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Abstract: Traumatic brain injury (TBI) is one of the leading causes of death and disability among
children and adults in America. In addition, the acute morbidity caused by TBI is implicated in the
development of devastating neuropsychiatric and neurodegenerative sequela. TBI is associated with
the development of a neurodegenerative condition termed ‘Punch Drunk syndrome’ or ‘dementia
pugilistica’, and the more recently renamed ‘chronic traumatic encephalopathy’. Chronic traumatic
encephalopathy (CTE) is a slowly progressive neurodegenerative condition caused by a single or
repetitive blow to the head. CTE was first described in boxers and was later found to be associated
with other contact sports and military combat. It is defined by a constellation of symptoms consisting
of mood disorders, cognitive impairment, and memory loss with or without sensorimotor changes.
It is also a Tauopathy characterized by the deposition of hyperphosphorylated Tau protein in the
form of neurofibrillary tangles, astrocytoma tangles, and abnormal neurites found in clusters around
small vessels, typically at the sulcal depths. Oxidative stress, neuroinflammation, and glutaminergic
toxicity caused due to the insult play a role in developing this pathology. Additionally, the changes
in the brain due to aging also plays an important role in the development of this condition. In this
review, we discuss the molecular mechanisms behind the development of CTE, as well as genetic and
environmental influences on its pathophysiology.

Keywords: chronic traumatic encephalopathy; Tauopathy; molecular basis; neuroinflammation

1. Introduction

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative condition
caused by a single or multiple blows to the head. The pathophysiology of the development
and progression of CTE is linked to the disruption of certain reparative molecular pathways.
Traumatic brain injury (TBI) is the inciting factor leading to this disease, but there are other
factors such as age that play a role in its progression. Oxidative injury plays a central role
in brain damage after TBI, and the microglia play a central role in the reparative process.
Disruption of this reparative ability of microglia and other neural pathways affects the
ability of the brain to repair itself. Over time, repeated cycles of inflammation lead to
pathological deposits called neurofibrillary tangles. This pathological finding is the basis
of the diagnosis of CTE. In this review we explain the evolution of traumatic brain injury
to CTE and the pathophysiology behind this evolution. We also highlight the important
molecular mechanisms that play a vital role in the development of CTE along with a
brief overview of aging and its effects on the progression of CTE. We also explore the
relationship between CTE and other neurodegenerative conditions. The objective of this
review is to provide a sound overview of our current understanding of the molecular
progression of chronic traumatic encephalopathy in traumatic brain injury, aging, and
neurodegenerative disease.
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2. Neuropathology of CTE

Chronic traumatic encephalopathy is diagnosed most accurately by a neuropathologi-
cal examination of a brain tissue specimen [1]. The classical finding is an accumulation of
hyperphosphorylated Tau protein in neurons and glial cells, mainly involving the perivas-
cular areas and preferential deposition in the cortical sulci depths [2–6]. The specific isomer
is cis p-Tau and was found to be produced after traumatic injury to the brain causing cell
toxicity, synapse, and circuit dysfunction [6,7].

Studies of concussion and post-concussion syndrome in human subjects found that
multifocal traumatic axonal injury is most commonly perivascular [8–10] with focal clus-
ters of p-Tau in neurofibrillary tangles, pre-tangles, and neurites [11]. Progression is
believed to begin with brain trauma, causing some Tau proteins to become dissociated
from microtubules in axons via intracellular calcium influx, glutamate receptor-mediated
mechanisms excitotoxicity, and kinase activation mediating hyperphosphorylation of intra-
cellular Tau [12]. In addition, the Tau protein, which dissociates from microtubules, may
undergo phosphorylation, misfolding, and aggregation and become proteolytically cleaved
by calpains and caspases associated with neurotoxicity [13]. Furthermore, astrocytic p-Tau
has been associated with age and not years of exposure to repetitive head impacts (RHI).
Overall, this work supports the 2021 consensus requirement for neuronal p-Tau in the
pathognomonic lesion of CTE.

The production of cis p-Tau is believed to be initiated by ischemia and in regions
that experience mechanical strain forces [14]. Ischemia causing oxidative stress might
precede Tau deposition, and the lymphatic system might be a channel for the accumulation
of p-Tau in the depths of sulci in a perivascular distribution [14]. The progression of
hyperphosphorylated p-Tau can be divided into four phases, as depicted in Figure 1.
The importance of isolated subpial p-Tau astrocytes in the depths of sulci without any
neurofibrillary tangles near perivascular areas in the underlying cortex is unknown, but
subpial p-Tau astrocytes at the deep cortical sulci is not a phenomenon found in normal
aging and has been found in the brains of individuals with a history of chronic repetitive
brain trauma [2,11]. The isoform profile of Tau and its phosphorylation state in CTE is like
that in Alzheimer’s disease [15], and the neuronal p-Tau pathology shows immunoreactivity
to both three repeats (3R) and four repeats (4R) Tau [11,16]. The 4R isoform of Tau is
mainly expressed in astrocytes in the subpial region of deep sulci [11,16]. However, the
neuronal abnormalities in the hippocampus appear to be primarily 4R Tau in CTE [11]. Its
distribution is depicted in Figure 1.

