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Abstract: Aging is the most prominent risk factor for late-onset Alzheimer’s disease. Aging asso-
ciates with a chronic inflammatory state both in the periphery and in the central nervous system,
the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed.
Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and
accelerates the progression of Alzheimer’s disease through various pathways discussed in the present
review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer’s disease, amyloid
beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies
could prove a valuable therapeutic strategy, although much research is still needed to identify the
appropriate time window. Active research focusing on identifying early biomarkers could help
translating these novel strategies from bench to bedside.

Keywords: neuroinflammation; inflammaging; Alzheimer’s disease; microglia; cellular senescence;
TNF signaling; TREM2; oxidative stress; therapy

1. Introduction

Medical achievements and public health efforts over the last decades have contributed
to reducing mortality in early and midlife from infectious and cardiovascular diseases as
well as from some forms of cancer, increasing global life expectancy from 66.20 years in 1995
to 72.98 years in 2017, the top 5 countries being Singapore (84.79 years), Japan, Switzerland,
Italy, and Kuwait [1]. However, because aging is the major risk factor for neurodegenerative
diseases, these increasing numbers of aged persons now face the risk of developing such
diseases simply due to their survival. Among neurodegenerative diseases, Alzheimer’s
disease is the most common form of dementia, affecting currently about 50 million people
worldwide, with numbers expected to triple by 2050 [2]. Aside from the heavy burden on
healthcare and social systems as well as on families posed by Alzheimer’s disease (AD), it
also robs affected individuals of the attributes that make long lives worth living, such as
memories, feelings, thinking, or the ability to make decisions [3].

Despite the ambition set by the G8 dementia summit held in 2013 to identify a disease-
modifying treatment for AD by 2025 [4], decades of clinical trials driven by the amyloid
cascade hypothesis have failed. Meanwhile, research has provided compelling evidence on
the involvement of neuroinflammation in both aging and AD pathogenesis, identifying
new targets that could help us stop the inexorable progression of this devastating disease.
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2. Aging and Immunity

Aging is accompanied by an impairment of the function of the immune system af-
fecting both the innate and adaptive responses; raising the susceptibility of elderly pa-
tients to bacterial, viral and fungal infections; and diminishing their immune response
to vaccines [5]. The phagocytic activity of neutrophils and macrophages, as well as that
of natural killer lymphocytes, is reduced [6]. In the adaptive immune system, one of the
major changes is the involution of the thymus, leading to the reduced production of new
and naïve T cells and an increase in terminally differentiated memory T cells [7]. In adults,
the naïve T cell pool is also maintained through proliferation, but aged naïve T cells show
defective expansion [8]. In addition, autoreactive T cell clones, no longer depleted by the
thymus, may be released into the periphery and increase susceptibility to autoimmune
reactions [9]. The number of circulating B cells also diminishes, and B lymphocytes exhibit
a reduced antibody repertoire [10], more prone to reacting against self-antigens. All these
dysregulations are accompanied by increased circulating markers of inflammation, leading
to chronic low-grade inflammation, known as inflammaging [11].

2.1. Neuroinflammation in the Aging Brain

The central nervous system (CNS) has for long been considered an immune-privileged
site due to a lack of rapid adaptive immune response to foreign antigens [12]. Nonetheless,
research has shown that the CNS does communicate with the immune system [13].

The resident innate immune cells of the CNS are microglia. During development,
primitive myeloid precursors arise from the yolk sac following the expression of runt-
related transcription factor 1 (RUNX1) and macrophage colony stimulating factor 1 receptor
(CSF1R), after which they reach the embryonic head through the blood flow and migrate to
the developing brain by using matrix metalloproteinases [14]. Following migration, the
maintenance of the population relies on the self-renewal of microglia [14].

Resting microglia have commonly fixed somata with motile filopodia-like processes
with different morphologies that enable the cells to carry out immune surveillance through-
out the parenchyma [15]. Neuronal signals maintain the resting state in the microglia,
characterized by a low expression of CD68, through the expression of a distinct set of
proteins, including CX3CL1, CD22, the neuronal plasma membrane marker CD200, neuro-
transmitters, and neurotrophins, which interact with corresponding receptors on microglial
cells [16]. In addition to the low expression of CD68, resting microglia downregulate MHC-I
and MHC-II, as opposed to activated microglia, that express high levels of MCH-II and
co-stimulatory antigens. This enables microglia to interact with antigen-presenting cells
and present antigens to T-lymphocytes [17].

While constantly surveying the environment, microglia recognize bacterial or viral
molecules as well as endogenous proteins and DNA or RNA released by damaged cells via
runt-related transcription factor 1 (belonging to the PRRs) located mainly on the microglial
plasma membrane. These PRRs are mostly toll-like receptors (TLRs), triggering receptor
expressed on myeloid cells (TREMs) or nucleotide-binding oligomerization domain (NOD)-
like receptors (NLRs) [18]. The interaction of the various ligands with these receptors
triggers a series of signaling pathways that lead to an upregulated CD68 profile and
the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-18,
tumor necrosis factor (TNF)-α, and cyclooxygenase-2 (COX2), of chemokines such as
C-C motif chemokine ligand 1 (CCL1), CCL5, and C-X-C motif ligand 1 (CXCL1), of
small-molecule messengers (prostaglandins, nitric oxide, reactive oxygen species), and
interferons to mediate the neuroinflammatory response [19,20]. In the frame of this pro-
inflammatory response, the microglial phagocytosis of damaged cells and neurotoxic
aggregates is promoted [18]. In terms of cellular morphology, activated microglia take on
an amoeboid shape (“puff up”) to enable the phagocytosis of foreign or damaged cells or
proteins. To achieve an efficient response, microglia cooperate with astrocytes, capillary
endothelial cells, as well as infiltrating blood cells that can gain access through a “leaky”
blood–brain barrier (BBB) [19]. Injury-related ATP release can induce an astrocyte-derived
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ATP gradient that is sensed by microglia through the purinergic receptor P2RY12 and
leads to rapid microglial migration and activation [21]. In addition, IL-1α, TNF-α, and
C1q, secreted by activated microglia, are able to induce a so-called ‘A1′ or neurotoxic
reactive astrocyte phenotype [22]. Systemic inflammation causes endothelial cells to release
chemokines, such as CCL5, which triggers microglial cells to express CLDN5 and to
infiltrate through the neurovascular unit contacting endothelial cells and forming tight
junctions to maintain the integrity of the BBB. However, sustained inflammation causes
microglia to polarize toward the phagocytic phenotype, engulfing astrocytic fragments and
end feet and weakening the BBB [23]. This creates the premises for cells of the adaptive
immune response, such as macrophages and lymphocytes, to infiltrate and interact with
cells of the innate immune system via chemokines and their receptors. For example,
CCR5 promotes neuroinflammation, while CCR2 shifts microglial polarization toward the
anti-inflammatory M2 phenotype. In addition to chemokines and their receptor signaling,
cytokines released by infiltrating cells may additionally modulate the immune response [24].
Anti-inflammatory cytokines, such as IL-1 receptor antagonist, IL-4, IL-10, IL-11, prevent
excessive inflammation and favor the shifting of the microglia toward an anti-inflammatory
M2 phenotype, promoting tissue repair [25]. Although the classical dichotomy of M1 (pro-
inflammatory) and M2 (anti-inflammatory) microglia is probably a simplified version of the
story, it is still used by researchers to convey the idea that microglia can be both detrimental
and protective [26]. Nonetheless, recent research has revealed significant variations in the
transcription signature of activated microglia accompanying various brain insults, such as
trauma, infection, or neurodegeneration [15].

In the aging brain, microglia as well as glial cells have a series of functional impair-
ments that contribute to sustained activation, maintaining the chronic neuroinflammatory
state [27], together with immunosenescence [11], mitochondrial dysfunction [28], impaired
mitophagy and autophagy [29,30], dysfunction of the ubiquitin–proteasome system [31],
meta-inflammation caused by obesity [32], and gut dysbiosis [33]. All these impairments
and abnormalities lead to increases in the circulating C reactive protein, IL-6 [34,35], TNF-α
and its receptors [36], intercellular adhesion molecule 1 (ICAM-1), tissue inhibitor of
metalloproteinases 1 (TIMP-1), the astrocytic intermediate filament glial fibrillary acidic
protein (GFAP), and markers of mitochondrial dysfunction, such as growth/differentiation
factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) [37], translated clinically into
physical frailty and sarcopenia [37]. The neuroimmune interactions between the CNS and
the periphery are bidirectional, IL-6, for example, being able to cross the BBB or gain access
to the CNS through regions with increased permeability to the circulating milieu such as
the circumventricular organs [38].

2.1.1. Mitochondria in the Aging Brain

Specifically for the brain, the high energy demands used mainly for synaptic trans-
mission, synaptogenesis, and synaptic pruning are supplied mainly by mitochondria via
oxidative phosphorylation (OXPHOS) [39], while astrocytes are mainly glycolytic and
provide lactate and other small molecules to neurons to be oxidized by neuronal mi-
tochondria and provide ATP [40]. Although up to 11 distinct sites where ROS can be
produced have been identified in isolated mitochondria [41], only respiratory complex I
(ubiquinone oxidoreductase), complex II (succinate dehydrogenase), and complex III (cy-
tochrome c reductase) are relevant for ROS production in vivo [42]. Even under normal
conditions, about 2% of electrons “leak” from the electron transport chain (ETC) and
will generate reactive oxygen species (ROS). ROS produced by complex I are directed to
the mitochondrial matrix and are involved in cellular differentiation and damage caused
by ischemia/reperfusion injuries [43], while ROS produced by complex III are divided
between the matrix and intermembrane space and trigger the hypoxia response [44].
Respiratory complexes are organized into supercomplexes, which vary in response to
changes in substrate availability [45]. Other sources of mitochondrial superoxide include
α-ketoglutarate dehydrogenase, pyruvate dehydrogenase, glycerol-3-phosphate dehy-
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drogenase, and fatty acid beta-oxidation [46]. Neurons, having less antioxidant defense
systems, are more sensitive than glia to oxidative damage [42]. Moreover, specific subpop-
ulations of neurons, mainly large neurons with long axons, show selective vulnerability
to oxidative stress [47]. These neurons are located mainly in the frontal cortex, amygdala,
substantia nigra, or hippocampus [42].

Aging associates changes in the structure and function of mitochondria, presumably
related to oxidative stress. Mitochondrial age-related changes consist of excessive frag-
mentation (in the CA1 region of the hippocampus) [48] or enlargement (for example in the
frontal cortex) [49]. The activity of complex I of the respiratory chain [50] and complex IV
decreases [42], with important consequences on the rate of ROS production. The reduction
of complex IV activity increases the redox state of the ETC, stimulating electron leakage
and the production of ROS [42]. Whether the accumulation of damaged mitochondria
is the result of ROS attack (the traditional view) or, on the contrary, the accumulation of
mitochondrial ROS results from reduced mitochondrial activity, as suggested by a mouse
model with a knock-in mutation of POLG (DNA polymerase subunit gamma, in charge
of replicating and repairing mitochondrial DNA), which shows a significant reduction of
mitochondrial respiration without accumulating excess ROS levels [51], is still a matter
of debate.

The physical proximity of the generated ROS with mitochondrial proteins makes the
latter highly susceptible to oxidative damage, further decreasing the energetic efficiency of
aged mitochondria and impairing the ATP-requiring fast axonal transport of the organelles
to sites of high energetic demand, usually the synaptic sites [52]. The mitochondria-
generated ROS also damage mitochondrial DNA (mtDNA), which is about ten times more
prone to oxidative attack compared to nuclear DNA because it lacks protective histones [53].
Although endowed with repair mechanisms such as the base excision repair mechanism
(BER) or a specific version of DNA ligase III that participates in DNA replication and repair,
and in spite of the contribution of mitochondrial fusion in safeguarding the mitochondrial
genome integrity, mtDNA damage may accumulate over years and can propagate through
clonal expansion, exacerbating neurodegeneration [54–56].

Alterations in ROS signaling impair the mechanisms of quality control, making
cells more vulnerable to senescence [57] and cell death [58]. The decline in the respi-
ratory function and alterations of the function of transcription factors also alters neural
biogenesis [59,60].

Another important function of mitochondria is the buffering of excess cytosolic
calcium [30]. Although neurons in different brain regions have different protein expression
patterns and different content of calcium-binding proteins [61], the changes in mitochon-
drial morphology and function alter also their Ca2+-buffering capacity. Ca2+ entry through
the outer mitochondrial membrane is mediated by voltage-dependent anion channel 1
(VDAC1), while the transport from the intermembrane space to the matrix is mediated by
the membrane Ca2+ uniporter (MCU) scaffolded by essential MCU regulator (EMRE), mito-
chondrial calcium uptake 1 and 2 (MICU1, MICU2), and MCU regulator 1 (MCUR1) [62].
Calcium efflux is mediated by the Li+-permeable Na+/Ca2+ exchanger (NCLX) [39]. In
buffering Ca2+, mitochondria cooperate with the endoplasmic reticulum (ER) through
mitochondria-associated membranes (MAMs), the core of which contains inositol trisphos-
phate receptors (IP3Rs) that interact with the mitochondrial chaperone glucose-regulated
protein 75 (Grp75) and the VDACs [63]. By damaging VDACs, ROS contribute to the
impairment in mitochondrial calcium buffering, which, together with the age-dependent
enhanced expression of the N-type voltage-gated calcium channel (VGCC) [64] and the
increased activity of L- and N-type VGCCs, leads to increased cytosolic calcium levels with
the subsequent formation of the mitochondrial permeability transition pore (MPTP) and
apoptosis [62].

