).
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Figure 1. Paroxetine reduces peak current in single human embryonic kidney 293 (HEK-293) cells 
stably expressing human cardiac voltage-gated sodium channel (NaV1.5) channels. (a) Typical 
whole-cell NaV1.5 current traces before (left) and after administration of 10 µM paroxetine (right). 
Inset: voltage clamp protocol used. (b) Average current-voltage relationship of normalized peak 
NaV1.5 current under control conditions and upon administration of 3 µM paroxetine (open circles 
and filled squares, respectively; n = 4). Inset: normalized peak NaV1.5 current at −45 mV under con-
trol conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 4, n = 4, and n = 3, respec-
tively). * p < 0.05, ** p < 0.01, *** p < 0.001, two-way repeated measures ANOVA. (c) Dose–response 
curve of the inhibitory effect of paroxetine on peak NaV1.5 current at −45 mV. Data were fit to a Hill 
curve with a concentration of half-maximal inhibition (IC50) of 6.68 µM and a Hill coefficient (nH) of 
1.14. ** p < 0.01, *** p < 0.001, one-way ANOVA. 

Figure 1. Paroxetine reduces peak current in single human embryonic kidney 293 (HEK-293) cells
stably expressing human cardiac voltage-gated sodium channel (NaV1.5) channels. (a) Typical
whole-cell NaV1.5 current traces before (left) and after administration of 10 µM paroxetine (right). In-
set: voltage clamp protocol used. (b) Average current-voltage relationship of normalized peak NaV1.5
current under control conditions and upon administration of 3 µM paroxetine (open circles and
filled squares, respectively; n = 4). Inset: normalized peak NaV1.5 current at −45 mV under control
conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 4, n = 4, and n = 3, respectively).
* p < 0.05, ** p < 0.01, *** p < 0.001, two-way repeated measures ANOVA. (c) Dose–response curve of
the inhibitory effect of paroxetine on peak NaV1.5 current at −45 mV. Data were fit to a Hill curve
with a concentration of half-maximal inhibition (IC50) of 6.68 µM and a Hill coefficient (nH) of 1.14.
** p < 0.01, *** p < 0.001, one-way ANOVA.
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Figure 2. Steady-state activation and inactivation of NaV1.5 current in single HEK-293 cells stably 
expressing human NaV1.5 channels. (a) Steady-state activation curve of NaV1.5 current under control 
conditions and upon administration of 3 µM paroxetine (open circles and filled squares, respec-
tively; n = 4). Inset: voltage clamp protocol used. (b) Average half-activation voltage (V½; top) and 
slope factor (k; bottom) values from individual Boltzmann curves to which activation data obtained 
under control conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 4, n = 4, and n 
= 3, respectively) were fit. (c) Steady-state inactivation curve of NaV1.5 current under control condi-
tions and upon administration of 3 µM paroxetine (open circles and filled squares, respectively; n = 
5), as determined with a double-pulse voltage clamp protocol (inset). * p < 0.05, ** p < 0.01, *** p < 
0.001, two-way repeated measures ANOVA. (d) Average half-inactivation voltage (V½; top) and 
slope factor (k; bottom) values from individual Boltzmann curves to which inactivation data ob-
tained under control conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 5, n = 5, 
and n = 3, respectively) were fit. * p < 0.05, ** p < 0.01, paired t-test. 

2.1.3. Effects of Paroxetine on Steady-State Inactivation 
The voltage dependence of NaV1.5 current inactivation is important for the functional 

availability of sodium channels during cardiac APs [35]. In a separate series of experi-
ments, we therefore also determined the steady-state inactivation curve (or availability 
curve) of NaV1.5 currents under control conditions and in the presence of paroxetine. Fig-
ure 2c shows the voltage dependence of steady-state inactivation under control conditions 
and upon administration of 3 µM paroxetine (open circles and filled squares, respectively; 
n = 5). Paroxetine induced a clear hyperpolarizing shift in steady-state inactivation, sup-
ported by a significant negative shift in the half-inactivation voltage V½ (Figure 2d, top, 
middle pair of bars), as obtained by fitting the inactivation data of each individual cell 

Figure 2. Steady-state activation and inactivation of NaV1.5 current in single HEK-293 cells stably
expressing human NaV1.5 channels. (a) Steady-state activation curve of NaV1.5 current under control
conditions and upon administration of 3 µM paroxetine (open circles and filled squares, respectively;
n = 4). Inset: voltage clamp protocol used. (b) Average half-activation voltage (V1/2; top) and slope
factor (k; bottom) values from individual Boltzmann curves to which activation data obtained under
control conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 4, n = 4, and n = 3,
respectively) were fit. (c) Steady-state inactivation curve of NaV1.5 current under control conditions
and upon administration of 3 µM paroxetine (open circles and filled squares, respectively; n = 5), as
determined with a double-pulse voltage clamp protocol (inset). * p < 0.05, ** p < 0.01, *** p < 0.001,
two-way repeated measures ANOVA. (d) Average half-inactivation voltage (V1/2; top) and slope
factor (k; bottom) values from individual Boltzmann curves to which inactivation data obtained
under control conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 5, n = 5, and
n = 3, respectively) were fit. * p < 0.05, ** p < 0.01, paired t-test.