Grossly, the changes in the brain are not common in the early or mild stages of CTE.
Lesions may be present in perivascular spaces in the white matter, mainly in the temporal
lobe. Some macroscopic changes include reduction in brain weight, gray and white matter
atrophy—typically severe in the frontal and anterior temporal lobes, as well as enlargement
of the lateral and third ventricles, cavum septum pellucidum, and septal fenestrations.
Other features seen are the atrophy of the thalamus, hypothalamus, and mammillary
bodies, the thinning of the isthmus of the septum corpus callosum, and the depigmentation
of the locus coeruleus and substantia nigra. Some of these changes are demonstrated
in Figure 2 [2,11].

TDP 43 is TAR DNA-binding protein 43 and is also accumulated, causing TDP 43 im-
munoreactive inclusions [3,4]. It translocates from the nucleus to the cytoplasm, where
it can become polyubiquitinated and hyperphosphorylated, resulting in the formation of
pathological inclusion bodies [17]. These have been identified in patients with Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and chronic
traumatic encephalopathy (CTE) patients [5,18].
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Amyloid-β (Aβ) deposition has also been associated with CTE [1,3,5] with significant
deposition documented in boxers [19] and American football players [20]. Although Aβ

plaques have been identified in older adults, they appear earlier in patients with CTE [2,5].
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3. TBI and CTE

Mechanisms regarding the potential neurodegenerative effects of acute TBI, multiple
mild TBI (mTBI), or repetitive subclinical brain trauma (RSBT) are not elucidated. Proposed
mechanisms include decreased cognitive reserve, chronic inflammation, chronic microglia
activation, acute upregulation of amyloid precursor protein (APP) and subsequent AD-like
cascades, and slow degeneration of axonal connections due to altered protein degradation
processes [21]. Even in the absence of subsequent or repetitive forces transmitted to the
brain, the widespread effects of TBI on neuronal homeostasis and regulatory functions
suggest that one or many of these mechanisms may drive chronic dysfunction [21]. The
cognitive reserve hypothesis points to the modification of the “normal aging” trajectory for
the affected individual due to the effects of TBI. Additionally, multiple injuries may have
synergistic effects that accelerate the rate of dementia development. TBI followed by acute
neuroinflammation is associated with cytokine release, and persistent microglia activation
neuropathologically, which is proven by reactive microglia found post-mortem months to
years after a single TBI [22–25]. This was demonstrated by Johnson and colleagues, who
identified reactive microglia in 28% of brains examined over one year following a single
TBI. Similarly, others have shown that chronic inflammation and microglia activation may
occur up to 17 years after TBI in areas distal to the trauma locus [23,26].

As mentioned earlier, acute TBI pathology can include Aβ and Tau deposition. The
normally functioning brain has adaptive mechanisms for protein degradation and removal.
For example, one of the mechanisms is the ubiquitin-proteasome pathway, an intracellular
mechanism that regulates the degradation of normal and abnormal proteins, which is
responsible for normal cell growth and metabolism. Due to chronic inflammation following
TBI, this pathway may be impaired, resulting in an inability to efficiently clear proteins
such as Aβ and p-Tau [27]. The combination of abnormal protein deposition and reduced
degradation and clearance abilities suggests a possible theory that single-event moderate
to severe TBI may progress to neurodegenerative processes [27].

RHI, even with mild insult, can damage axons and cause changes in membrane per-
meability and ionic shifts, resulting in a large influx of calcium [28]. The subsequent release
of caspases and calpains is followed by events such as Tau phosphorylation, misfolding,
shortening, and aggregation. Additionally, cytoskeleton failure with the dissolution of
neurofilaments and microtubules may occur.

Acute head injury also activates microglia that release toxic levels of cytokines,
chemokines, immune mediators, and excitotoxins such as glutamate, aspartate, and quino-
linic acid. These excitotoxins inhibit phosphatases, resulting in hyperphosphorylated Tau
and, eventually, neuro-tubule dysfunction and neurofibrillary tangles (NFT) deposition in
various areas of the brain [29]. Hyperphosphorylated Tau abnormalities are distributed
focally as perivascular NFTs and neurites at the depths of the cerebral sulci. These then
spread to involve superficial layers of the adjacent cortex causing widespread degeneration
in areas such as the diencephalon, medial temporal lobe structures and brainstem [30].