Although glial cells have been less extensively studied, research has revealed that
they may even outweigh the importance of neurons in the process of aging [65]. Age- and
ROS-induced genomic alterations lead to mitochondrial dysfunction and apoptosis in glial
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cells as well, while ROS are able to induce a permanent cell-cycle arrest known as cellular
senescence, affecting both mitotic cells, such as glia and postmitotic neurons. The senescent
phenotype is characterized by the secretion of pro-inflammatory factors that can, in turn,
induce senescence in neighboring cells [66].

Due to the “endosymbiont” nature of mitochondria, thought to originate from an
α-proteobacteria that entered a symbiotic relationship with an ancestral eukaryotic cell [67],
the organelle has circular double-stranded mitochondrial DNA containing cytosine phos-
phate guanosine, cardiolipin, and N-formylated peptides, which are all bacterial features
recognized by immune cells. Once released via the opening of the MPTP and the loss of cel-
lular membrane integrity, these molecules are recognized as damage-associated molecular
patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) and interact with
pattern recognition receptors (PRRs) present on microglia, astrocytes, and macrophages.
As such, they prime the process of antigen presentation by dendritic cells and lead to the
expression of proinflammatory molecules and nitric oxide (NO) in microglial cells of the
CNS [68]. Among these, DAMPs are also cytochrome c, cardiolipin, and mitochondrial
transcription factor A (TFAM). Once in the extracellular space, cytochrome c increases the
secretion of nitric oxide and the production of ROS, likely by binding to toll-like receptor 4
(TLR4) [69], followed by the activation of the Jun N-terminal kinase (JNK) pathway [70],
the production of reactive nitrogen species, and the activation of signaling cascades down-
stream of PRRs, such as the mitogen-activated protein kinase (MAPK) signaling cascades.
Externalized cardiolipin upregulates the phagocytic activity of immune cells [71] and mod-
ulates the release of cytokines [72]. TFAM is a member of the high-mobility box group
(HMBG) proteins localized under physiological conditions in the IMM [68]. Released
into the extracellular space following cellular damage, it possibly forms complexes with
interferon 1γ [73] and acts as a pro-inflammatory signaling molecule, activating microglia
and increasing the production of IL-1β, IL-6, IL-8, and TNF-α [73].

2.1.2. Oxidative Stress and Brain Aging

A landmark study comparing the levels of oxidized nucleoside 8-hydroxy-2′-deoxyguanosine
(OH8dG) in nuclear and mitochondrial DNA isolated from various regions of the cerebral
cortex and cerebellum of humans aged 42 to 97 years found a progressive increase of
OH8dG with age, although the increase was significantly more pronounced in mtDNA [74].
A subsequent study comparing the markers of DNA damage in patients with AD found a
3-fold increase in mtDNA oxidative damage compared to nuclear DNA [75]. However, the
increased levels of unrepaired double-strand breaks and the age-related downregulation of
the expression of the DNAse TREX1 (three prime repair exonuclease 1) leads to increased
levels of cytoplasmic DNA [76].

The composition of phospholipids in aged human brains is altered as well, with
increased markers of lipid peroxidation (malondialdehyde levels) and intraneuronal lipo-
fuscin deposits being identified in aged brain samples [77]. Likewise, protein oxidation
markers (carbonyl residues) are increased as well [78].

Mitochondrial membrane fluidity (caused by lipid peroxidation) is altered in aged
individuals and AD patients. Specifically in AD patients, the mitochondrial membrane
fluidity was maximally altered and could not be further impaired by exposing mitochondria
to peroxidizing conditions [79]. The activity of certain enzymes, such as aconitase 2 (an
enzyme of the Krebs cycle), was found to be reduced in the lymphocytic mitochondria of
aged persons, patients with mild cognitive impairment (MCI) and AD, being negatively
correlated with the levels of plasmatic antioxidant vitamins and directly proportional to the
mini mental state examination score, suggesting a significant contribution of the oxidative
damage of aconitase 2 to the energetic imbalance and cognitive dysfunction with increasing
age [80]. All of these findings highlight the involvement of oxidative stress in healthy aging
and its increase in patients with MCI or AD [81].

Aside from the mitochondrial activity, ROS can be generated by xanthine oxidase,
NADPH oxidase, nitric oxide synthase, peroxidases, lipoxygenases, cyclooxygenase, and
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endoplasmic reticulum [52]. ROS play essential roles in a variety of signal transduction
pathways [82]. For example, hydrogen peroxide targets cysteine residues on tyrosine
phosphatases, thereby modulating the mitogen-activated protein kinases (MAPKs) path-
ways. Subsequently, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway [83], the c-Jun
N-terminal kinases (JNKs), the p38-MAPK, and the extracellular-regulated kinases (ERKs)
pathways are activated [82].

Numerous enzymatic and non-enzymatic cellular systems, called antioxidants, medi-
ate the detoxification functions via the activation of nuclear transcription factors, such as
the activator protein 1 (AP-1) transcription factor or the hypoxia-inducible factors (HIFs).
However, one of the key regulators mediating the transcription of antioxidant enzymes,
including glutathione (GSH), glutathione reductase, glutathione peroxidase (GPx), super-
oxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO-1) is the nuclear factor
erythroid 2-related factor 2 (Nrf2) [84]. Nrf2 belongs to the leucine zipper transcription
factors with a short cytoplasmic half-life. It is rapidly sequestered by Keap1 (kelch like
erythroid cell-derived protein with CNC homology (ECH)-associated protein 1), which
acts as an adaptor protein for a Cullin 3 (Cul3) scaffold protein of Nrf2 ubiquitin ligase
(E3) and mediates Nrf2 ubiquitination and degradation by the proteasome [85]. Oxida-
tive modifications at Cys residues of Keap1 change Keap1 conformation and promote its
dissociation from Nrf2 [86], which associates with co-activators like CBP (CREB binding
protein)/p300 and chromatin remodelers, forms heterodimers with small musculoaponeu-
rotic fibrosarcoma protein, and translocates to the nucleus, binding to ARE (antioxidant
response element) sites and initiating the transcription of these antioxidant enzymes [87].
An alternative pathway for the activation of Nrf2 is the phosphorylation of Nrf2 by protein
kinase C, casein kinase 2, or MAPKs [88]. Through cross-talk, the Nrf2-ARE pathway
indirectly modulates the nuclear factor-kappa B (NF-κB) pathway [82]. NF-κB regulates
the transcription of anti-apoptotic proteins and inhibits caspase-dependent cell death path-
ways, also being a master regulator of inflammation [82]. Moreover, Nrf2 competes with
NF-κB for binding CBP/p300, which may contribute to the suppression of the Nrf2/ARE
pathway in inflammatory states [55].

Reduced nicotinamide adenine dinucleotide (NADH) is another endogenous antioxi-
dant recently involved in the pathophysiology of neurodegenerative diseases. The main
reason for the age-related decline in NAD levels seems to be an increased expression
of CD38 [89], a transmembrane glycoprotein that catalyzes the degradation of NAD or
its conversion into other metabolites, and also exhibits cyclase activity producing cyclic
adenosine diphosphate ribose, a calcium mobilizer that controls neurotransmitter release
by neurons and astrocytes [90]. The expression of CD38 was shown to be driven by a
series of pro-inflammatory cytokines and chemokines secreted by senescent cells as well as
by ROS [91]. The resultant NAD depletion could impair the activity of NAD-dependent
enzymes such as poly(ADP-ribose) polymerase (PARP) and contribute to the accumulation
of DNA mutations as well as to reduced sirtuin activity [92].

Although oxidative changes occur in all aerobic cells, the brain is particularly prone
to oxidative damage due to lower levels of antioxidant enzymes compared to other cell
types [93], large membrane surfaces compared to the cytoplasmic volume, and increased
content of polyunsaturated fatty acids in cellular membrane [94], as well as to the presence
of Cu+ and Fe2+, transition metals that act as catalyzers in the Fenton reaction leading to
hydroxyl generation [95].

ROS act as key second messengers in the innate and adaptive immune response, and
ROS overproduction leads to a sustained activation of the inflammatory response [96]
and the upregulation of the production of pro-inflammatory cytokines, which, in turn,
activate inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX), promoting the
further production of reactive species in a vicious cascade and resulting in the apoptosis of
pericytes and the breakdown of the blood–brain barrier [97].

Aside from ROS, the chronic neuroinflammatory state is activated and maintained
by a series of pathways: by the PRR pathway, by cytokine signaling pathways, through
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triggering receptor expressed on myeloid cells 2 (TREM2) signaling [55], and via the cyclic
GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway [98]. The
PRRs include membrane receptors, such as toll-like receptors (TLRs), as well as intracellular
receptors, such as the nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs), or absent in melanoma 2 (AIM2)-like receptors [99], which bind PAMPs or DAMPs
as discussed above, and in the activation of which mitochondria and mitochondria-derived
molecules have a crucial role. Neurons are able to detect glial-released pro-inflammatory
factors and can either release inhibitory factors leading to the resolution of inflammation or
can release DAMPs such as ATP or DNA and further activate glial PRRS [100]. Following th
detection of DAMPs, the CARD domain of the NLR (nucleotide-binding oligomerization do-
main and leucine-rich repeat-containing receptor) binds to the adaptor apoptosis-associated
speck-like protein containing CARD (ASC) and procaspase-1, contained in CARD, catalyzes
to its active form leading to the production of IL-1β and IL-18 [55], as well as to the cleavage
of gasdermin D, which produces pores in the plasmalemma and leads to pyroptosis [101].
NLR family pyrin domain containing 3 (NLRP3) inflammasome activation requires a prim-
ing signal inducing NF-κB transcriptional targets [102], after which it relocates together
with ASC to the mitochondria and MAMs. TREM2 is a transmembrane protein expressed
in microglia that can be activated by the lipids of the cell membrane, lipids in body fluids,
or by components of lipoprotein complexes [103]. The gene encoding TREM2 is located at
chromosome 6p21.1, together with TREM-like genes (TREML1 and TREML2) [104]. Ligand
binding to TREM2 leads to the dephosphorylation of the signaling adaptor protein DAP12,
followed by the recruitment and activation of spleen tyrosine kinase (Syk). In turn, Syk
activates PI3K, causes Ca2+ release from the endoplasmic reticulum, and activates MAP
kinases [105]. TREM2 promotes the phagocytosis and clearing of pathogenic proteins and
apoptotic cells. Whether TREM2 is important for resident microglia or rather in promoting
the infiltration of peripheral myeloid cells is still a matter of debate [106].

The dimeric cGAS protein receptor binds DNA and is activated forming ladder-like
networks [107]. Once activated, it produces 2′3′-cGAMP, which binds to STING, an adaptor
protein located in the ER. After dimerization, STING translocates to the Golgi apparatus,
is phosphorylated by TANK binding kinase 1 (TBK1), and binds to interferon regulatory
factor 3 (IRF3), leading to its phosphorylation and activation [108]. Following phosphory-
lation, IRF3 translocates to the nucleus and activates the transcription of interferons and
other cytokines mediating the inflammatory response. Interferon-1 binds to the interferon-1
receptor (IFNAR), with 2 subunits, IFNAR1 and IFNAR2, associated with tyrosine kinase 2
and Janus kinase (JAK1), respectively [109]. After activation, tyrosine kinase 2 and JAK1
activate the signal transducer and activator of transcription 1 and 2 (STAT1 and STAT2),
which form a heterotrimeric complex with interferon regulatory factor 9 (IRF9), a complex
known as interferon-stimulated gene factor-3 (ISGF-3). This complex, in turn, stimulates
the transcription of interferon-stimulated genes, like IL-6, IL-1β, and TNF-α [98]. STING
is expressed mainly in microglia but also in astrocytes and neurons [110]. While the mild
activation of microglia and astrocytes maintains synaptic plasticity, neurite outgrowth, and
neurogenesis [111], the overactivation of glial cells and the excess production of cytokines
activate NF-κB and p53, leading to neuronal loss and BBB breakdown [98]. In other words,
the accumulation of cytoplasmic DNA during senescence ignites the cGAS-STING pathway,
leading to the amplification of neuroinflammation and further cell loss.

Dysfunctional mitochondria are the main source of ROS essential for NLRP3 activation
via the non-canonical pathway [112], while mtDNA (and especially oxidized mtDNA)
release serves to amplify inflammasome activity [113] and activates the cGAS-STING
pathway [114].

To summarize, there is a significant cross-talk between oxidative stress and neuroin-
flammation: ROS damage biomolecules and activate the redox-sensitive transcription factor
NF-κB, initiating the inflammatory response; damage the BBB; and promote the infiltration
of peripheral immune cells. Glial inflammatory activation increases the expression of
iNOS and NOX, further increasing the production of ROS, and leads to neuronal demise.
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Dying neurons release DAMPs, additionally activating microglia and triggering NLRP3
inflammasome assembly.