2.1.3. Effects of Paroxetine on Steady-State Inactivation

The voltage dependence of NaV1.5 current inactivation is important for the functional
availability of sodium channels during cardiac APs [35]. In a separate series of experiments,
we therefore also determined the steady-state inactivation curve (or availability curve) of
NaV1.5 currents under control conditions and in the presence of paroxetine. Figure 2c
shows the voltage dependence of steady-state inactivation under control conditions and
upon administration of 3 µM paroxetine (open circles and filled squares, respectively; n = 5).
Paroxetine induced a clear hyperpolarizing shift in steady-state inactivation, supported
by a significant negative shift in the half-inactivation voltage V1/2 (Figure 2d, top, middle
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pair of bars), as obtained by fitting the inactivation data of each individual cell studied
to a Boltzmann curve. The shift at a paroxetine concentration of 3 µM amounted to
−7.3 ± 1.5 mV (n = 5). The −12.4 ± 2.8 mV (n = 3) hyperpolarizing shift that we observed
at a paroxetine concentration of 10 µM was also significant, but the −3.3 ± 2.3 mV (n = 5)
shift at 1 µM was not. These shifts in V1/2 were not accompanied by significant changes in
the slope factor (Figure 2d, bottom). The apparent dose dependence of the shift in V1/2 was
not statistically significant (p = 0.051, one-way ANOVA).

2.1.4. Effects of Paroxetine on Rates of Activation and Inactivation

Changes in the rates of activation and inactivation of NaV1.5 current may also affect
the sodium current function during cardiac APs. We therefore studied our recorded voltage
clamp traces in more detail, normalizing the NaV1.5 current traces in order to directly assess
kinetics. As illustrated in Figure 3a, we observed that the activation of the NaV1.5 current
was not substantially affected by 3 µM paroxetine. However, its rate of inactivation was
higher in the presence of the drug, resulting in NaV1.5 currents of shorter duration. This
was quantified in detail for all used concentrations by determining the time point of half
inactivation (t50), relative to the time point of peak current amplitude, upon a voltage clamp
step from −120 to −20 mV under control conditions and in the presence of paroxetine. At
concentrations of 3 and 10 µM, paroxetine significantly shortened t50, from 0.77 ± 0.06 to
0.58 ± 0.04 ms (n = 8) at 3 µM, and from 0.63 ± 0.07 to 0.36 ± 0.04 ms (n = 6) at 10 µM
(Figure 3b, middle and right pair of bars, respectively). The inactivation rate was further
quantified by determining the rate of inactivation at t50. This rate increased significantly at
paroxetine concentrations of 3 and 10 µM, from 0.64 ± 0.05 to 0.81 ± 0.08 ms−1 at 3 µM,
and from 0.80 ± 0.09 to 1.49 ± 0.18 ms−1 at 10 µM (Figure 3c). The increase in rate
of inactivation turned out to be concentration-dependent, this rate approximately being
doubled at a paroxetine concentration of 10 µM (Figure 3d). Repeating our analysis with
voltage clamp steps to a test potential of −50 mV instead of −20 mV revealed highly
similar changes in the rate of inactivation in response to paroxetine (not shown in Figure 3).
This increase in rate of inactivation may, at least to some extent, underlie the observed
paroxetine-induced reduction in peak NaV1.5 current (Figure 1b).

2.2. Effects of Paroxetine on Action Potentials of Rabbit Left Ventricular Cardiomyocytes

In a final set of patch clamp experiments on isolated rabbit left ventricular cardiomy-
ocytes (n = 6), we assessed the effect of 3 µM paroxetine on APs in a cardiomyocyte
background under close-to-physiological conditions. The concentration of 3 µM was cho-
sen because it gave rise to a considerable amount of changes in NaV1.5 current in voltage
clamp experiments on HEK-293 cells (Figures 1–3) without too extreme effects that might
prevent excitability of cardiomyocytes completely. Figure 4a shows typical AP recordings at
a pacing frequency of 1 Hz under control conditions and in the presence of paroxetine (gray
and black lines, respectively). Paroxetine significantly lowered the maximum AP upstroke
velocity of the six cardiomyocytes (Figure 4a, inset; Figure 4b; p < 0.05 vs. control, paired
t-test) and also significantly reduced the AP amplitude (Figure 4a,c; p < 0.05 vs. control,
paired t-test). Maximum upstroke velocity was decreased by 8.7 ± 2.5%, and because the
upstroke is largely driven by NaV1.5 channels [35], this indicates that the NaV1.5 current
is also reduced in a cardiomyocyte environment at close-to-physiological conditions. No
significant differences were found in other AP parameters, including resting membrane
potential, AP plateau potential, and AP duration at 20, 50, and 90% of repolarization
(Figure 4d–f).