The glymphatic system has also been shown to be involved. Ren et al. reported that
the perivascular polarization of astroglial aquaporin-4 (AQP4) is chronically disrupted in
reactive astrocytes following mild and moderate TBI in mice [31]. They observed that mod-
erate TBI caused an impaired glymphatic pathway function for >1 month after injury, which
was consistent with the dependence of brain interstitial solute clearance on perivascular
AQP4 [32], which slowed the clearance of interstitial solutes from the brain parenchyma [33].
This prolonged impairment of the glymphatic pathway after TBI is a key contributor to
amyloid-β clearance from the brain interstitium. This process may promote early amyloid
plaque deposition following severe TBI [34] and an accelerated development of amyloid
pathology in an aging brain after TBI [35]. Thus, Iliff and colleagues proposed that loss of
perivascular AQP4 polarization after TBI impaired the clearance of interstitial solutes along
the para-vascular glymphatic pathway, including the protein Tau [33]. The inability to clear
interstitial Tau, promoting intracellular Tau aggregation and neurodegeneration, further
exacerbates neurocognitive decline after TBI and CTE development.
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In 1969, Dr. John Olney introduced a term called excitotoxicity, which he described as
a reaction that occurs in neurons after exposure to excess extracellular glutamate [36]. The
excitotoxic sequalae generate high levels of reactive oxygen species and reactive nitrogen
species (ROS/RNS), lipid peroxidation products (LPP), nitric oxide, and prostaglandins.
These then go on to activate microglia. In addition, pathological events such as increased
amyloid processing, Tau phosphorylation, microtubule disruption, membrane injury, den-
dritic retraction, synaptic loss, mitochondrial dysfunction, DNA injury, apoptosis, calcium
dysregulation, and necrotic cell death are associated with neuronal excitotoxicity and
described in TBI patients [37].

Reactive microgliosis typically results from an interaction between glutamate, cy-
tokines and associated receptors, which can be primed by the initial traumatic head injury
or other events [37]. The enhanced release of immune cytokines, chemokines, and other
immune mediators, as well as a massive release of the excitotoxins—glutamate, aspartate,
and quinolinic acid, follows [37]. This pro-inflammatory response accelerates neurodegen-
eration. Several regions, such as the frontal lobes, hippocampus, and parietal lobes, are
most vulnerable to this trauma-induced immune excitotoxicity [37]. The subsequent release
of ROS, RNS and LPPs interferes with glutamate clearance, resulting in a prolonged period
of accelerated neurodegeneration. Repeated trauma to the brain may prevent normal mi-
croglia from switching from pro-inflammatory to reparative mode. This results in chronic
microglial immune-excitotoxic activity and chronic neurodegeneration. High levels of gluta-
mate and quinolinic acid also significantly increase the deposition of hyperphosphorylated
Tau protein and contribute to the observed NFT accumulation [37].

Evidence of a distinctive neurodegenerative pathophysiology [38] for CTE is emerging.
Within acknowledged limitations of retrospective studies thus far, it is almost exclusive to
circumstances of previous exposure to TBI [39]. Despite many reports focusing on aspects
of Tau-neuropathology in CTE [37], the pathology after TBI is complex. In addition to Tau, a
range of abnormalities, including amyloid beta and TDP-43 deposition, neuroinflammation,
axonal degeneration, white matter degradation, neuronal loss, and blood-brain barrier
disruption, are deemed to be involved in the complex mechanism that is depicted below
in Figure 3 [40–42].
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4. Aging and CTE

The effect of aging on the development of CTE is not completely understood. The
most common mechanism is cumulative change over time, with the accumulation of toxic
substances, functional decline, and DNA alteration. Mitochondria have a central role in
the age-related neurodegeneration and pathogenesis of CTE, and numerous studies have
shown that mitochondrial changes occur with aging [43,44]. Mutations in mitochondria
and associated oxidative stress contribute to the neurodegenerative process characterized
by neuronal cell death, and has been described in patients with AD and PD [45].

Specifically, complex IV and V decline with age, leading to oxidative damage that
can disrupt DNA and gene expression [44]. For example, changes are seen in COX gene
expression that are associated with a pro-inflammatory state and neurodegeneration [46,47].
Mitochondrial mass also appears to change, as a PCR-based study reported increased
content with age [48]. Furthermore, ROS accumulation leads to protein carboxylation, lipid
peroxidation, and mtDNA oxidation, which are known to play a role in the development
of CTE [44].