2.1.3. Astrocyte Senescence

Astrocytes are vital for the normal functioning of the CNS, providing nutrients for
neurons, regulating synaptic plasticity, modulating the release of neurotransmitters in a
Ca2+-dependent manner, maintaining ion balance in the extracellular space, and partic-
ipating in the formation of the BBB [115,116]. Similar to other cell types, astrocytes can
initiate a senescence program in response to various stressors [117], leading to the release of
chemokines, cytokines, and proteases [118], which further activate astrocytes to an A1-like
phenotype [119].

Senescent astrocytes show an increased expression of the p21WAF1 gene, or CIP/KIP
(CDK interacting protein/kinase inhibitory protein), which is partly upregulated by p53
and which leads to initial cell cycle arrest by inhibiting CDK2 activity independent of
telomere shortening [120]. Further, p16INK4A, a member of the INK4A family, inhibits
CDK4 and CDK6, leading to RB (retinoblastoma protein) hyperphosphorylation and the
blockage of the cell cycle entry to the S phase [121]. In addition, senescent astrocytes
exhibit nuclear enlargement and changes in the nuclear morphology, as well as alterations
in the integrity of the nuclear envelope caused by the downregulation of lamin B1 and
other nuclear lamin proteins [122]. Ultrastructurally, there are chromatin alterations and
the formation of senescence-associated heterochromatic foci, which associate with the
diminished expression of proliferation-promoting genes and lead to irreversible cell cycle
arrest [123].

In addition to morphologic changes (hypertrophic somata and processes), astrocytic
activation leads to the upregulation of glial fibrillary acidic protein (GFAP), as well as
to calcium dyshomeostasis and the upregulation of Ca2+-signaling mediators such as
L-type voltage-sensitive calcium channels, ER Ca2+-release channels, or Ca2+-binding
proteins [124]. Aside from modulating the activity of several transcription factors, such as
NF-κB, peroxisome proliferator-activated receptors (PPARs), or the JAK/STAT pathway,
Ca2+ also activates calcineurin, a phosphatase that dephosphorylates and activates the
receptors of nuclear factor of activated T cells (NFATs) [124]. Glial calcineurin/NFAT
activity leads to the upregulation of key mediators of inflammation, such as TNF-α, IL-6, or
cyclooxygenase 2 [125], and modulates the expression of excitatory amino acid transporters
(EAATs), leading to the decreased uptake of glutamate by astrocytes, as will be discussed
further [126].

The number of mitochondria increases, likely due to impaired mitophagy in astrocytes
as well [127], but their membrane potential is altered, leading to increased ROS production
and the release of mtDNA. Other organelles, such as lysosomes, tend to accumulate, and
the lysosomal enzymes, such as senescence-associated beta galactosidase (SA-β-Gal), are
upregulated, making SA-β-Gal a common marker of senescent cells [117].

Increased oxidative stress in astrocytes causes transcriptomic changes, upregulat-
ing genes associated with proinflammatory cytokines via the p38/MAPK and NF-κB
pathways [119,128], as well as by HMGB1 (high-mobility group B), another regulator
with increased expression in aging astrocytes. HMGB1 is able to increase the efficiency
of NF-κB transactivation by interacting with NF-κB complexes, thereby strengthening
the pro-inflammatory response and increasing the production of IL-6, IL-8, chemokines,
and proteinases, collectively known as the senescence-associated secretory phenotype
(SASP) [129].

As stated, astrocytes regulate neuronal function through the uptake of released excita-
tory and inhibitory neuromediators, such as glutamate or γ-aminobutyric acid (GABA).
They express excitatory amino acid transporters (EAATs) 1 and 2 [130] for the uptake of
excess glutamate, which is converted by glutamine synthase into glutamine [131]. Both glu-
tamine synthase levels and the expression of EAAT1 decrease with age in astrocytes [132].
Moreover, the activity of glutamine synthase is very sensitive to oxidative stress, decreasing
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the available metabolic substrates to neurons and contributing to excitotoxic neuronal
death [119].

Another role of astrocytes in the CNS is to synthesize cholesterol, an essential com-
ponent of cell membranes, due to the expression of apoE and SREBP2 (sterol regulatory
element-binding protein 2), a transcription factor that regulates the expression of 3-hydroxy-
3-methylglutaryl CoA reductase (HMGCR). Given the presence of the BBB, the brain choles-
terol content is largely independent of dietary intake [133]. In senescent astrocytes, the
expression of cholesterol synthesis-associated genes and HMGCR is decreased, leading to a
dysregulation of cholesterol synthesis and decreased synaptic support of neurons [119].

2.1.4. Neuroinflammation and Defective Autophagy

Under normal conditions, cells prevent the accumulation of protein aggregates and
damaged organelles by autophagy. Specifically for mitochondria, the process is called
mitophagy [39,134].

The formation of the autophagosome starts with the activation of the Unc-51-like ki-
nase (ULK) complex, which contains ULK1, ULK2, ATG13 (autophagy-related protein 13),
ATG101, and focal adhesion kinase (FAK) family-interacting protein of 200 kDa (FIP200).
The activation of the ULK complex occurs through phosphorylation by 5′-adenosine
monophosphate (AMP)-activated protein kinase (AMPK), while mammalian target of ra-
pamycin (mTOR) complex 1 inhibits ULK [135]. Following activation, ULK complex recruits
class III phosphatidylinositol 3-kinase (PI3K) complex I (containing vascular protein sorting
(VPS) 34, VPS 15, beclin1, and ATG14), which will lead to the generation of phosphatidyli-
nositol 3-phosphate (PI3P) on the phagophore [135] and the recruitment of PI3K-binding
proteins and tryptophan-aspartic acid (WD) repeat domain phosphoinositide-interacting
(WIPI 1 and 2). These events are followed by the recruitment of the ATG12-ATG5-ATG16L1
complex. Subsequently, ATG4 cleaves the light chain 3 (LC3) family member proteins,
the cleaved fragment (LC3-I) being conjugated to the phagophore membrane via ATG7,
ATG3, and the ATG12-ATG5-ATG16L1 complex [136], contributing to phagophore mem-
brane elongation and closure. Completed autophagosomes migrate along microtubules to
the lysosomes located in the perinuclear region. The tethering of the autophagosome to
the lysosomal membrane is mediated by a series of tethering factors, after which soluble
N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) mediate the
fusion of the two membranes [137]. About 40 SNARE proteins have been identified in
mammalian cells, with key functions in intracellular membrane fusion. Depending on on
the identity of the amino acid located at the center of their 60-amino-acid-long eponymous
domain, these proteins can be classified into Q-SNAREs and R-SNAREs [138]. For vesicle
fusion, an R-SNARE (also known as v-SNARE) located on the membrane of one vesicle
forms a trans-SNARE complex with three different Q-SNAREs (also called t-SNAREs) lo-
cated on the target vesicle’s membrane (containing Qa, Qb, and Qc SNARE motifs), leading
to the fusion of the two membranes. Consequently, all SNAREs come to be located on the
same membrane, and the trans-SNARE complex transforms into a cis-SNARE complex,
which is recognized and disassembled by N-ethylmaleimide sensitive fusion protein (NSF)
and alpha soluble NSF-attachment protein [139]. The v-SNARE undergoes retrograde trans-
port and is recycled to the donor compartment, while the t-SNARE subunits are recognized
for future fusion events [140].

Although low levels of ROS induce autophagy, increased oxidative damage of pro-
teins, and the age-related reduced expression of LC3 and PINK1 (necessary for mitophagy),
mainly in women [141], cause an impairment of autophagy and leads to the accumula-
tion of damaged organelles and altered proteins. In addition, the accumulation of DNA
and mtDNA damage impairs the transcription of the discussed proteins involved in au-
tophagy and leads to the accumulation of p62, which further impairs the DNA damage
responses [142] and induces NF-κB activity, activating inflammation [143]. Basically, all the
damaged cellular components accumulated as a result of impaired autophagy are released
and recognized as DAMPs and activate TLR9, triggering the production of IL-6, IL-8, IL-15,
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IL-1β, TNF-α, ICAM1 (intercellular adhesion molecule 1), matrix metalloproteinases, and
MCP-1 (monocyte chemotactic protein-1), collectively known as SASPs [25] and which are
able to reinforce cellular senescence [144].

3. Neuroinflammation in Alzheimer’s Disease

Already in the original description of the disease in 1907, Alois Alzheimer noted the
presence of the neurofibrillary tangles, later shown to consist of cleaved and hyperphos-
phorylated intracellular protein tau aggregates and of neuritic plaques (originally called
“miliary foci”), consisting of a “special substance in the cortex” surrounded by dystrophic
neuronal processes [145]. The “special substance” was characterized in 1984 by Glenner
and Wong to be a peptide with 40 or 42 amino acids [146], originating from the amyloid
precursor protein (APP) identified in 1987 [147].

APP is a single-pass transmembrane protein secreted in large amounts by neurons
and rapidly metabolized, the precise function of which is yet elusive. Alternate splicing of
the APP transcript generates eight isoforms, of which the 695 amino acid form is expressed
mainly in the brain [145]. After sorting in the ER and Golgi apparatus, APP is delivered to
synaptic terminals [55] and presented at the cell surface, where it can be further processed or
reinternalized via a clathrin-mediated process. APP is cleaved either by α- or β-secretases.
Alpha-secretases are members of the ADAM (a disintegrin and metalloproteinase) family
of proteases and cleave APP within the Aβ sequence, generating a soluble APP fragment
(sAPPα) that remains in the extracellular compartment and modulates neuronal excitability
and synaptic plasticity and an 83-amino-acid carboxy-terminal fragment, further processed
by the γ-secretase complex to an intracellular C-terminal fragment and an extracellular p3
fragment [145]. The cleavage of APP by β-site APP cleaving enzyme (BACE-1) gives rise to
a soluble sAPPβ ectodomain and a 99-amino-acid C-terminal membrane-bound fragment,
which, after cleavage by γ-secretase, generates Aβ fragments with 38 to 44 amino acids and
an intracellular C-terminal fragment [145,148]. The different Aβ fragments have various
degrees of toxicity. Aβ40 and Aβ42 play a key role in the aggregation of neuritic plaques,
with Aβ42 being the most prone to aggregation. Familial forms of AD have an increased
Aβ42:Aβ40 ratio [148,149]. Being the only β-secretase responsible for Aβ production,
BACE1 is the rate-limiting enzyme for amyloid-β peptides generation and plays a key role
in AD pathogenesis. Both protein and BACE1 mRNA levels are abnormally elevated in post
mortem brain tissues from AD patients [150,151]. The expression of BACE1 is regulated
by complex mechanisms at both the transcription and translational levels. For example,
activators of the Nrf2/ARE pathway not only induce the expression of antioxidant genes
but also reduce BACE1 expression [152]. γ-secretase is a protein complex composed of
presenilin (PSEN) 1 or 2, two multipass transmembrane proteins (Aph-1 and Pen-2), and a
transmembrane glycoprotein (nicastrin) [145]. The amyloidogenic and non-amyloidogenic
processing of APP is shown in Figure 1.

The reinternalization of APP into endosomal compartments containing BACE-1 and
γ-secretase will result in intracellular Aβ generation, which is dumped into the extracellular
space or degraded in lysosomes. SorLA is an adaptor protein belonging to the low-density
lipoprotein receptor superfamily that binds intracellular APP and shuttles it from endo-
somes to the Golgi apparatus, preventing the excessive intracellular generation of Aβ [153].
Aβ peptides aggregate into a beta-sheet conformation and form oligomers, protofibrils,
and fibrils [154]. Due to the increased hydrophobicity of its C-terminus domain, Aβ42 is
more prone to aggregation into 7 nm diameter fibrils of two twisted protofilaments of Aβ42
monomers [155]. Aβ fibrillization can “seed” in a prion-like fashion, but some evidence
suggests that aggregation and seeding may require Aβ uptake by microglia [156].
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domain. The Aβ peptide starts in the ectodomain and continues in the transmembrane region
(pictured in red). Alpha-secretase cleaves APP within the Aβ domain and thus does not lead to
generation of Aβ. The soluble sAPPα fragment is released into the extracellular space. Both α-
and β-secretase (BACE-1) cleavage of APP is followed by γ-secretase processing of the C-terminal
fragment (CTF) residue, resulting in an identical intracellular C-terminal fragment (AICD). BACE-1
cleavage leads to the release of sAPPβ, while further processing of the β-CTF will lead to generation
of Aβ.

The main function of tau protein is to stabilize the microtubule tracks along which
the axonal transport of vesicles and organelles occur. The hyperphosphorylation of the
protein, as seen in AD, leads to the detachment of tau from the microtubules, which become
disorganized and unstable, and intracellular aggregation in the form of neurofibrillary
tangles. For a while, it has been considered that the two pathways act independently to
promote AD pathology. However, recent research has shown that Aβ, either as plaques
or soluble oligomers, initiates a pathological cascade that leads to tau misfolding and
aggregation [157].

Cortical plaques are widespread 10 to 20 years before the emergence of the clinical
picture of AD and can be found in up to 40% of cognitively normal elderly persons [158],
while tau aggregates are commonly found in the medial temporal lobe of persons older than
60 years [159]. Although Aβ can directly promote tau oligomer formation and enhance tau
aggregate seeding [160], they rarely co-localize at synapses [161], which argues against a
major role for the direct physical interaction of the two pathological proteins. It appears that
the link leading to the synergistic action of Aβ and misfolded tau is microglial activation,
elicited by both Aβ and tau overexpression [157]. Microglia is able to take up seed-
competent tau and decompose it at the expense of undergoing activation [162] and increased
release of pro-inflammatory cytokines. Bystanding microglia may also become reactive
and form somatic junctions with neurons, thereby contributing to tau seeding between
cells [163].