Many NaV1.5 current inhibitors—including, for example, methylflavonolamine and
lidocaine [36], hesperetin [37], eleclazine [38], carbamazepine [39], mexiletine [40], and
aripiprazole [41]—generate a shift in steady-state inactivation to more negative potentials
(as shown for paroxetine in Figure 2c,d) that is accompanied by a slowing of recovery from
inactivation. Under close-to-physiological conditions, i.e., at a potential of −85 mV and
37 ◦C [35], recovery from inactivation of the sodium current in cardiomyocytes is not fully
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complete within 1 s, which explains why the maximum AP upstroke velocity at a pacing
frequency of 3 Hz is smaller than at 1 Hz under control conditions (Figure 5a, gray lines;
Figure 5b, gray bars). In the presence of paroxetine, this frequency-induced decrease in
maximum AP upstroke velocity is enhanced, as demonstrated in Figure 5a (gray and black
lines) and Figure 5b (gray and black bars), which show data from 5 of the 6 cardiomyocytes
that were used for Figure 4. For the sixth cardiomyocyte, we did not record APs at 3 Hz
in the presence of paroxetine. Under control conditions, an increase in pacing frequency
from 1 to 3 Hz results in a 16.0 ± 4.5% decrease in maximum AP upstroke velocity, but in
the presence of 3 µM paroxetine this decrease amounts to 33.1 ± 2.6% (Figure 5c; p < 0.01,
paired t-test). This more pronounced decrease in maximum AP upstroke velocity in the
presence of 3 µM paroxetine strongly suggests that paroxetine does not only inhibit NaV1.5
current through a negative shift in steady-state inactivation (Figure 2) and an increased rate
of inactivation (Figure 3), but also through a slower recovery from inactivation.
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Figure 3. Paroxetine increases rate of inactivation of NaV1.5 current in single HEK-293 cells stably
expressing human NaV1.5 channels. (a) Typical normalized NaV1.5 current traces in response to a
voltage clamp step from −120 to −20 mV under control conditions and upon administration of 3 µM
paroxetine (gray and black lines, respectively). The time point of 50% inactivation (t50) is indicated by
dots. (b) t50 under control conditions and upon administration of 1, 3, and 10 µM paroxetine (n = 9,
n = 8, and n = 6, respectively). * p < 0.05, paired t-test. (c) Rate of inactivation as determined by the
time derivative of the signal at t50. * p < 0.05, paired t-test. (d) Percent increase in rate of inactivation at
t50 upon administration of 1, 3, and 10 µM paroxetine (n = 9, n = 8, and n = 6, respectively). * p < 0.05,
one-way ANOVA.



Int. J. Mol. Sci. 2023, 24, 1904 8 of 19Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 19 
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and in the presence of 3 µM paroxetine (gray and black lines, respectively). APs were elicited at a 
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upstroke. The horizontal arrows indicate the maximum upstroke velocity. The vertical arrows indi-
cate the artefacts due to switching on and off the square stimulus of 3 ms duration. (b–f) Average 
AP parameters of six cardiomyocytes under control conditions and in the presence of 3 µM parox-
etine (gray and black bars, respectively). (b) Maximum AP upstroke velocity. (c) AP amplitude. (d) 
Resting membrane potential. (e) AP plateau potential, defined as the membrane potential at 20 ms 
after the AP upstroke. (f) AP duration (APD) at 20, 50, and 90% of repolarization (APD20, APD50, 
and APD90, respectively). * p < 0.05, paired t-test. 
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Figure 4. Effects of paroxetine on action potentials of isolated rabbit left ventricular cardiomyocytes.
(a) Typical action potential (AP) of a single left ventricular cardiomyocyte under control conditions
and in the presence of 3 µM paroxetine (gray and black lines, respectively). APs were elicited at a
pacing frequency of 1 Hz. The upper right inset shows the time derivative of the AP signal near
its upstroke. The horizontal arrows indicate the maximum upstroke velocity. The vertical arrows
indicate the artefacts due to switching on and off the square stimulus of 3 ms duration. (b–f) Average
AP parameters of six cardiomyocytes under control conditions and in the presence of 3 µM paroxetine
(gray and black bars, respectively). (b) Maximum AP upstroke velocity. (c) AP amplitude. (d) Resting
membrane potential. (e) AP plateau potential, defined as the membrane potential at 20 ms after the
AP upstroke. (f) AP duration (APD) at 20, 50, and 90% of repolarization (APD20, APD50, and APD90,
respectively). * p < 0.05, paired t-test.