The endoplasmic reticulum (ER) is a significant site of calcium storage and protein
folding. Alterations in the ER environment cause stress-induced ROS production [49].
Studies have indicated that ER stress events are related to mitochondrial ROS production
mechanisms within cells [49]. Ca2+ ions released from the ER augment the production of
mitochondrial ROS to induce oxidative phosphorylation at the electron transport chain
(ETC). Additionally, Ca2+ ions increase cytochrome c release, which impairs electron trans-
fer, altering mitochondrial membrane potential, and increasing the generation of ROS [49].
ER stress can be provoked by TBI. This can lead to altered ER homeostasis and disrupted
folding, leading to unfolded proteins and protein aggregates which are detrimental to cell
survival (Figure 4) [50]. CTE is characterized by hyperphosphorylated Tau protein and,
in some patients, amyloid beta-peptide. Neurons containing NFTs showed an increase
in levels of free and protein-bound calcium compared with tangle-free neurons [51,52].
Calcium plays an essential role in apoptosis, neurodegeneration, and CTE.
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reticulum—when faced with misfolded proteins, young cells have low ER stress, higher chaper-
one efficacy, increased adaptive unfolded protein response (UPR) signaling, and increased stress
tolerance. Hence, young ER is efficient in getting rid of misfolded proteins. In aged cells, due to
reduced chaperone activity, the misfolded cells are unable to clear and tend to accumulate, leading
to a maladaptive response as a relative increase in apoptotic UPR signaling vs. adaptive signaling,
eventually leading to cell death.
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Microglia play a pivotal role in immune surveillance, plasticity, and development [53,54].
They have a dual function, allowing them to switch from a pro-inflammatory state to a
neuroreparative state (Figure 5). In acute TBI, the microglia take part in the inflammatory
process and help with the clearing of debris. Repetitive trauma does not allow the microglia
to switch to their reparative mode. Hence, immunoexcitotoxicity is believed to contribute
to the development of CTE [37]. There is evidence of microglia priming in the aged brain.
For example, there is increased expression of inflammatory markers, including major
histocompatibility complex II and complement receptor 3 (CD11), in the aging human
brain [55,56]. There is also an increase in the inflammatory profile in astrocytes with
age [57]. The increased inflammatory markers observed on astrocytes and microglia in the
aged brain translate to an exaggerated immune response following trauma. This leads to
a maladaptive response characterized by amplified and prolonged cytokine production,
anorexia, prolonged social withdrawal, depressive behavior, and cognitive impairment,
among other symptoms [58]. Primed microglia in an aged brain produce a more robust
response to a peripheral stimulus such as stress and trauma. In addition, a study showed
that in a focused laser injury mice model, there was slower migration of microglia towards
the site of injury, and the microglia were aggregated at the site of damage for a longer
duration than that of adult mice [59]. These functionally impaired microglia are senescent
or dystrophic and indicate worse outcomes in brain injury.
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tion and repair. As microglia age, there is evidence of priming and more pro-inflammatory activity.
Additionally, repeated trauma prevents the microglia from switching from its pro-inflammatory state
to its reparative state, leading to a continuous inflammatory response and damage.

Another study showed an age-dependent deficiency in the glutamate transporter
on neurons of the excitatory amino acid carrier (EAAC1) [60]. It showed that genetically
null mice had reduced glutathione levels and, with aging, developed brain atrophy and
behavioral changes [60]. Low glutathione levels are linked to increased ROS, and ROS
has been implicated in neuronal inflammation and the development of CTE. Based on our
current understanding of the pathogenesis behind CTE, we can conclude that the severity of
CTE is influenced by the normal aging of the human brain. Additionally, CTE is associated
with the development of other neurodegenerative conditions, especially as a function of
increasing age [61,62]

5. Neurodegenerative Diseases and CTE

Many studies have assessed the role of TBI in developing neurodegenerative condi-
tions, and meta-analyses of these studies have shown a significant association between TBI
and AD [63,64], PD, ALS [65], and FTD (Frontotemporal dementia) [66]. Pathophysiological
changes of CTE have been shown to mimic molecular and cellular changes found in other
neurodegenerative diseases such as AD and ALS. A study showed that microglia priming
had been described in several neurodegenerative conditions, including AD. CD200 recep-
tors are essential for switching microglia from neurodestructive mode to neuroprotective
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mode. Recent studies have shown reduced CD200 and CD200 microglial receptors in patho-
logically affected areas in AD. Macrophages of PD patients also have reduced CD200 [67].