Genetic studies also support the role of microglia and neuroinflammation as a major
contributor to AD pathogenesis. The presence of the APOE ε4 allele increases the risk of AD
3- to 4-fold [164]. Rare variants in the SPI1, BIN1, INPP5D, ABCA7, SORL1, MS4A, CD2AP,
or PICALM genes, as well as mutations in PSEN1 and PSEN2, have been shown to influence
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the risk of developing AD [165,166]. Protective genes, such as the APOE ε2 allele, APOE
ε3 allele (Christchurch mutation), the Ala673Thr Icelandic protective mutation of APP,
or a rare Pro522Arg amino acid change in the PLCG2 gene have been shown to decrease
the risk of AD [164]. Overall, at present, a polygenic risk score can be calculated that
enables us to identify patients at risk for Alzheimer’s disease with 75–85% accuracy [167].
The further identification of Alzheimer’s-disease-associated genetic variants of TREM2
Arg47His, Arg62His, and Asp87Asn, which decrease the binding of TREM2 to ApoE, as
well as the identification of other proteins (SHIP1, CD2AP, RIN3, BIN1, PLCG2, CASS4,
and PTKB2) associating with an increased risk of AD via modulating endocytosis, motility,
and phagocytosis in microglia, suggest a central role of the latter in AD pathogenesis. In
addition, vascular and endothelial dysfunction, weakening of the BBB [168], dysfunction of
the meningeal lymphatic system [169], peripheral inflammation [170], and alterations of
the gut microbiota [171] may all contribute to the clinical development of AD.

3.1. The Role of Microglia in Alzheimer’s Disease Pathogenesis

One of the main functions of microglia is to detect and clear toxic protein aggregates.
Unfortunately, with age and with the progression of AD, microglia become dysfunctional
and dystrophic, known as “dark microglia”, and fail in this task. Amyloid compaction
exposes microglia to Aβ and contributes to microglial activation via TLR and NOD-like
receptor signaling [172,173], leading to proinflammatory cytokine production. The precise
mechanism by which tau activates microglia is still unclear, but a recent study showed
that, following microglial uptake and lysosomal sorting, aggregated tau can activate the
NLRP3-ASC inflammasome [174]. In addition, polyglutamine binding protein 1 (PQBP1)
interacts with tau 3R/4R proteins and is able to trigger the innate immune response via
the activation of the cGAS-STING pathway [175]. Several receptors have been involved in
microglia dysfunction.

3.1.1. TREM2 Signaling

In the human genome, the gene encoding TREM2 is located within a cluster of genes
at chromosome 6p21.1 [104]. TREM2 is a transmembrane protein expressed in microglia
and other immune cells with an ectodomain, a transmembrane domain, and a cytoplasmic
tail [176]. It is activated by lipids (from cell membrane or from body fluids) or by lipoprotein
complexes [103] including lipidated and non-lipidated ApoE.

Proteolytic processing cleaves the ectodomain of TREM2 and releases it as a soluble
fragment (sTREM2) with pro-inflammatory actions [177] that can be detected in the CSF
and serum of patients (elevated in AD) [178]. Upon ligand binding, its cytoplasmic tail
recruits the DNAX-activation protein of 12 kDa (DAP12), followed by the activation of Syk,
further downstream effects resulting in activation of MAP kinases, GSK3β [179], and PI3K,
which leads to the Ca2+ release from the ER [105].

The expression of TREM2 increases with age and has been found to increase even
more in patients with AD [179], while Aβ binding to the TREM2 ectodomain enhances
the interaction of the receptor with its ligands, promoting the survival of microglia via
the activation of the canonical Wnt signaling pathway [180]. This is likely a compensatory
mechanism in response to the presence of Aβ, as TREM2 deficiency leads to reduced ATP
levels and mTOR activity and increased ULK1 and AMPK activity and also promotes
microglial autophagy [181]. Moreover, mice with reduced TREM2 expression showed
longer amyloid filaments (as revealed by the ultrastructural analysis of amyloid plaques
with stochastic optical reconstruction microscopy), suggesting that microglia reduce the
exposure of neuronal processes to neurotoxic species of Aβ and limit neuritic dystrophy by
compacting amyloid fibrils [182].

3.1.2. Scavenger Receptor Class A (SR-A) in Alzheimer’s Disease

Scavenger receptor class A (SR-A) is a phagocytic pattern recognition receptor ex-
pressed primarily on microglia and astrocytes and is involved in pathogen and apoptotic
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cell clearance, lipid transport, intracellular cargo transport, and cellular adhesion [183].
Although in mouse models of AD, its expression is increased in early stages, paralleling
the increased microglial uptake of Aβ, in later stages of AD, as well as with aging, the
expression of SR-A is reduced, leading to increased Aβ deposition [184]. While AD mice
lacking SR-A receptors showed decreased microglia-mediated phagocytosis of soluble Aβ,
the overexpression of the receptor increased Aβ clearance [185], making SR-A a possible
target in the treatment of AD.

3.1.3. CD33 Receptor in Alzheimer’s Disease

CD33 is a type I transmembrane glycoprotein [186] expressed on the surface of mi-
croglial cells and peripheral monocytes. CD33, and especially the single-nucleotide poly-
morphism rs3865444C, have been identified by genome-wide association studies (GWAS)
as one of the prominent risk factors for AD [186]. The intracellular C-terminal of CD33
contains two immune-receptor tyrosine-based inhibition motifs (ITIMs) that inhibit signal
transduction in cells and can also inhibit DAP12 and TREM2 signaling [187]. In addition,
its extracellular N-terminal domain can bind sialylated glycoproteins and glycolipids on
amyloid plaques, preventing the efficient clearance of Aβ by microglia [183].

3.1.4. CD36 Receptor in Alzheimer’s Disease

CD36 is a member of the class B scavenger receptor family that promotes microglial
migration toward Aβ deposits and Aβ phagocytosis, but the interaction of the receptor
with Aβ activates microglia and leads to the release of pro-inflammatory mediators via the
activation of Src phosphotyrosine kinases Lyn, Fyn, and p44/42 mitogen-activated protein
kinase [188], as well as to the activation of the NF-κB pathway [189].

3.1.5. Complement Receptor 3 (CR3) in Alzheimer’s Disease

CR3 is a dimeric receptor comprising CD18 and CD11b [190] expressed mainly in
microglial cells, which binds and targets damaged cells and cell debris to microglial clear-
ance but which is also involved in synaptic pruning during development [191]. Oligomeric
Aβ upregulates the expression of C1q, C3, and CR3 and contributes to the activation of
the complement cascade, driving through the CR3 microglia-dependent elimination of
synapses [192]. CR3s appear to play a dual role in AD pathogenesis: although they promote
the phagocytosis of fibrillary Aβ, they also potentiate synaptic dysfunction and neuronal
loss, while, via reducing the expression and activity of Aβ-degrading enzymes, such as
matrix metalloproteinases (MMP2, MMP9), they may indirectly inhibit the degradation of
soluble Aβ [183].

3.1.6. TNF Signaling in Alzheimer’s Disease

TNF-α binds to 2 receptors: a 55 kDa TNF receptor 1 (TNFR1), expressed in all cell
types, and a 75 kDa TNF receptor 2 (TNFR2), expressed mainly in cells of the immune
system and endothelial cells. TNFR1 contains an intracellular death domain and binding
of TNF to TNFR1 promotes the recruitment of the FAS-associated death domain and the
subsequent activation of caspases 8 and 3, leading to apoptosis. The binding of TNF to
TNFR2 promotes neuroprotective and regenerative pathways via interaction with a series
of TNF receptor-associated factors and cellular inhibitor of apoptosis proteins, leading to
the activation of MAP kinases and the Akt and the NF-κB pathways [55].

All the aforementioned receptors exhibit age-related changes in expression: SR-A
and CD36 are decreased, whereas TREM2, CD33, and CR3 are upregulated. The chronic
stimulation of microglia promotes microglial dystrophy and decreases the ability of mi-
croglial cells to protect adjacent neurons [193]. The pro-inflammatory cytokines released
by activated microglia reduce the expression of Aβ-binding receptors and Aβ-degrading
enzymes, leading to increased Aβ accumulation. As for tau protein, although microglia are
able to phagocytose tau, they cannot degrade it and may even contribute to tau seeding,
as discussed above [194]. These dysfunctions occur on top of the normal age-induced
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alterations of microglial morphology, with lower motility and fewer ramifications [195],
and the age-associated SASP.

Figure 2 shows the complex interactions leading to microglial activation and its
consequences in AD.
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Figure 2. Aβ binds to Toll-like receptors (TLR) and TREM2, while both Aβ and tau fibrils (NFTs) can
trigger the NLRP3 inflammasome assembly. Ligand binding to TREM2 activates DAP12 through
charge interactions in their transmembrane domain, followed by recruitment of spleen tyrosine kinase
(Syk) and activation of phospoinositide 3-kinase (PI3K), which targets Akt and activates mammalian
target of rapamycin (mTOR), inhibiting autophagy and impairing Aβ clearance. Mitochondrial
DNA (mtDNA) activates cGAS, which synthesizes cGAMP that binds to STING. Subsequently,
STING translocates to the Golgi apparatus and is phosphorylated by TANK binding kinase 1 (TBK1),
followed by binding to interferon regulatory factor 3 (IRF3), which is also phosphorylated and
activated by TBK1. Phosphorylated IRF3 translocates to the nucleus, where it promotes the production
of interferons (IFNs) and cytokines that enhance the inflammatory response. TLR signaling and
phosphorylated STING can also activate IκB kinase (IKK), resulting in phosphorylation of the inhibitor
of κB (IκB) and release of NF-κB, the master transcription factor regulating the production of pro-
inflammatory cytokine precursors and the NLRP3 inflammasome assembly. Caspase-1, contained in
the NLRP3 inflammasome, cleaves the precursors of pro-inflammatory cytokines, resulting in IL-1β
and IL-18, which can damage neurons.



Int. J. Mol. Sci. 2023, 24, 1869 15 of 46

The myriad of cytokines, chemokines, and growth factors that undergo changes in the
CNS as a consequence of the accumulation of Aβ and tau hyperphosphorylation can act
either to enhance AD pathology or exhibit a protective effect, as shown in Table 1.

Table 1. Effects of cytokines and growth factors in the AD brain.

Mediator Functions References

Protective effects

IL-1β Increases α- and γ-secretases, downregulates BACE-1, promotes Aβ clearance [196,197]

IL-1α Increases α-secretase, increases sAPPα, decreases amyloidogenic
APP processing [198]

CXCL10 Decreases Aβ deposition [199]

CX3CL1 Decreases Aβ deposition, upregulates phosphorylated tau [200]

Brain derived neurotrophic factor
(BDNF)

Promotes the non-amyloidogenic pathway, upregulates sAPPα,
dephosphorylates tau via TrkB and PI3K signaling, improves

memory performance
[201]

Glial derived neurotrophic factor
(GDNF) neuroprotection [202]

Nerve growth factor (NGF)
Neurotrophin 3
Neurotrophin 4

Modulates microglial polarization toward a non-inflammatory phenotype
Limits cleavage of caspases 3,8, and 9, upregulates neuronal apoptosis

inhibitory protein
Regulates tau dephosphorylation

[203]
[204,205]

[206]

Enhance AD pathology

IL-4 Upregulates Aβ production, increases tau phosphorylation [207]

IL-6 Increases tau phosphorylation, increases amyloid plaque burden [208]

IL-8 Increases tau phosphorylation, promotes Aβ deposition [209]

IL-10 Promotes Aβ deposition [210]

IL-18 Upregulates BACE-1 and γ-secretase, enhances Aβ formation [211]

TNF-α Upregulates BACE-1 and γ-secretase, increases sAPPβ [212]

Transforming growth factor
(TGF)-β Increases Aβ deposition [213]

CCL2 Enhances amyloid production and deposition, accelerate tau pathology [214]

CCL3 Promotes infiltration with T lymphocytes, upregulates BACE-1 [215,216]

CCL5 Promotes T cell infiltration in the brain, enhances microglial proliferation [217]

Interferon-γ Upregulates BACE-1 and γ-secretases, increases amyloid accumulation [218]

In conclusion, if in pre-clinical stages of AD, microglia phagocytose both Aβ and
tau, following Aβ accumulation, microglia become dysfunctional and releases tau seeds
and pro-inflammatory cytokines, creating an inflammatory environment that has a major
contribution to neuronal and synaptic loss [183].

Figure 3 shows the homeostatic function of microglia and astrocytes under physiologi-
cal conditions and the disrupted cooperation with neurons during neuroinflammation.
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Figure 3. The various cytokines and chemokines released during neuroinflammatory states lead to
synaptic loss, excitotoxicity, oxidative damage, and culminate with neuronal loss.