2.3. In Silico Experiments
2.3.1. Effects of Paroxetine on Peak NaV1.5 Current

We observed that paroxetine affects the inactivation of NaV1.5 current in HEK-293
cells through a negative shift in the half-inactivation voltage (Figure 2) and an increase in
the rate of inactivation (Figure 3). To test to which extent these changes can explain the
also observed decrease in peak NaV1.5 current (Figure 1), we carried out in silico voltage
clamp experiments, using the human left ventricular cell model by Ten Tusscher et al. [42],
as updated by Ten Tusscher and Panfilov [43]. We applied the voltage clamp protocol of
Figure 1a to the model cell and determined the peak amplitude of its fast sodium current
under control conditions and with the changes in half-inactivation voltage and inactivation
rate that we had found in our HEK-293 cells. As illustrated in Figure 6 (gray bars), the thus
obtained paroxetine-induced decrease in peak NaV1.5 current was found to be largely due
to the increase in inactivation rate, with the net effect amounting to 2.1% at 1 µM, 8.3% at
3 µM, and 25.8% at 10 µM, respectively. This is substantially less than the experimentally
observed paroxetine-induced decrease in peak NaV1.5 current of 13.9 ± 3.9%, 25.4 ± 3.7%,
and 62.6 ± 4.5%, respectively (Figure 6, black bars), demonstrating that this decrease is not
solely attributable to the associated changes in NaV1.5 current inactivation. For example,
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at 3 µM, a further 18.7% reduction in peak NaV1.5 current of the model cell is required to
arrive at the experimentally observed decrease of 25.4%.
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Figure 5. Effect of paroxetine on maximum AP upstroke velocity of isolated rabbit left ventricular
cardiomyocytes is frequency dependent. (a) Typical time derivative of the AP signal of a single
cardiomyocyte near its upstroke under control conditions and in the presence of 3 µM paroxetine
(gray and black lines, respectively) at pacing frequencies of 1 and 3 Hz. The rightward and leftward
horizontal arrows indicate the maximum upstroke velocity at 1 and 3 Hz, respectively, whereas the
vertical arrows indicate the artefacts due to switching on and off the square stimulus of 3 ms duration.
(b) Average maximum AP upstroke velocity of five cardiomyocytes under control conditions and in
the presence of 3 µM paroxetine (gray and black bars, respectively) at pacing frequencies of 1 and
3 Hz. * p < 0.05, ** p < 0.01, *** p < 0.001, two-way repeated measures ANOVA. (c) Percent decrease in
maximum AP upstroke velocity at a pacing frequency of 3 Hz as compared to 1 Hz under control
conditions and in the presence of 3 µM paroxetine (gray and black bars, respectively). ** p < 0.01,
paired t-test.
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Figure 6. Paroxetine-induced decrease in peak NaV1.5 current observed experimentally (black bars)
and in computer simulations of voltage clamp experiments, applying the voltage clamp protocol
of Figure 1a to the fast sodium current of the human left ventricular cell model by Ten Tusscher
et al. [42], as updated by Ten Tusscher and Panfilov [43] (gray bars). Simulations were carried out
with shifts in the half-inactivation voltage V1/2 per se (−3.3, −7.3, and −12.4 mV, when simulating
paroxetine concentrations of 1, 3, and 10 µM, respectively), increases in inactivation rate per se (6%,
27%, and 102%, when simulating paroxetine concentrations of 1, 3, and 10 µM, respectively), or both.
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2.3.2. Effects of Paroxetine on Single Human Left Ventricular Cardiomyocytes

Next, we carried out in silico experiments to test the effects of the paroxetine-induced
changes in NaV1.5 current characteristics on APs of single human left ventricular car-
diomyocytes, using the aforementioned human left ventricular cell model by Ten Tuss-
cher et al. [42,43]. To allow a direct comparison with our experimentally observed effects
on rabbit left ventricular cardiomyocytes (Figure 4), we based our parameter settings on the
NaV1.5 current changes observed in HEK-293 cells at a paroxetine concentration of 3 µM.
Accordingly, we used a −7.3 mV shift in the half-inactivation voltage and a 26.8% increase
in the inactivation rate of the fast sodium current (INa) to simulate the effects of paroxetine
on the model cell. Furthermore, the fully activated INa conductance was reduced by 18.7%
to account for the amount of decrease in peak NaV1.5 current that is not attributable to the
changes in inactivation, as set out in Section 2.3.1.

We assessed paroxetine-induced changes in APs elicited at 1 Hz with stimuli of 3 ms
duration, as in our experiments on rabbit left ventricular cardiomyocytes. A severe loss-of-
function mutation in SCN5A was simulated by a 50% reduction in the density of fast sodium
channels, as if the heterozygously expressed mutant NaV1.5 channels were completely
non-functional. As illustrated by the train of APs of Figure 7a (top), the overall AP shape is
neither strongly affected by the simulated loss-of-function mutation nor by the simulated
administration of paroxetine, apart from a marked reduction in AP overshoot. However, a
closer look at the AP upstroke phase reveals that the upstroke is considerably slowed down
by the mutation and upon the administration of paroxetine (Figure 7a, bottom). Maximum
AP upstroke velocity (Vmax) of the wild-type cardiomyocyte is reduced by 60% (from 361 to
145 V/s) upon administration of paroxetine, whereas the already reduced Vmax of the
NaV1.5 mutant cardiomyocyte is further reduced by as much as 65% (from 208 to 73 V/s)
(Figure 7b).