Evidence suggests that activated microglia are a chronic source of multiple neurotoxic
factors, such as tumor necrosis factor-α, NO (nitric oxide), interleukin-1β, and reactive
oxygen species (ROS), driving progressive neuron damage. Microglia can become chroni-
cally activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or
multiple stimuli exposures, resulting in cumulative neuronal loss with time. This explains
the prolonged activation of microglia in neurodegenerative conditions [68]. Studies have
shown that pro-inflammatory immune stimulation was insufficient to cause brain pathol-
ogy but triggered extensive neurodegeneration in patients with pre-existing or coexisting
brain pathology in the form of excitotoxicity. Morimoto et al. found that injecting LPS
plus ibotenate, an NMDA receptor agonist, led to significant neuronal degeneration and
severe tissue collapse. By blocking excitotoxicity, tissue damage was prevented, despite
substantial microglial activation [69]. If the ibotenate was delayed by a day after the LPS
injection, gross microglial activation occurred along with significant neurodegeneration.

Tau NFT deposition is a characteristic finding identified in the brains of AD patients, as
well as frontotemporal dementia (FD), Pick’s disease (PiD), and progressive supranuclear
palsy (PSP), among others. These tangles have also been distinctively found in the brains
of patients suffering from CTE [11]. A study done by Holf et al. discovered that the
distribution of these tangles was similar to the ones found in AD and PD. However, in 2018
McKee et al. compared the brains of 68 men who had suffered a CTE to 18 age and sex-
matched brains who had not suffered a CTE, discovering that brains who had undergone
trauma had a unique NFT distribution that was different from any other tauopathy [2].
These included perivascular NFTs distributed in the cortex and subpial astrocytes at the
sulcal depths.

Similarly, AD is also known to have AB plaque deposits around neurons, and 50%
of the cases of CTE have also been found to have these deposits. However, they appear
at a later disease stage and in a lesser proportion [2]. Furthermore, their presence is
commonly associated with faster clinical deterioration, Lewy body formation, dementia,
and parkinsonism [2].

TDP-43 is a nuclear protein that regulates the transcription of genes that bind to the
E3 ubiquitin ligase Parkin mRNA to regulate its expression. The wild type of this protein
has been linked to several neurogenerative diseases, such as Huntington’s disease (HD)
and ALS in the hippocampus of patients suffering from AD and the limbic system in PSP
(supranuclear palsy), in addition to Lewy body dementia [70]. A study done by McKee
et al. studied the brains of 12 athletes aged between 42 and 85 who had developed CTE,
finding that three of them had also developed motor neuron disease (MND), similar to the
symptoms presented in patients who have ALS [62]. Two of the patients also developed
cognitive impairment, dementia, and behavioral changes. Seven of the nine patients that
did not develop MND showed TDP-43 immunoreactivity in a specific area of the brain. The
athlete’s brains that developed MND all showed TDP-34 immunoreactivity throughout
their brains, including the brainstem and spinal cord [62]. These findings were compared
to sporadic ALS cases, in which the only difference was that none presented Tau protein
tangles similar to those on CTE brains.

Moreover, it has been proven that oxidative stress plays a central role in the neuronal
damage produced post-TBI. Antioxidant mechanisms are interfered with due to trauma,
leading to the accumulation of ROS due to NADPH oxidase (Nox2) upregulation, which
leads to DNA damage and brain inflammation [71]. In the same way, Nox2 has been
proven to induce Aβ plaque formation and accumulation, which predisposes AD devel-
opment. Although the final pathological manifestations of CTE closely resemble that of
sporadic AD, there are some differences, especially the predominance of Tau pathology
over amyloid accumulation in affected brain regions. In conclusion, CTE is a modifiable
risk factor. Efforts towards developing robust biomarkers and well-designed, prospective
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epidemiological studies involving contact sports players from an early age to assess the
risk of neurodegeneration and develop therapies are essential.

6. Conclusions

Chronic traumatic encephalopathy is a slowly progressive neurodegenerative condi-
tion caused by a single or multiple blows to the head. It consists of symptoms such as mood
disorders, memory loss, and cognitive impairment. It is a pathological diagnosis charac-
terized by the build-up of hyperphosphorylated Tau proteins in neuron and glial cells.
Oxidative damage post-TBI plays a significant role in the development of CTE. Addition-
ally, aging hastens the development of CTE due to changes in the endoplasmic reticulum,
mitochondria, and priming of microglia, which are permissive to a pro-inflammatory re-
sponse leading to repeated injury. The Tau neurofibrillary tangles found in CTE are also
distinctively found in patients with neurodegenerative diseases such as AD, FTD, PiD, and
PSP, among others. However, the location of these deposits varies among patients with AD
and CTE.
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