3.2. Mitochondrial Dysfunction and Neuroinflammation in Alzheimer’s Disease Pathogenesis

Compelling evidence implicates neuronal mitochondrial dysfunction in the pathogen-
esis of neurodegenerative diseases [39], including AD, up to the point of formulating the
“mitochondrial cascade hypothesis” in 2004 [219]. Increased pro-inflammatory cytokine
levels such as TNF and IL-1β, as occurs in neuroinflammatory states, as well as ROS have
been shown to reduce the activity of pyruvate dehydrogenase and alpha-ketoglutarate
dehydrogenase in the tricarboxylic acid cycle and promote post-translational modifica-
tions that further decrease the activity of these enzymes [220]. Regarding mitochondrial
OXPHOS, exposure to TNF reduces complex I (cytochrome c oxidase) and complex V (ATP
synthase) activity and decreases ATP levels, one of the mechanisms being an increase in
microRNAs targeting transcripts coding for complex I and V subunits [221]. In addition,
the transcription of ETC genes is impaired through reduced PGC-1α mRNA caused by
TNF-α [222]. The increased activities of hexokinase (the glycolysis-initiating enzyme) and
of lactate dehydrogenase in subcortical regions of patients with AD suggest a switch to
anaerobic metabolism to compensate for the inefficient aerobic one [223]. In turn, the re-
duced ETC activity results in the increased production of ROS, which irreversibly damages
ETC complexes and attacks mtDNA, further compromising OXPHOS. In the advanced
stages of AD, brain samples from patients show significant nitration and lipoxidation of
ATP synthase, as well as oxidative alterations of aldolase, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), α-enolase, and phosphoglycerate mutase 1 (PGAM1) [224–226].
Cellular apoptosis leads to the extracellular release of molecules that are recognized as
DAMPs by microglia, activating the latter and leading to the production of significant
amounts of ROS via the NOX-mediated oxidative burst [227].
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The two pathological proteins of AD, Aβ and hyperphosphorylated tau, contribute
to mitochondrial dysfunction as well. APP (both full length and C-terminal fragments)
and Aβ are associated with the mitochondrial membrane in human brain regions affected
by AD. This is thought to block mitochondrial import channels and interfere with the
assembly of the ETC [228]. ROS and reactive nitrogen species peroxidize membrane lipids
and oxidize intracellular proteins and nucleic acids [229], promoting APP proteolysis
and Aβ generation [230] in a vicious cycle. Specific mitochondrial-binding partners for
Aβ, such as Aβ-binding alcohol dehydrogenase, exacerbate Aβ toxicity and free radical
generation [231]. Hyperphosphorylated tau dislodges from microtubules and increases
its affinity for other tau monomers, forming oligomers that potentiate neuronal damage
and synaptic loss [232]. As the oligomers lengthen, they adapt a β-sheet structure and
transform into granular aggregates, which then fuse to form tau fibrils and neurofibrillary
tangles [233]. Of these various tau species, oligomers appear to be the most toxic ones,
altering the mitochondrial membrane, diminishing complex I activity, and activating
caspase-9 [234,235]. In vivo imaging studies using fluorodeoxyglucose PET have shown
regional low glucose consumption in the cerebral areas of AD patients affected by the
characteristic pathology [236].

PGC-1α, the master regulator of mitochondrial biogenesis, is abundantly expressed in
tissues with high energy demand but has been shown to decrease in both AD patients and
transgenic mouse AD models [237]. Most of the mitochondrial proteins are encoded by
nuclear DNA and must be imported mainly through the translocase of the outer membrane
(TOM), which consists of a pore-forming protein TOM44 and three receptor proteins on
the cytosolic side (TOM20, TOM22, and TOM70) [238]. The reduced expression of TOM22
and TOM70 [239] and the association of Aβwith the mitochondrial membrane augments
the inhibition of the protein import system [240]. APP can also form stable complexes with
translocases of the OMM and IMM, while Aβ is able to translocate to mitochondria and
localize to the cristae, further impairing the import of essential mitochondrial proteins [238].

A physiological pool of healthy mitochondria depends on a proper balance between
mitochondrial fusion and fission. Biopsy samples from AD patients revealed altered mor-
phology with the excessive fragmentation of mitochondria in pyramidal neurons [241],
as well as a peculiar shape, termed “mitochondria-on-a-string”, consisting of teardrop-
shaped mitochondria (0.5 µm in diameter) connected by a thin double membrane [242,243],
suggesting fission arrest. Biochemical analyses found reduced expression of OPA1 and
mitofusins and increased levels of Drp1 and Fis1 in AD brains [244]. Because both Drp1 and
Mfn2 are substrates for calpain, the reduced levels of these GTPases could be due to calpain
cleavage [245]. Moreover, the Aβ-induced S-nitrosylation of Drp1 can increase its translo-
cation to mitochondria [246]. In later stages of AD, Aβ-Drp1 interactions are increased by
Drp1-hyperphosphorylated tau complexes, increasing mitochondrial fission [247].

Calcium signaling and oxidative stress significantly contribute to Aβ-induced mi-
tochondrial fragmentation. Aβ increases mitochondrial calcium influx and promotes
calcium-/calmodulin-dependent protein kinase II (CAMKII)-mediated protein kinase B
(Akt) activation, leading to Drp1 phosphorylation and mitochondrial translocation [248],
as does the ROS-mediated activation of extracellular signal-regulated kinase (ERK) [249].
The opposite process, mitochondrial fusion, requires the maintenance of the mitochondrial
membrane potential for post-translational OPA1 processing [250]. Normally, tau stabilizes
the actin cytoskeleton and disrupts the physical association of Drp1 and mitochondria,
thereby preventing excessive fission. Hyperphosphorylated tau leads to the disturbance of
the microtubule network and indirectly promotes mitochondrial fission. Experimentally,
the genetic ablation of tau in mice resulted in decreased fission, a reduced rate of ROS
production, and the enhanced generation of ATP [251].

Irreversibly damaged mitochondria are disposed through mitophagy, a process that
begins with the recruitment of PINK1 and Parkin on the OMM. Mitophagy is altered in
AD; the research shows swollen mitochondria with distorted cristae in the biopsy samples
of human AD patients and transgenic animal models of AD [252]. The accumulation of
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tau via the interaction of its projection domain with Parkin sequesters the latter in the
cytosol [253]. In addition, by altering the mitochondrial membrane potential, tau im-
pairs Parkin and PINK1 recruitment to the OMM [254]. Moreover, lysosomes are located
mainly in the cell body and proximal dendrites, whereas mitochondria are distributed
along axons and dendrites and must be trafficked to the cell soma in order to undergo
mitophagy [255]. Although axonal autophagosomes form around damaged mitochondria,
research has shown that they do not simply fuse with nearby lysosomes but rather un-
dergo a maturation process while being transported to the cell body. The fusion of these
autophagosomes with endosomes initiates the dynein-mediated microtubule-dependent
retrograde transport [256], a process during which these autophagosome–endosome hy-
brids (amphisomes) acquire lysosomal proteins such as LAMP1 and multiple lysosomal
proteases in parallel with their acidification [257]. This process is clearly disturbed in
AD, wherein amyloid plaques are surrounded by neuritic swellings identified as axons
filled with lysosomes with a low content of hydrolases [258]. The disturbed lysosomal
distribution may be related to dysfunctions in JIP3 or snapin [255].

Mitochondrial trafficking is two-directional. Healthy mitochondria, with high mem-
brane potential, are moved toward synaptic sites via anterograde transport, while mitochon-
dria with impaired membrane potential are trafficked in a retrograde direction toward the
cell soma [55]. Anterograde transport is mediated via kinesin-1, its heavy chain interacting
with the atypical Rho GTPase Miro and with Milton to bind its C-terminus. The main
protein responsible for retrograde transport is dynein, which interacts with dynactin, as
well as with Miro and Milton, to perform this task [259]. The dephosphorylation of Miro
and Milton by PINK1 and Parkin leads to the detachment of kinesin and mitochondrial
arrest [260]. Aβ reduces the expression of kinesin [261] and impairs the function of dynein
by interacting with its intermediate chain [262]. The overexpression and hyperphosphory-
lation of tau enhance mitochondrial binding to microtubules [263], lead to the disassembly
of the microtubule tracks, and sequester the c-Jun N-terminal kinase-interacting protein 1
(JIP1), which associates with the kinesin motor protein complex [253] in the cell body [264].

As for the Ca2+-buffering function of mitochondria, both presenilin 1 (PSEN1) and
presenilin 2 (PSEN2) localize at MAMs [265] and interact with RyRs to increase Ca2+

release from the ER [266]. Aβ aggregates are able to form calcium-permeable channels in
membranes [267] and can mediate Ca2+ transfer from ER to the mitochondria through the
MCU [268], while tau inhibits mitochondrial calcium efflux [269]. In turn, excess cytosolic
Ca2+ augments tau hyperphosphorylation leading to tau detachment from microtubules,
tau misfolding and aggregation, and neurofibrillary tangle formation [53].

Chronic inflammation also alters mitochondrial dynamics leading to an irregular
distribution and impaired morphology of mitochondria in neurons. Exposure to TNF-α
increases the expression of both Fis1 and OPA1 [270].

Recent research has highlighted the contribution of microglial mitochondrial dys-
function to Alzheimer’s disease pathogenesis. Microglia respond to and engulf Aβ via
receptors expressed on the cell surface (CR3, RAGEs, TLRs TREM2), leading to microglial
activation and the release of pro-inflammatory cytokines [172]. Internalized Aβ interacts
with mitochondrial calcium uniporter (MCU), leading to mitochondrial Ca2+ overload and
the reduction of the mitochondrial membrane potential [271] as well as ER stress [as shown
by elevated levels of CHOP (C/-EBP homologous protein)]. This enhances ROS produc-
tion. Moreover, the interaction of Aβ with P2X7 receptors leads to the activation of NF-κB
pathway and of NLRP3, causing the release of cytochrome c and microglial apoptosis [272].
Impaired TREM2 signaling leads to the deficient activation of the mTOR pathway and
enhanced microglial autophagy, resulting in a decreased number of mitochondria and
potentiating energy deficiency [181].

3.3. Impaired Autophagy in Alzheimer’s Disease

Autophagy plays a crucial role in abnormal protein clearance, along with the ubiquitin–
proteasome system. The accumulation of abnormal subcellular vesicles in swollen or dys-
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trophic neurites identified as immature autophagic vacuoles [273] indicates an impairment
of this process. Although the exact mechanisms are still under research, it appears that
the expression of beclin-1, necessary for the initiation of autophagy, is reduced due to
the increased activity of caspase-3 [274]. A decreased expression of p62, an autophagic
cargo receptor, was also reported [275]. However, more recent research has shown that
autophagy is actually upregulated in AD due to the transcriptional upregulation of positive
regulators of autophagy as well as to the reactive-oxygen-species-dependent activation
of type III PI3 kinase, a critical kinase for the initiation of autophagy, and of ATGs [276].
The retrograde transport of these vesicles, a process in which tau plays a critical role, is
also severely impaired [277]. In addition, tau hyperphosphorylation may lead to lysosomal
aberrations [278]. The finding that tau deficiency protects against Aβ toxicity suggested
that tau may be subject to a toxic gain of function in AD [279], although other researchers
argue that axonal dysfunction may be caused by abnormal lysosomal proteases [280].
Further studies are needed to clarify the molecular defects underlying the failure of the
transportation of autophagic vesicles in AD [281,282].

In addition, Aβ hinders the fusion of autophagosomes with lysosomes. Sharma et al.
demonstrated for the first time the reduced formation of SNARE complexes in AD post
mortem tissue samples [283]. Due to the unaltered expression of individual SNARE
proteins, they ascribed this finding to Aβ hindering the “zippering” of v-SNARE VAMP-2
with t-SNAREs syntaxin-1 and SNAP-25. Subsequent research in APP-PS1 transgenic
mice demonstrated that Aβ42 oligomers interact with the t-SNARE syntaxin 1a with high
affinity, disrupting its association with VAMP-2 [284]. To date, a series of SNAREs have
been shown to be involved in AD pathogenesis, such as the v-SNAREs syntaxin-1-5, -7, -11,
-16-18, GS-15, GS-27, GS-28, Vti1a and Vti1b, BET1, SNAP-23, SNAP-25 and SNAP-29, or
the t-SNAREs VAMP-1, -2, -3, or VAMP-8 [285].

3.4. Senescent Astrocytes and Alzheimer’s Disease

Several studies have shown that altered astrocytic dysfunction is involved in the
onset and progression of AD [286,287]. The cells have important contributions to Aβ
clearance and degradation via the low-density lipoprotein receptor-related protein 1 (LRP1)
and scavenger receptor B1 (SR-B1) [288], receptors whose expression is reduced in aged
astrocytes [289]. In addition, amyloid plaques are surrounded by SA-β-Gal-positive astro-
cytes, while Aβ42 is able to induce astrocytic APP and BACE1 processing, thereby further
increasing oligomeric and fibrillary Aβ [290]. Astrocytes also play a crucial role in tau
hyperphosphorylation and NFT formation, as shown by Bussian et al. [291], who demon-
strated that the removal of senescent astrocytes and microglia significantly reduced the
deposition of hyperphosphorylated tau in a transgenic mouse model.