2.3.3. Effects of Paroxetine on Conduction Velocity and Excitability

In a final series of in silico experiments, we tested the effects of paroxetine on conduc-
tion velocity and excitability, using one-dimensional strands of ventricular cells that are
each individually described by the aforementioned human left ventricular cell model by
Ten Tusscher et al. [42,43] and electrically coupled through a gap junctional conductance (gj;
Figure 8a, inset). As in the single cell simulations of Section 2.3.2, we based our parameter
settings on the NaV1.5 current changes observed in HEK-293 cells at a paroxetine concen-
tration of 3 µM. A propagating AP was elicited by applying a 2 ms, 20–25% suprathreshold
stimulus to the leftmost cell of the strand at a frequency of 1 Hz. At gj values ranging from
10 nS to 30 µS, we determined the conduction velocity of the propagating AP under control
conditions (‘wild type’) and in case of a simulated complete loss-of-function mutation in
SCN5A (‘mutant’), and then repeated our simulations upon simulated administration of
paroxetine. The thus obtained conduction velocity values are shown in Figure 8a. Under
control conditions, administration of paroxetine reduces conduction velocity by ≈34%
at gj values ranging from 0.1 to 30 µS (Figure 8a, open and filled circles). In case of the
mutation, where conduction velocity is already reduced by ≈21% due to the mutation
per se (Figure 8a, open symbols), administration of paroxetine further reduces conduction
velocity by as much as ≈42% (Figure 8a, open and filled squares), so that the overall
reduction in conduction velocity due to the combined inhibiting effect of the mutation and
paroxetine as a ‘second hit’ on top of the mutation is as large as ≈54% (Figure 8a, open
circles and filled squares).
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Figure 7. Effects of paroxetine on action potentials of single human left ventricular cardiomyocytes
in computer simulations, using the human left ventricular cell model by Ten Tusscher et al. [42], as
updated by Ten Tusscher and Panfilov [43]. (a) Action potentials elicited at 1 Hz (top) and associated
upstroke phase (bottom) of wild-type and NaV1.5 mutant cardiomyocytes in the absence or presence
of paroxetine. (b) Associated maximum upstroke velocity (Vmax).

We also assessed the effects of paroxetine on excitability. To this end, we determined
the stimulus current threshold over the same wide range of gj values that we used in our
simulations of Figure 8a. Under control conditions, administration of paroxetine increases
the stimulus current threshold by 14–15% at gj values ranging from 0.03 to 30 µS (Figure 8b,
open and filled circles). The stimulus current threshold shows an increase of ≈10% as a
result of the mutation per se (Figure 8b, open symbols). Administration of paroxetine as a
‘second hit’ further increases the stimulus current threshold by 12–18% (Figure 8b, open
and filled squares), so that the overall increase in stimulus current threshold due to the
combined effect of the mutation and the administered paroxetine is as large as 24–30%
(Figure 8b, open circles and filled squares).
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Figure 8. Effects of paroxetine on action potential conduction in computer simulated one-dimensional
strands of human left ventricular cardiomyocytes. (a) Conduction velocity in strands of wild-type
and NaV1.5 mutant cardiomyocytes in the absence or presence of paroxetine as a function of gap
junctional conductance (gj). Individual cells of the 90 cell strand (inset) described according to
the human left ventricular cell model by Ten Tusscher et al. [42], as updated by Ten Tusscher and
Panfilov [43]. Myoplasmic resistivity set to 150 Ω·cm [44]. (b) Associated stimulus current threshold
for successful conduction. Stimulus current of 2 ms duration applied to the leftmost cell of the strand
at a frequency of 1 Hz.

3. Discussion

A strong relationship has been reported in the literature between antidepressants and
cardiac ion channel dysfunction [45]. As set out in the Introduction, the antidepressant of
our study, paroxetine, has been linked to both BrS and LQTS, although data are limited
and somewhat conflicting. Given the association of paroxetine with both BrS and LQTS
and its established inhibiting effect on neuronal NaV1.4, NaV1.7, and NaV1.8 channel
function [32–34], the main objective of this study was to investigate the effect of paroxetine
on the functioning of the highly homologous cardiac NaV1.5 channel.

The main findings of the present study are as follows: (1) in HEK-293 cells stably
expressing human NaV1.5 channels, paroxetine inhibits peak NaV1.5 current density in
a concentration-dependent manner; (2) paroxetine does not affect voltage dependence of
NaV1.5 current activation; (3) paroxetine inhibits NaV1.5 current by shifting its steady-state
inactivation towards more hyperpolarizing potentials and increasing its rate of inactivation
in a concentration-dependent manner; (4) paroxetine reduces Vmax and amplitude of the
AP of isolated rabbit left ventricular cardiomyocytes; (5) the latter reduction in Vmax is
larger at a higher pacing frequency, likely due to a slower recovery from inactivation in
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the presence of paroxetine; (6) paroxetine lowers conduction velocity and excitability in
computer simulated strands of human left ventricular cardiomyocytes, thereby increasing
the risk of reentry and unidirectional block [46] and thus increasing the susceptibility to
cardiac arrhythmias. Thus, the present study demonstrates the effect of paroxetine as an
inhibitor of NaV1.5 channels in HEK-293 cells and rabbit left ventricular cardiomyocytes.
Furthermore, our computer simulations show that the inhibiting effect of paroxetine is
increased in the setting of an NaV1.5 current that is already reduced due to a loss-of-function
mutation in SCN5A.

Some caution should be taken when interpreting these results. When looking at
the AP recordings of the rabbit left ventricular cardiomyocytes, one can see a significant
decrease in Vmax and APA, which both well reflect the functioning of the cardiac sodium
channels [35,47], in the absence of changes in other AP parameters. These findings are in
line with those of Rose et al. [48], who found that an earlier start of inactivation in the AP
did not lead to major alterations in AP parameters, except for a reduction in Vmax. The
observed reduction in Vmax and APA suggests a block of NaV1.5 channels. However, this
reduction is much smaller than one would expect from the data that we obtained in our
voltage clamp experiments on HEK-293 cells. This apparent discrepancy is in line with the
findings of Remme et al. [49], who noted that characteristics of sodium channels expressed
in cardiomyocytes may differ from those of sodium channels expressed in cell expression
systems, such as HEK-293 cells. What may have contributed to this discrepancy is that
our experiments on HEK-293 cells were performed without β-subunits of NaV1.5, which
are known to play a role in the voltage dependence of activation and inactivation of the
NaV1.5 channel as well as in its rate of inactivation [50,51]. A further explanation may
lie in the difference between the resting membrane potential of the cardiomyocytes (near
−80 mV) and the holding potential in the voltage clamp experiments on the HEK-293 cells
(−120 mV). Drugs can bind to channels depending on their specific state of (in)activation.
The difference in potential could therefore have led to a difference in channel state and an
associated difference in binding sites available for paroxetine. Yet, another explanation
could be the difference in temperature at which measurements were performed and the
presence of fluoride in the HEK-293 cell pipette solution, which could also alter the kinetics
of the sodium channel and drug effects on the sodium channel [35,52–54]. Despite the
apparent discrepancy in (amount of) NaV1.5 channel inhibition between HEK-293 cells
and cardiomyocytes, the significant reduction in Vmax (and APA) of the cardiomyocytes at
close-to-physiological conditions indicates that paroxetine may be of risk for patients with
NaV1.5 ion channelopathies, substantiating the classification of paroxetine as a drug that
should preferably be avoided by BrS patients and by congenital long QT patients [28,30].

Our results were obtained at paroxetine concentrations of 1 µM and above. Unfortu-
nately, it is difficult to estimate the actual concentration of paroxetine in cardiac tissue of
patients who are treated with a daily dosage of this drug. In addition to pronounced in-
terindividual variations in plasma paroxetine concentrations [55], paroxetine demonstrates
highly non-linear pharmacokinetics, so that an increase in its dose can result in dispropor-
tionate and unpredictable increases in plasma levels [16]. The recommended therapeutic
reference range is 20–65 ng/mL (corresponding to a concentration of 0.06–0.20 µM), with a
laboratory alert level of 120 ng/mL [56], but much higher plasma or serum levels have regu-
larly been observed, including levels near 0.6 µM [57], 0.9 µM [55], 1.1 µM [15], 1.2 µM [58],
and 1.3 µM [16], all at regular daily doses, reflecting the aforementioned pronounced
interindividual variations and highly non-linear pharmacokinetics. Paroxetine shows a
high volume of distribution, with reported values of 8.7 L per kg of body weight [59],
3.1–28.0 L/kg [60], and 17 L/kg [61], suggesting that all cardiomyocytes are exposed. The
distribution of paroxetine in the body is extensive, consistent with its lipophilic amine
character, but with its mean cardiac specimen/blood ratio of 1.05 ± 0.43 (mean ± SD, n = 8),
there is no specific accumulation in the heart [61]. However, it is difficult, if not impossible,
to estimate the paroxetine concentration that is actually “sensed” by NaV1.5 channels in
the cardiomyocyte membrane, yet the small but significant increase in QRS width observed
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by Edwards et al. [17] during a four week treatment with a 30 mg daily dose of paroxetine
suggests that this concentration is near the micromolar range.

In the present study, a limited number of cells was used in each phase of the study.
However, we have performed paired experiments, thus considerably raising the power
of statistics for this small number of experiments, and we have used three different drug
concentrations to test the effects of paroxetine on NaV1.5 current. The effects of paroxetine
on NaV1.5 current density and gating properties were notable and consistent at multiple
drug concentrations. In addition, the AP measurements in freshly isolated rabbit cardiomy-
ocytes supported the principal findings of the HEK-293 cell measurements. We used three
different drug concentrations to assess the IC50. While a larger number of concentrations
is used in most studies, Turner and Charlton [62] demonstrated that a small number of
concentrations is sufficient for the accurate determination of the IC50 through standard
sigmoidal dose–response curves. In addition, our used concentrations are around the IC50,
which enhances the reliability of the IC50 determination.