As for the role of astrocytes in modulating synaptic function and neural transmis-
sion, hippocampal neurons co-cultured with senescent astrocytes exhibited a reduced
size of synaptic vesicles and an impaired synaptic maturation and transmission [292].
Furthermore, the release of SASP factors, such as IL-6 and the diminished production
of neurotrophins (BDNF, NGF, insulin-like growth factor 1), synergistically contribute to
neuronal death [132].

Last but not least, the astrocytic SASP can activate microglia and promote neuroin-
flammation [273].

4. Therapeutic Strategies Targeting Neuroinflammation in Alzheimer’s Disease

Because AD is a disease with insidious onset and progressive course, one of the
major challenges is to correctly identify patients with AD and to estimate the likelihood of
progression in each individual patient [293]. Accumulated evidence shows that for about
15–20 years, AD pathology builds up without clinical evidence of cognitive impairment
(preclinical AD). The clinical onset coincides with a relative abrupt increase in tau pathology
paralleled by synaptic and neuronal loss, while amyloid burden even decreases with the
clinical progression of the disease. Microglial and astrocytic activation show a rather
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steady progression [153]. The clinical symptoms reported in patients with mild cognitive
impairment (MCI) and AD are presented in Table 2.

Table 2. Clinical picture in the different stages of AD (adapted form Ogunmokun et al. [206]).

Stages Clinical Picture

Early onset AD/MCI Difficulty in word-finding, impairment in reasoning and judgement

Mild AD Memory loss, misplacing items, restlessness, anxiety, altered personality, episodes of aggression

Moderate AD Attention deficit, recognition problems, confusion, delusions, paranoia, hallucinations, impulsive behavior

Severe AD Severe dementia, functional limitations, swallowing difficulties, loss of bladder/bowel control, weight loss,
seizures, enhanced diurnal sleep time with nocturnal insomnia

The scientific community has struggled to identify both clinical tests [294], as well as
reliable biomarkers, able to identify in vivo the presence of AD pathology. MRI is able to
show medial temporal lobe atrophy, while 18fluorodeoxyglucose (18FDG)-PET can identify
posterior cingulate and temporoparietal hypometabolism. Identifying cortical amyloid β
deposition on amyloid-PET imaging was proven to improve diagnostic accuracy by the
ABIDE and IDEAS studies [158,295]. Tau-PET ligands allow for the identification of the
neurofibrillary tangle pathology, which correlates better with cognitive impairment, as well
as with the progression of the disease [296], while PET ligands targeting SV2A can explore
brain synaptic density [297].

Fluid biomarkers can be measured both in the cerebrospinal fluid and serum of
patients. Amyloid β42 and β40, total tau, and phosphorylated tau 181 are validated
markers [298], while novel biomarkers are currently evaluated. Neurogranin may reflect
synaptic dysfunction [299], while microglia and astrocyte biomarkers could help to monitor
the treatment effect [164]. The detection of the soluble fragment of TREM2 in the CSF
may be a marker for transition from preclinical to clinical AD [178]. In the blood, phos-
phorylated tau 181 and 217 were recently shown to reliably differentiate AD from other
dementias [300,301].

As a consequence, the proposed diagnostic criteria have undergone considerable
changes over time, as shown in Table 3.

Table 3. Proposed diagnostic criteria for AD.

NINCDS-ADRDA
Criteria, 1984 [302] NIA-AA, 2011 [303] IWG-AA, 2016 [304] NIA-AA, 2018 [305] IWG, 2021 [306]

Setting Research and
clinical Research and clinical Research Research Research and clinical

Clinical
requirements

Memory changes
and other cognitive

impairments

Amnestic or
non-amnestic mild

cognitive impairment,
or dementia

None None

Amnestic syndrome of
hippocampal type,

primary progressive
aphasia of the semantic,
non-fluent, or logopenic

variant, corticobasal
syndrome, behavioral or

dysexecutive
frontal syndromes

Biological
requirements None

Amyloid βmarker (CSF
or PET) or marker of

degeneration (CSF tau,
phosphorylated tau, 18F-
fluorodeoxyglucose-PET,
and T1-weighted MRI)

Amyloid βmarker
(CSF or PET) and tau
marker (CSF or PET)

Amyloid βmarker
(CSF or PET) and tau
marker (CSF or PET)

Amyloid βmarker (CSF
or PET) and tau marker

(CSF or PET)

ADRDA = Alzheimer’s Disease and Related Disorders Association (now the Alzheimer’s Association) Work
Group. IWG = International Working Group criteria. IWG–AA = International Working Group and Alzheimer’s
Association joint criteria. NIA–AA = US National Institute on Aging and Alzheimer’s Association joint criteria.
NINCDS = US National Institute of Neurological and Communicative Disorders and Stroke criteria.
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However, not every individual with biomarkers for AD will progress to clinically
overt AD, which is why the International Working Group for New Research Criteria for
the Diagnosis of AD (IWG) recommends against AD biomarker assessment in cognitively
unimpaired individuals [306]. Identifying patients at risk for disease progression and strati-
fying the risk, either with clinical markers or with biomarkers, becomes imperative both for
including these patients in clinical trials for the evaluation of disease-modifying agents and
for prescribing more aggressive therapy, such as the recently approved aducanumab [307].
A possibility would be to identify specific microRNAs (miRNAs), shown to be altered
in neuroinflammatory disorders and in the plasma or CSF of patients, thereby allowing
for the early identification of the disease and the initiation of treatment. Research has
shown alterations in a series of mRNAs, such as miRNA-155 (pro-inflammatory media-
tor), miRNA-146a (a negative regulator of inflammation), miRNA-124 (a brain-specific
anti-inflammatory miRNA) in the CSF and of miRNA-21 (anti-inflammatory regulator)
and let-7 (which promote M2 polarization of macrophages) in the plasma of patients with
neurodegenerative disorders [308]. Unfortunately, the complex neurobiology of AD makes
the stratification of patients difficult and challenging for physicians.

4.1. Early Attempts of Anti-Inflammatory Treatment in AD

Epidemiological studies have suggested that the long-term use of non-steroidal anti-
inflammatory drugs (NSAIDs) was linked with the decreased risk of AD [309], a finding
reinforced by demonstrating the positive effects of NSAIDs in animal models [310]. How-
ever, when evaluated in clinical trials, NSAIDs failed at showing benefits, except for a small
study using indomethacin, not subsequently replicated [311], and a follow-up analysis
from the ADAPT research group using naproxen [312]. Thus, it appears that in already
symptomatic patients, NSAIDs cannot stop the progression of the pathogenic cascades.
Nonetheless, a novel non-steroidal anti-inflammatory drug (CHF5074 or itanapraced) lack-
ing cyclooxygenase inhibitory activity was shown to restore normal microglial function,
increase phagocytosis, and decrease the production of pro-inflammatory cytokines [313].
The molecule has completed several phase 2 clinical trials (NCT01303744, NCT01602393,
and NCT01421056) [314].

However, more specifically targeted anti-inflammatory strategies may be more rewarding.

4.2. Anti-Inflammatory Molecules in Clinical Trials
4.2.1. Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonists

PPAR-γ agonists have been shown to reduce the production of pro-inflammatory
cytokines as well as amyloid accumulation in AD mouse models [315]. By activating
the ERK pathway, rosiglitazone enhanced cognitive performances in AD models [316]
and improved memory in subjects with mild cognitive impairment or early AD, also
delaying the decrease in plasma Aβ levels in a small preliminary placebo-controlled
study with 4 mg of rosiglitazone for 6 months conducted in 30 subjects (20 with mild
AD and 10 controls) [317]. Unfortunately, the results were not replicated in two phase 3,
double-blind, placebo-controlled studies (REFLECT-2 and REFLECT-3, NCT00348309 and
NCT00348140) conducted on 1496 (REFLECT-2) and 1468 participants (REFLECT-3) ran-
domly assigned to 2 or 8 mg of rosiglitazone for 54 weeks as adjunctive therapy to acetyl-
cholinesterase inhibitors [318]. Pioglitazone reduced the risk for dementia by 47% over a
5-year period in patients with diabetes mellitus, as reported by a large prospective cohort
study on 145,928 subjects aged ≥ 60 years and with normal cognition at baseline [319], but
a subsequent phase 3 study (NCT01931566, TOMORROW) failed to confirm these initial
findings on 3494 participants aged between 65 and 83 years with normal cognition at base-
line, randomly assigned to placebo or 0.8 mg pioglitazone daily, with a 5-year follow-up
period [320].
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4.2.2. Tumor Necrosis Factor-α Inhibitors

Monoclonal antibodies against TNF-α are already in use for autoimmune and inflam-
matory diseases. Infliximab is a chimeric IgG1 monoclonal antibody that binds to human
TNF and which, via intracerebroventricular delivery in mouse AD models, decreases TNF
levels, hyperphosphorylated tau, and Aβ plaque burden [321]. Etanercept is a combination
of the Fc portion of human IgG1 with the extracellular domain of TNF receptor 2. A case
report drew attention upon a significant cognitive improvement after etanercept in an AD
patient with rheumatoid arthritis [322]. Subsequent small, open-labeled studies delivered
etanercept via perispinal injection (due to the poor BBB crossing of the molecule) and re-
ported cognitive improvement as well [323]. However, a double-blind study (NCT01068353)
of 50 mg subcutaneous etanercept weekly over 24 weeks showed the relative safety of the
drug (the increased risk of infections is a known side effect of etanercept) but no statistically
significant clinical improvement [324].

The selectively soluble TNF inhibitor XPro-1595 inhibits TNF receptors type 1, is
able to cross the BBB [325], and has been shown to reduce Aβ plaques, restore long-term
potentiation, and prevent synaptic loss in mice [326]. A phase 1 open-label safety and
tolerability study (NCT03943264) on 20 participants has just been completed [314], although
the results have not been published so far.

4.2.3. Tyrosine Kinase Inhibitors

Masitinib (AB1010), an oral inhibitor of the migration and activity of mast cells, was
tested in a phase 2 trial (NCT00976118) in 34 patients with mild-to-moderate AD, assigned
to placebo or two doses (3 and 6 mg/kg/day of masitinib orally), continued for 24 weeks.
The trial suggested positive effects [327]. This study was followed by a phase 3 trial,
recruiting 721 participants (NCT01872598), which was completed in December 2020 but
has not published results [314]. The participants were randomized to 5 groups: 2 placebo
arms and 3 treatment arms with 2 fixed dose-groups (3 mg/kg/day and 4.5 mg/kg/day of
masitinib) and a group which started with 4.5 mg/kg/day and escalated to 6 mg/kg/day
after 3 months. The follow-up period extended for 24 weeks. Another phase 3 trial, aiming
to include 600 participants with mild to moderate AD, randomized either to placebo or
3 mg/kg/day of masitinib, increased to 4.5 mg/kg/day after 4 weeks and used together
with a cholinesterase inhibitor and/or memantine for 24 weeks is planned but is not yet
recruiting (NCT05564169) [314].

A related molecule, dasatinib, is currently being evaluated in combination with the
antioxidant quercetin in 4 active studies listed on the www.clinicaltrials.gov homepage,
accessed on 17 November 2022. A phase 1 open-label trial (NCT04063124, STomP-AD)
on 5 participants with AD who will receive 6 consecutive cycles of 100 mg dasatinib
and 1000 mg quercetin orally for 2 consecutive days is active but is not recruiting. A
phase 1/2 trial is enrolling by invitation up to 20 participants with probable AD to re-
ceive the same regimen of dasatinib and quercetin (NCT04785300, ALSENLITE), while
2 studies are currently recruiting patients: a phase 1/2 trial (STAMINA, NCT05422885),
aiming to evaluate the effect of 6 cycles of dasatinib 100 mg + 1250 mg quercetin daily for
2 consecutive days on blood-flow regulation and cognition in 12 older adults at risk for AD,
and a phase 2 trial (SToMP-AD, NCT04685590) evaluating the efficacy of 6 cycles of 100 mg
dasatinib + 1000 mg quercetin daily for 2 consecutive days on cognition in 48 participants
with mild cognitive impairment or early-stage AD who are tau PET-positive [314]. The
results of these studies are awaited.

4.2.4. MAP Kinase Inhibition

The p38 MAP kinase expressed in glia and neurons mediates the transfer of the
γ-phosphate to the hydroxyl group of serine and threonine side chains of substrates, leading
to the activation of inflammatory cell signaling cascades and to the enhanced production
of IL-1β and TNF-α by microglia in response to stressors, including amyloid-β42. Indeed,
brain samples of AD patients showed increased levels of p38 MAPK [328]. Given this

www.clinicaltrials.gov


Int. J. Mol. Sci. 2023, 24, 1869 23 of 46

association, several selective inhibitors of p38 MAPK have been identified, of which VX-745
(neflamapimod) and MW150 have reached the stage of clinical trials [329,330].

Three phase 2 trials with neflamapimod have been completed (NCT02423200,
NCT02423122, and NCT03402659-REVERSE-SD). Trial NCT03435861, a phase 2 study
looking specifically at inflammatory biomarkers, was launched in October 2018 and is
listed as currently recruiting [314]. Although the oral molecule had significant effects on
inflammatory biomarkers, the clinical benefit of the treatment extending over 24 weeks was
negligible [331]. Nonetheless, according to the sponsor, in Lewy-body dementia, 120 mg
neflamapimod orally/day had improved effects on cognitive performance compared to
80 mg/day. The development of drugs targeting this mechanism is continuing with the
synthesis of skepinone derivatives [332].