In conclusion, our study shows that paroxetine acts as an inhibitor of NaV1.5 channels
through multiple actions on their electrophysiological characteristics. Our experiments on
rabbit left ventricular cardiomyocytes show inhibitory effects that are not alarming per
se, but may become so in case of loss-of-function mutations in SCN5A, supporting the
classification of paroxetine as a drug that should preferably be avoided by BrS patients and
by congenital long QT patients.

4. Materials and Methods
4.1. Cell Preparations
4.1.1. HEK-293 Cell Culture

Experiments were conducted using a human embryonic kidney 293 (HEK-293) cell
line stably expressing human NaV1.5 channels [63]. The cell line was cultured using
DMEM (Gibco, Breda, The Netherlands) supplemented with 1% penicillin (Gibco), 1%
streptomycin (Gibco), 10% FBS (Biowest, Nuaillé, France), 1% L-glutamine (Gibco), and
Zeocin (200 µg/mL; Invitrogen, Breda, The Netherlands). Cells were subcultured in 25 mL
flasks once a week and stored in a 5% CO2 incubator at 37 ◦C. Single cells were harvested
at 80% confluence after 0.25% trypsin (Gibco) treatments of ≈2 min. On the day of patch
clamp measurements, cells were trypsinized and stored in DMEM at room temperature
until use.

4.1.2. Rabbit Ventricular Cardiomyocytes

Animal procedures were performed in accordance with governmental and institutional
guidelines for animal use in research and were approved by the Institutional Animal Care
and Use Committee of the Amsterdam University Medical Centers, location Academic
Medical Center.

Rabbit left ventricular cardiomyocytes were isolated from male New Zealand White
rabbits by enzymatic dissociation as described previously [64]. Therefore, anesthesia was
performed using 20 mg xylazine and 100 mg ketamine I.M., followed by intravenous
administration of a bolus of 1000 IU heparin LEO. Animals were killed by an injection of
pentobarbital (240 mg) and the hearts were excised and transported to the laboratory in
cold (4 ◦C) Tyrode’s solution containing (in mM): NaCl 128, KCl 4.7, CaCl2 1.45, MgCl2 0.6,
NaHCO3 27, Na2HPO4 0.4, and glucose 11; pH set to 7.4 by equilibration with 95% O2 and
5% CO2. Left ventricular cardiomyocytes were isolated using Langendorff perfusion at a
constant pressure of 50 mm Hg and a temperature of 37 ◦C. Perfusion was conducted via
the aorta with Tyrode’s solution for 15 min, after which it was replaced with low-calcium
dissociation solution containing (in mM): NaCl 146.5, CaCl2 0.01, MgCl2 2.0, NaHCO3
1.0, KH2PO4 1.4, KHCO3 3.3, glucose 11.0, and HEPES 16.8; pH set to 7.3 using NaOH.
After 15 min, collagenase type B (0.15 mg/mL, Roche, Woerden, The Netherlands), colla-
genase type P (0.05 mg/mL, Roche), trypsin inhibitor (0.1 mg/mL, Roche), hyaluronidase
(0.2 mg/mL, Sigma, Zwijndrecht, The Netherlands), protease XIV (Sigma), and creatine
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(10 mM) were added. The left ventricle was fractionated as perfusion pressure dropped
from 50 to ≈2 mm Hg; the remnants were then further fragmented into single cells via a
gyratory water bath shaker. Cells were stored at room temperature until use in a modified
HEPES-buffered Tyrode’s solution containing (in mM): NaCl 140, KCl 5.4, CaCl2 1.8, MgCl2
1.0, glucose 5.5, and HEPES 5.0; pH set to 7.4 using NaOH.

4.2. Electrophysiology
4.2.1. Data Acquisition

Small aliquots of cell suspension were put in an open recording chamber on the stage
of an inverted microscope (Nikon Diaphot; Nikon Europe, Amstelveen, The Netherlands).
The cells were allowed to adhere for 5 min after which superfusion with bath solution (for
compositions, see Sections 4.2.2 and 4.2.3 below) was started. Control measurements took
place after ≈30 min. Thereafter, cells were perfused for 10 min with bath solution to which
paroxetine at a concentration of 1, 3, or 10 µM was added, after which measurements were
performed. With this 10 min incubation period, a stable effect of paroxetine was achieved.
Paroxetine was dissolved in water as stock solution (2 mM) and stored at −80 ◦C. Freshly
diluted paroxetine containing solutions were prepared daily.

NaV1.5 current and APs were measured with the ruptured and perforated patch
clamp methodology, respectively, using an Axopatch 200B amplifier (Molecular Devices,
Sunnyvale, CA, USA). Custom software (Scope, kindly provided by J.G. Zegers, MSc,
and MacDAQ, kindly provided by Dr. A.C.G. van Ginneken) was used to record and
analyze NaV1.5 current and APs. Borosilicate glass patch pipettes (GC100F-10; Harvard
Apparatus, Waterbeach, UK) were pulled using a custom microelectrode puller, and had a
2–3 MΩ resistance after filling with the pipette solution (for compositions, see Sections 4.2.2
and 4.2.3 below). Signals were filtered and digitized at 2 kHz and 40 kHz, respectively. For
NaV1.5 current measurements, series resistance was compensated for 60–80%.