4.2.5. Other Anti-Inflammatory Strategies

NE 3107, an insulin-sensitizing, orally bioavailable small molecule that binds to ERK
and inhibits ERK- and NF-κB-stimulated inflammatory pathways [333] has completed a
phase 2 trial (NCT05227820) and is currently evaluated in a phase 3 trial (NCT04669028)
aiming to include 316 participants that will last until January 2023 [314].

TB006, a monoclonal antibody targeting galectin-3, a protein binding to Aβ and
acting as glue in promoting Aβ oligomerization, has been evaluated in a phase 1/2 trial
(NCT05074498), and safety has been assessed even long-term in NCT05476783. Currently, a
dose-escalation phase 1 study (NCT04920786) is recruiting patients [314].

Baricitinib, an oral Janus kinase inhibitor approved for treatment in rheumatoid
arthritis [334], was shown to reduce inflammatory biomarkers and neural cell death in a
human neural cell culture model of inflammatory-mediated death in a dose-dependent
manner and was identified by computational biology studies of gene expression profiles
of AD brains termed DRIAD (drug repurposing in AD) as one of the leading drugs that
reversed the impaired inflammatory signaling in AD [335]. It is being currently evalu-
ated in a phase 1 trial (NCT05189106, Neurodegenerative Alzheimer’s Disease and Amy-
otrophic Lateral Sclerosis (NADALS) Basket Trial) to assess the safety and BBB penetrance of
the molecule.

Several monoclonal antibodies targeting various receptors may also interrupt several
pathogenic neuroinflammatory cascades. AL002 targets TREM2 receptors and is being
evaluated in a phase 2 trial recruiting 265 participants (NCT04592874, INVOKE-2). AL003
is directed against CD33, expressed exclusively by microglia and macrophages in the
brain and identified by GWAS to be among the leading risk factors for AD [186]. In CD33
knockout mice, amyloid load was reduced in the brain and phagocytic clearance of Aβ
was enhanced [336]. The safety and tolerability of AL003 have been investigated in a
phase 1 trial (NCT03822208), but no results have been published [314]. Daratumumab,
a humanized IgG1κ monoclonal antibody that targets the CD38 epitope, has been ap-
proved for refractory cases of multiple myeloma. CD38 is a NAD glycohydrolase ex-
pressed by microglia, astrocytes, and neurons, shown to have important roles both in
neuroinflammation and neural repair processes [92]. Daratumumab is currently tested in a
phase 2 trial (NCT04070378, DARZAD) on 15 participants and estimated to be completed
in June 2023 [261]. Unfortunately, it may trigger antibody-dependent cell-mediated cyto-
toxicity (as does isatuximab) [337]. Other small molecules inhibiting CD38 have either poor
capability of crossing the BBB or have an IC50 in the micromolar range [92]. Mediators of
neuroinflammation, such as IL-1β, can also be targeted by monoclonal antibodies, such
as canakinumab, assessed in a phase 2 study on 90 participants (NCT04795466). Edico-
tinib (JNJ-40346527) attenuates microglial proliferation by antagonizing colony-stimulating
factor 1 receptor. A phase 1 trial is currently recruiting 54 participants to assess safety
and tolerability (NCT04121208), while sargramostim, a granulocyte macrophage colony-
stimulating factor with anti-apoptotic and neurogenesis-promoting effects [338], is being
evaluated in a phase 2 trial (NCT04902703, SESAD).
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A derivative of thalidomide, lenalidomide, is a novel immunomodulatory drug used
in myelodysplastic syndromes, which acts by modulating the substrate specificity of the
CRL4CRBN E3 ubiquitin ligase. It is currently being evaluated in a phase 2 trial in mild
cognitive impairment (NCT04032626, MCLENA-1).

Semaphorin 4D play a key role in regulating the transition between homeostatic and
reactive microglia and activating NF-κB [339]. Pepinemab, a monoclonal antibody against
SEMA4D, already used in certain forms of cancer, is being tested in a phase 1/2 trial
(NCT04381468, SIGNAL-AD) on 40 participants.

Regulatory T cells can be used to reduce neuroinflammatory responses. Research
has implicated both the innate immune system and the adaptive immune system in the
pathogenesis of AD, showing the increased recruitment of microglia toward the site of
amyloid deposition [340], as well as increased CD8+ and CD3+ cells positively correlated
with tau pathology [170,341] in the brain, while in the peripheral blood, patients with AD
had decreased regulatory T cells (Tregs) and increased Th17 cells [342,343]. Treg depletion
accelerated cognitive decline, while increasing Treg number reversed the cognitive deficits
of APP/PS1 mice [344]. Two trials using Tregs isolated from the patients’ blood are currently
ongoing. NCT03865017 is a phase 1/2 trial, while NCT05016427 is in phase 1 [314]

Emtricitabine is a repurposed drug, being a nucleoside reverse transcriptase inhibitor
used in the treatment of HIV, but which is believed to reduce neuroinflammation. It is
currently being evaluated in a phase 1 trial (NCT04500847, LINE-AD) [314].

Table 4 provides an overview of active and recruiting clinical trials with anti-inflammatory
molecules, without recording the completed trials or the ones whose status is listed as
“unknown” on the clinicaltrials.gov homepage, accessed on 17 November 2022.

Table 4. Active and recruiting clinical trials evaluating anti-inflammatory strategies (as listed on
www.clinicaltrials.gov [314]).

Phase, Status Molecule Trial Identifier Number of
Participants

Estimated Date
of Completion Sponsor

Not applicable,
recruiting AL002 NCT03671880 30 December 2024 InSightec

Phase 1, recruiting TB006 NCT04920786 (TB006SAD) 48 January 2023 TrueBinding, Inc.

Phase 1, recruiting VT301 (regulatory
T cells) NCT05016427 12 April 2022 VTBIO Co., LTD

Phase 1, recruiting emtricitabine NCT04500847 (LINE-AD) 35 August 2023
Butler Hospital, The Miriam

Hospital, Alzheimer’s
Association, Brown University

Phase 1/2, active,
not recruiting Dasatinib + quercetin NCT04063124 5 December 2023

University of Texas Health
Science center at San Antonio,

Mayo Clinic

Phase 1/2,
enrolling by

invitation
Dasatinib + quercetin NCT04785300,

ALSENLITE 20 December 2023 Mayo Clinic

Phase 1/2,
recruiting Dasatinib + quercetin NCT05422885 STAMINA 12 June 2023 Hebrew Senior Life

Phase 1/2,
recruiting TB006 NCT05074498 140 October 2022 TrueBinding, Inc.

Phase 1/2,
recruiting Baricitinib NCT05189106 (NADALS) 265 January 2024 Alector Inc; AbbVie

Phase 1/2,
recruiting Pepinemab NCT04381468

SIGNAL-AD 40 February 2024
Vaccinex Inc; Alzheimer’s Drug

Discovery Foundation;
Alzheimer’s Association

Phase 2, recruiting,
open-label XPro-1595 NCT05522387 261 December 2025 Immune Bio, Inc.

www.clinicaltrials.gov
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Table 4. Cont.

Phase, Status Molecule Trial Identifier Number of
Participants

Estimated Date
of Completion Sponsor

Phase 2, not yet
recruiting XPro-1595 NCT05321498 60 January 2023 Immune Bio, Inc.

Phase 2, recruiting XPro-1595 NCT05318976 MINDFuL 201 June 2023 Immune Bio, Inc.

Phase 2, recruiting Dasatinib + quercetin NCT04685590SToMP-AD 48 January 2023 University of Texas, Wake
Forest health Sciences

Phase 2, recruiting VX-745,
Neflamapimod NCT03435861 40 June 2021 University Hospital of Toulouse

Phase 2, long term
extension study,

active, not
recruiting

TB006 NCT05476783 180 October 2024 TrueBinding, Inc.

Phase 2, recruiting AL002 NCT04592874INVOKE-2 265 January 2024 Alector Inc; AbbVie

Phase 2, recruiting Daratumumab NCT04070378 DARZAD 15 June 2023 Janssen Scientific Affairs, LLC

Phase 2, recruiting Canakinumab NCT04795466 90 February 2026 Novartis Pharmaceuticals

Phase 2, recruiting Sargramostim NCT04902703 SESAD 42 July 2024

University of Colorado,
National Institute of Aging;

Alzheimer’s Association;
Partner Therapeutics, Inc.

Phase 2, recruiting Lenalidomide NCT04032626 MCLENA-1 30 September 2024

St Joseph’s Hospital and
Medical Center Phoenix;

National Institute of Aging; The
Cleveland Clinic

Phase 3, recruiting NE3107 NCT04669028 316 January 2023 BioVie, Inc.

Phase 3, not yet
recruiting Masitinib NCT05564169 600 December 2025 AB Science

4.3. Anti-Inflammatory Strategies in Animal Models and In Vitro

Other molecules with anti-inflammatory properties are under research in animal
models or in vitro.

4.3.1. Targeting TNF Signaling

TNFR1-specific antibodies, such as ATROSAB, have been shown to shift microglial
TNF signaling toward the anti-inflammatory and neuroprotective TNFR2 pathway in a
chemical lesion of the nucleus magnocellularis [345]. A similar effect has been obtained by
stimulating TNFR2 receptors with specific agonists [346]. One such agonist is the soluble
EHD2-scTNFR2, which was tested in combination with ATROSAB in the nucleus basalis
magnocellularis chemical lesion model by Dong et al., who showed the efficacy of the com-
bination strategy in treating acute neurodegenerative lesions caused by excitotoxicity [345].

Adalimumab, another TNF-α specific monoclonal antibody used in human patients for
peripheral conditions, significantly attenuated neuroinflammation and neuronal damage
while also decreasing BACE-1 expression and amyloid load in rodent models of AD [347].

4.3.2. Targeting the cGAS-STING Pathway

The cGAS-STING pathway seems also to be a promising target. Suramin was tested
in human monocytic leukemia cells, shown to inhibit the synthesis of 2,3-cGAMP, and
downregulate the production of interferon-β [348]. Antimalarial drugs, such as quinacrine
hydrochloride, hydroxychloroquine, or 9-amino-6-chloro-2-methoxyacridine have been
shown to decrease cGAMP levels in mouse connective tissue cells by interfering with
the binding of cGAS to DNA [349]. A competitive inhibitor that binds to the nucleotide
binding site of cGAS and inhibits cGAS activity, PF-06928215, was identified in an in vitro
assay screen for cGAS inhibitors [350], while the small molecules RU521 and RU365 inhibit
the catalytic activity of cGAS in the macrophages of genetically engineered autoimmune
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mice [351]. In the same transgenic Trx1-/- mice, cGAMP accumulation was reduced by
dorsomorphin (compound C) [352]. The palmitoylation of STING leads to the decreased
production of pro-inflammatory cytokines and can be achieved with nitro-fatty acids
and CXA-10 (10-nitro-9(E)-octadec-9-enoic acid in a variety of cell cultures. CXA-10 is
currently assessed in clinical trials for pulmonary arterial hypertension (NCT03449524,
NCT04053543) and focal segmental glomerulosclerosis [314,353]. Nitrofuran derivatives
(C-178 and C-176) act by blocking the palmitoylation of STING induced by its activa-
tion, as shown in bone-marrow-derived macrophages and Trex1-/- mice [354]. Natural
chlorinated cyclopentapeptides and astin C attenuated the autoinflammatory response in
bone-marrow-derived macrophages from Trx1-/- mice by binding to STING, reducing the
affinity of cGAMP to STING, and preventing IRF3 recruitment to STING [355]. Tetradroiso-
quinolone acetic acids stabilize the inactive conformation of STING and bind to the cGAMP
binding site in cell cultures [356]. In neurodegenerative diseases, attempts have been made
to attenuate DNA damage and the activation of the cGAS-STING pathway by augmenting
NAD+ via the oral administration of nicotinamide riboside in APP/PS1 mice [357] or via
NAD+ supplementation [358]. However, given the risk of acute infections or cancer in-
curred by the prolonged suppression of the neuroinflammatory response, there is currently
no inhibitor of the cGAS-STING pathway under preclinical research for AD [359].

Since STING is activated by TBK1, the inhibition of TBK1 could additionally attenuate
the inflammation ignited by this pathway. Aminopyrimidines, as inhibitors of both TBK1
and IKK, have been successfully tested in cancer cell lines [360]; GSK8612, developed by
GlaxoSmithKline, inhibited IRF-3 phosphorylation and interferon-β secretion in vitro [361],
while amlexanox, already approved for use in asthma and aphtous ulcer, is also a dual
inhibitor of both IκB kinases and TBK1. Amlexanox exhibits anticancer effects and has
potential therapeutic benefits in the treatment of diabetes and obesity [362].

4.3.3. Targeting the Inflammasome

Since the NLRP3 inflammasome is activated by Aβ and contributes significantly to
age-related cognitive decline, inhibiting it has gained attention as a potential therapeutic
strategy [363]. MCC950 is a potent NLRP3 inhibitor shown in APP/PS1 mice to promote
microglial Aβ clearance and improve cognitive function [364]. Together with another
NLRP3 inflammasome inhibitor, inzolemid, MCC950 is expected to move into clinical trials
for AD as well as Parkinson’s disease and motor neuron disease [34].