4.2.2. Sodium Current Measurements

NaV1.5 currents were measured at room temperature in HEK-293 cells with stable
NaV1.5 expression. We selected relatively small HEK-293 cells (with a membrane ca-
pacitance of 7.9 ± 0.7 pF (n = 11)) and used a bath solution with a relatively low Na+

concentration to obtain reliable voltage clamp. Bath solution consisted of (in mM): NaCl 20,
CsCl 120, CaCl2 1.8, MgCl2 1.0, glucose 5.5, HEPES 5.0; pH set to 7.4 using CsOH. Pipette
solution contained (in mM): CsF 110, CsCl 10, NaF 10, CaCl2 1.0, MgCl2 1.0, Na2ATP 2.0,
EGTA 11, and HEPES 10; pH set to 7.2 using CsOH. NaV1.5 currents were activated from a
holding potential of −120 mV followed by a 50 ms depolarizing pulse to test potentials
ranging from −80 to +35 mV, in 5 mV steps (Figure 1a, inset). Cycle length was 5 s, which
results in full recovery from inactivation at room temperature when using a holding po-
tential of −120 mV [52]. For the voltage dependence of activation, the current-voltage
relationships were corrected for driving force and normalized to maximum peak current.
Voltage dependence of inactivation was measured at a test pulse (P2) to −20 mV for 50 ms,
which was preceded by a 500 ms prepulse (P1) from a holding potential of −120 mV to
test potentials ranging from −120 to +40 mV in 5 mV steps (Figure 2c, inset). Cycle length
was 5 s. Voltage-dependent activation and inactivation data were fitted to the Boltzmann
equation G/Gmax = 1/{1 + exp [(V1/2 − V)/k]}, where G is the NaV1.5 conductance at test
potential V, Gmax is the maximum NaV1.5 conductance, V1/2 is the voltage of half-maximal
(in)activation, and k is the slope factor (in mV). NaV1.5 conductance was determined by
the equation G = INa/(V − ENa), in which INa denotes the NaV1.5 current and ENa is its
reversal potential. The rate of NaV1.5 current inactivation was quantified by determining
the time point of half inactivation t50, relative to the time point of peak current amplitude,
upon a voltage clamp step from −120 to −20 mV. The paroxetine dose–response data were
fitted to the Hill equation y = 1/{1 + ([paroxetine]/IC50)nH}, where y is the normalized peak
NaV1.5 current at −45 mV, IC50 is the half-maximal inhibitory paroxetine concentration,
and nH is the Hill coefficient.
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4.2.3. Action Potential Measurements

APs were measured at 37 ◦C in single rabbit left ventricular cardiomyocytes. Cells
were superfused with modified HEPES-buffered Tyrode’s solution (for composition, see
Section 4.1.2 above), and patch pipettes were filled with (in mM): K-gluconate 125, KCl 20,
NaCl 5, amphotericin B 0.44, and HEPES 10; pH set to 7.2 using KOH. APs were elicited
at pacing frequencies of 1 and 3 Hz using 3 ms and ≈50% suprathreshold current pulses
through the patch pipette. Potentials were corrected for the calculated liquid junction
potential [65]. APs were characterized by AP amplitude, AP duration at 20, 50, and 90% of
repolarization, resting membrane potential, maximum upstroke velocity, and AP plateau
potential, defined as the membrane potential at 20 ms after the AP upstroke.

4.3. Computer Simulations

The functional effects of the paroxetine-induced changes in NaV1.5 currents were
assessed by computer simulations of a single cardiomyocyte or a linear strand of cardiomy-
ocytes, in either case using the Ten Tusscher et al. human left ventricular cell model [42], as
updated by Ten Tusscher and Panfilov [43], to describe individual cells. When simulating
action potential propagation in strands of cells, myoplasmic resistivity was set to 150 Ω·cm
(Figure 8a, inset) [44] and conduction velocity was computed across the middle third of
the strand. Software was compiled as a 32-bit Windows application using Intel Visual
Fortran Composer XE 2013 and run on an Intel Core i7 processor based workstation. For
numerical integration of differential equations, we applied a simple and efficient Euler-type
integration scheme with a 1 µs time step [66]. All simulations were run for a sufficiently
long period to reach steady-state behavior.

4.4. Statistical Analysis

Statistical analysis was conducted using SigmaStat, version 3.5 (Systat Software, Inc.,
San Jose, CA, USA). All data are expressed as mean ± SEM. Significance levels were set at
the 5% level when using a paired t-test, one-way ANOVA, or two-way repeated measures
ANOVA, followed by pairwise comparison using a Student-Newman-Keuls test.
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