4.3.4. Targeting Immune Checkpoints

The programmed cell death-1 (PD-1) receptor expressed on activated T cells together
with its ligand (PD-L1) play important roles in maintaining immune homeostasis. Persis-
tent antigen stimulation increases the expression of PD-1 and other immune checkpoint
receptors, leading to an increased interaction with ligands on antigen-presenting cells
and inducing a hypofunctional state of T cells [365]. The described mechanism can be
manipulated to inhibit or enhance the immune response. The antiPD-1/PD-L1 strategy is
already used in cancer therapy [366] and immune neutralization of TRAIL (tumor necro-
sis factor-related apoptosis inducing ligand), which modulates the function of Tregs, has
been shown in mouse models of AD to reduce neuroinflammation [367] and improve
cognition [368]. However, available antibodies against PD-1 developed for other diseases
activated the peripheral immune system but had little effect on macrophage infiltration
and the progression of amyloid pathology, indicating the need for further research [369].

4.3.5. Targeting the Complement

A humanized immunoglobulin G4 recombinant antibody against C1q, ANX005, has
been proven to be neuroprotective and prevented synaptic loss in a mouse model of
AD [166], opening the way for clinical trials [370]. The C3a receptor antagonist SB290157 is
able to decrease amyloid load, the Aβ42/40 ratio [371], and microglial proliferation [372],
as well as tau hyperphosphorylation [373], while the inhibition of C5a receptor 1 with
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the cyclic hexapeptide PMX205 decreased amyloid β and tau accumulation, reduced glial
activation, and improved cognition in murine AD models [374].

4.3.6. Cell-Based and Cell-Derived Therapeutic Strategies

Extracellular vesicles (EVs) are cell-derived bilayer membrane structures, which carry
proteins, lipids, and miRNAs, and mRNAs are involved in the communication between
cells and tissues [375] and in regulating cell differentiation, immune response, and tissue
repair [55]. Tested in a mouse model of AD, human umbilical cord mesenchymal-stem-cell-
derived EVs modulated microglial activation and reduced neuroinflammation and amyloid
deposition [376]. In addition, by manipulating the parent cells and incorporating specific
microRNAs to target pathways that are impaired in AD, EVs could prove to be a valuable
strategy to attenuate the neuroinflammatory response and its consequences [377,378].

Stem cell therapies are also actively being pursued in various neurodegenerative
disorders [55,379] and cerebrovascular diseases [380]. Although the use of embryonic stem
cells raises a series of ethical issues, mesenchymal stem cells can be harvested from various
sources (adipose tissue, bone marrow, liver, tooth buds, cord blood, or placenta) [381], and
Takahashi and Yamanaka succeeded in generating induced pluripotent stem cells from
somatic cells by using the retroviral transduction of four genes (two transcription factors:
the octamer-binding transcription factor 4 and the sex-determining region Y-box, and
two signaling factors regulating cellular proliferation and differentiation: the Kruppellike
factor 4 and the avian myelocytomatosis viral oncogene homolog, or c-Myc) [382]. While
not denying the many issues that still need research regarding the potential tumorigenesis,
appropriate number of cells, and convenient delivery methods, stem cells can not only
replace lost neurons and glial cells (astrocytes and oligodendrocytes) and be integrated into
functional neuronal circuits [380] but also release a series of cytokines and growth factors
that can modulate and diminish the neuroinflammatory cascades [380].

4.3.7. Nanotechnology-Based Anti-Inflammatory Approaches in AD

Nanotechnology is an exciting research field with applications in AD both for early
diagnosis and treatment [381].

MRI imaging using superparamagnetic iron oxide nanoparticles coated with the
fluorescent curcumin or with antibodies against Aβ peptide as a contrast agent allows for
the detection of amyloid plaques in vivo. Wrapping the nanoparticle in sialic acid increases
sensitivity [383]. Moreover, nanoparticles exposed to biological fluids are covered by a
protein corona, and the analysis of the proteins of the corona can offer valuable information
on disease stage and severity [384].

Nanoparticles can be used in therapy as well. The organic nanoparticles could improve
the delivery of a series of phytochemicals with multitargeted mechanisms of action, such
as curcumin, resveratrol, or even other molecules across the BBB, thereby avoiding sys-
temic side effects [385,386], while of the inorganic ones, gold nanoparticles have attracted
most attention. They can connect to Aβ and can be used to dissolve the aggregates by
delivering thermal energy from a microwave field [387]. They have also been shown to
prevent neuroinflammation and cognitive impairment in a rat model of dementia [388].
Exposure to streptozotocin leads to increased levels of IL-1β and NF-κB, serving as a
model for sporadic dementia. Gold nanoparticles attenuated neuroinflammation [389],
contributed to BBB repair, and also reduced the magnitude of systemic inflammation [390]
in hypercholesterolemic rats.

4.3.8. Other Anti-Inflammatory Strategies

Blockade of specific SASP factors, such as IL-6, with available monoclonal antibodies
like siltuximab or tocilizumab (anti-human IL-6 receptor) could be a promising approach
as well [119].
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Calorie restriction has been shown to attenuate the age-related increase of pro-inflammatory
cytokines NF-κB, IL-1β, Il-6, or TNF-α and act through the AMPK, mTOR, and Nrf2
pathway to increase lifespan and enhance cognition [391].

Melatonin suppresses pro-inflammatory pathways, NLRP3 activation, cytokine release
by SASP, TLR4, and mTOR signaling and shifts microglia towards an M2 anti-inflammatory
phenotype [25].

Aside from acting as antioxidants, a series of phytochemicals, such as resveratrol or
curcumin, also exhibit anti-inflammatory properties [392], although their ability to cross the
BBB is poor [393]. Nanoparticle-mediated delivery could help overcome this drawback [55].

Finally, normalizing the gut microbiota through supplementation with specific strains
of Lactobacilli and Bifidobacteria attenuates inflammaging by downregulating interferon-γ
and TNF-α and upregulating Il-10 [394], thus being a non-invasive means to decrease
neuroinflammation via the gut–brain axis [395,396].

5. Conclusions

Although AD is a complex and heterogenous disease with multiple factors such as
age, genetic factors, obesity, hypercholesterolemia, diabetes, or gut dysbiosis contributing
to its development and progression, compelling evidence implicates inflammation and neu-
roinflammation in the conversion of age-related cognitive decline to dementia. Therefore,
anti-inflammatory compounds could be a useful tool in delaying the onset and slowing the
progression of AD.

The stratification of risk and personalized treatment approaches probably play a
crucial role in the success of anti-inflammatory strategies. They may delay the onset of
cognitive decline in persons at risk for AD due to comorbidities shown to contribute to
inflammaging, such as diabetes, obesity, or hypertension, while in later stages, they could
be used as add-on strategies together with the already approved treatments (which offer
only limited benefit) or with Aβ- or tau-targeted therapies.

However, much research is still required to identify the best anti-inflammatory strate-
gies and the proper moment for their use. The more potent a drug is, the more serious
its side effects, and a careful balancing of risks versus benefits is needed to avoid causing
serious and life-threatening infections or tumorigenesis [359]. Modulating neuroinflam-
mation via miRNAs delivered via extracellular vesicles is appealing, but the research is
still in its infancy, as is genetic editing via antisense oligonucleotides or CRISPR/Cas9
technology [379] which could inhibit the expression of genes shown to cause familial cases
of AD.
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Abbreviations

AD Alzheimer’s disease
ADAM A disintegrin and metalloproteinase
AIM2 absent in melanoma 2
Akt protein kinase B
AMP adenosine monophosphate
AMPK 5′-adenosine monophosphate (AMP)-activated protein kinase
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AP1 activator protein 1
APOE apolipoprotein E
APP amyloid precursor protein
ARE antioxidant response element
ASC apoptosis-associated speck-like protein containing CARD
ATG autophagy-related protein
ATP adenosine triphosphate
BACE β-site APP cleaving enzyme
BBB blood brain barrier
BDNF brain-derived neurotrophic factor
BER base excision repair
CAMKII calcium/calmodulin-dependent protein kinase II
CARD caspase activation and recruitment domain
CAT catalase
CBP CREB binding protein
CCL C-C motif chemokine ligand
CGAS cyclic GMP-AMP synthase
CIP/KIP CDK interacting protein/kinase inhibitory protein
CNS central nervous system
COX cyclooxygenase

CRISPR/Cas9
clustered regularly interspaced short palindromic repeats/CRISPR-associated
protein 9

CSF cerebrospinal fluid
CXCL-CXCL C-X-C motif ligand
CSF1R colony stimulating factor 1 receptor
DAMPS damage-associated molecular patterns
DAP12 DNAX-activation protein of 12 kDa
DNA deoxyribonucleic acid
Drp1 dynamin-related protein 1
EAAT excitatory amino acid transporter
EMRE essential MCU regulator
ER endoplasmic reticulum
ERK extracellular-regulated kinase
ETC electron transport chain
EVs extracellular vesicles
FGF21 fibroblast growth factor 21
FIP200 focal adhesion kinase (FAK) family-interacting protein of 200 kDa
Fis1 mitochondrial fission 1 protein
GABA γ-aminobutyric acid
GDF15 growth/differentiation factor 15
GDNF glial-derived neurotrophic factor
GFAP glial fibrillary acidic protein
GMP guanosine monophosphate
GPx glutathione peroxidase
GSH glutathione
GSK3β glycogen synthase kinase-3 beta
GWAS genome-wide association studies
HIF hypoxia-inducible factor
HIV human immunodeficiency virus
HMGB high mobility box group
HMGCR 3-hydroxy-3-methylglutaryl CoA reductase
HO-1 heme oxygenase-1
IC50 half maximal inhibitory concentration
ICAM1 intercellular adhesion molecule 1
IF interferon
IFNAR interferon-α/β receptor
IκB inhibitor of κB
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IKK IκB kinase
IL interleukin
IMM inner mitochondrial membrane
IP3Rs inositol trisphosphate receptors
IRF interferon regulatory factor
ISGF3 interferon-stimulated gene factor-3
JAK Janus kinase
JIP c-Jun N-terminal kinase-interacting protein
JNK pathway Jun N-terminal kinase pathway

Keap1
kelch like erythroid cell-derived protein with CNC homology (ECH)-associated
protein 1

LAMP1 lysosomal-associated membrane protein 1
LC3 light chain 3
MAMs mitochondria-associated membranes
MAPK mitogen-activated protein kinase
MCI mild cognitive impairment
MCU mitochondrial membrane Ca2+ uniporter
MCUR1 MCU regulator 1
Mfn mitofusin
MHC major histocompatibility complex
MICU 1 and 2 mitochondrial calcium uptake 1 and 2
miRNA microRNA
MMP matrix metalloproteinase
MPTP mitochondrial permeability transition pore
MRI magnetic resonance imaging
mRNA messenger RNA
mTOR mammalian target of rapamycin
mtDNA mitochondrial DNA
NAD nicotinamide adenine dinucleotide
NADH reduced nicotinamide adenine dinucleotide
NCLX Li+-permeable Na+/Ca2+ exchanger
NGF nerve growth factor
NFATs nuclear factor of activated T cells receptors
NF-κB nuclear factor-kappa B
NFT neurofibrillary tangle
NLR nucleotide-binding oligomerization domain (NOD)-like receptor
NO nitric oxide
NOS nitric oxide synthase
NOX NADPH oxidase
Nrf2 nuclear factor erythroid 2-related factor 2
NSAIDs non-steroidal anti-inflammatory drugs
NSF N-ethylmaleimide sensitive fusion protein
OH8dG nucleoside 8-hydroxy-2′-deoxyguanosine
OMM outer mitochondrial membrane
OPA1 optic atrophy 1
OXPHOS oxidative phosphorylation
PAMPs pathogen-associated molecular patterns
PARP poly(ADP-ribose) polymerase
PET positron emission tomography
PGAM phosphoglycerate mutase
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PI3K phosphatidylinositol 3-kinase
PINK1 PTEN-induced kinase 1
POLG DNA polymerase subunit gamma
PQBP1 polyglutamine binding protein 1
PRR pattern recognition receptor
PSEN presenilin
RAGE receptor for advanced glycation endproducts
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ROS reactive oxygen species
RUNX1 runt-related transcription factor 1
RyR ryanodine receptor
SASP senescence-associated secretory phenotype
SNAREs soluble N-ethylmaleimide sensitive factor attachment protein receptors
SOD superoxide dismutase
SR-A scavenger receptor class A
SR-B1 scavenger receptor B1
SREBP2 sterol regulatory element-binding protein 2
STAT signal transducer and activator of transcription
STING stimulator of interferon genes
Syk spleen tyrosine kinase
TBK1 TANK binding kinase 1
TFAM mitochondrial transcription factor A
Th T helper lymphocytes
TIMP1 tissue inhibitor of metalloproteinases 1
TLR toll-like receptor
TNF tumor necrosis factor
TNFR TNF-α receptor
TOM translocase of the outer membrane
TRAIL tumor necrosis factor-related apoptosis inducing ligand
Treg regulatory T cells
TREM triggering receptor expressed on myeloid cells
TREX1 three prime repair exonuclease 1
ULK Unc-51-like kinase
VDAC voltage-dependent anion channel
VGCC voltage-gated calcium channel
VPS vascular protein sorting

WIPI
tryptophan-aspartic acid (WD) repeat domain phosphoinositide-interacting
proteins
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