

Article Effects of Different Guests on Pyrolysis Mechanism of α-CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures

Mingming Zhou, Jing Luo and Dong Xiang *

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China * Correspondence: xiangdong@yangtzeu.edu.cn

Abstract: The host-guest inclusion strategy has the potential to surpass the limitations of energy density and suboptimal performances of single explosives. The guest molecules can not only enhance the detonation performance of host explosives but also can enhance their stability. Therefore, a deep analysis of the role of guest influence on the pyrolysis decomposition of the host-guest explosive is necessary. The whole decomposition reaction stage of CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH was calculated by ReaxFF-MD. The incorporation of CO₂, N₂O and NH₂OH significantly increase the energy levels of CL-20. However, different guests have little influence on the initial decomposition paths of CL-20. The E_{a1} and E_{a2} values of CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems are higher than the CL-20/H₂O system. Clearly, incorporation of CO₂, N₂O, NH₂OH can inhibit the initial decomposition and intermediate decomposition stage of CL-20/H₂O. Guest molecules become heavily involved in the reaction and influence on the reaction rates. k_1 of CL-20/N₂O and CL-20/NH₂OH systems are significantly larger than that of CL-20/H₂O at high temperatures. k_1 of CL-20/CO₂ system is very complex, which can be affected deeply by temperatures. k_2 of the CL- $20/CO_2$, CL- $20/N_2O$ systems is significantly smaller than that of CL- $20/H_2O$ at high temperatures. k₂ of CL-20/NH₂OH system shows little difference at high temperatures. For the CL-20/CO₂ system, the k_3 value of CO₂ is slightly higher than that for CL-20/H₂O, CL-20/N₂O, CL-20/NH₂OH systems, while the k_3 values of N₂ and H₂O are slightly smaller than that for the CL-20/H₂O, CL-20/N₂O, CL-20/NH₂OH systems. For the CL-20/N₂O system, the k_3 value of CO₂ is slightly smaller than that for CL-20/H₂O, CL-20/CO₂, CL-20/NH₂OH systems. For the CL-20/NH₂OH system, the k₃ value of H₂O is slightly larger than that for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O systems. These mechanisms revealed that CO2, N2O and NH2OH molecules inhibit the early stages of the initial decomposition of CL-20 and play an important role for the decomposition subsequently.

Keywords: host-guest inclusion strategy; pyrolysis decomposition; ReaxFF-MD; reaction rate

1. Introduction

Successful balance between high energy and safety of energetic materials is challenging due to the time-consuming and difficult nature of synthesizing new energetic materials. Host–guest energetic materials, as shown in Figure 1, by embedding hydrogen- [1–3] or nitrogen-containing [4,5] oxidizing small molecules into the crystal lattice voids may achieve the highest possible energy density and the maximum possible chemical stability [6].

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), as one of the energetic materials with greatest detonation performances and highest density from synthesized compounds, has been widely studied recently [7]. CL-20 has five polymorphs (namely β , γ , ε , ζ and δ) and an α -form hydrate [8], in which the ε -CL-20 has the highest density (2.044 g·cm⁻³) [8], β -CL-20 and γ -CL-20 are the dominant configurations of CL-20 molecules found in co-crystals [9]. Thus, many approaches have been used to tune its

Citation: Zhou, M.; Luo, J.; Xiang, D. Effects of Different Guests on Pyrolysis Mechanism of α -CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures. *Int. J. Mol. Sci.* **2023**, 24, 1840. https://doi.org/10.3390/ iims24031840

Academic Editor: Antonio Bauzá

Received: 23 December 2022 Revised: 12 January 2023 Accepted: 15 January 2023 Published: 17 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). performance, such as co-crystals [10–13], nanosized particles [14] and so on. The nanoscaling cocrystals demonstrate enhanced stability and high solubility of nano-particles [15]. However, the high production costs and easily phase transition limit the widespread use of CL-20 [16,17]. Fortunately, removal of H₂O from hydrated α -CL-20 can retain the stacking model [18]. Then, small molecules are filled in the cavity structure region that removes H₂O molecules to form α -CL-20 host–guest explosives [3–5], which also can be regarded as the solvates of CL-20 [19–21]. Bennion J.C. [3] synthesized two polymorphic hydrogen peroxide (HP) solvates of α -CL-20. Two α -CL-20/H₂O₂ host–guest compounds are scarcely changing the lattice volume of the α -CL-20/H₂O and improving the energy. Thereafter, researches are focused on adopting a host–guest inclusion strategy to embed a suitable guest within the void by removing the water of α -CL-20/H₂O. A series of α -CL-20-guest energetic materials such as CL-20/CO₂ [4], CL-20/N₂O [4], CL-20/NH₂OH [5] have been constructed in this manner.

Constitution coordination

Figure 1. (a) 3D energetic host-guest inclusion materials [1]. (b) Illustration of explosive-oxidant self-assembled strategy and its comparison with traditional energetic material [2].

The simulation of α -CL-20/guest mainly focused on the mechanism of host–guest molecular interaction and the pyrolysis mechanism at high temperatures. The intermolecular interaction is the central scientific issue of energetic cocrystals. Guo [6] had reviewed some typical energetic inclusion compounds and their structures, intermolecular interactions, stabilities, and energy properties. It provides a method to predict appropriate size of guest incorporate into the cavities of the α -CL-20 crystal. The systematic studies [22–24] on the comparison of interaction between the host–guest energetic complexes are devoted to summarizing the influence of guest on the performance of α -CL-20. The results would prove fundamental to summarize the properties of guest for α -CL-20/guest with structural stability. Meanwhile, in order to deeply analyze the role of hydrogen–guest small molecules in the host–guest system, the initial decomposition reactions of ICM-102/HNO₃ [25], ICM-102/H₂O₂ [26] with pure ICM-102 and CL-20/H₂O₂ [27] at several high temperatures were systematically studied by molecular dynamics simulations. It was found that the

addition of small guest molecules significantly increased the energy levels of ICM-102 and CL-20 but had little effect on the thermal stability of the host-guest system. The initial reaction path of ICM-102 molecule was not changed by HNO₃ and H_2O_2 , but HNO₃ and H_2O_2 promoted the decomposition of ICM-102 molecule in the subsequent decomposition process. With the increase of temperature, the influence of H_2O_2 on the pyrolysis reaction of CL-20 weakens [28].

All the simulation researches provide information to understand the influence of guest for the host explosives. However, the role of different nitrogen-guest small molecules in the host–guest system has not been studied systematically at different high temperatures. At the same high temperature, when do the different guest molecules participate in the decomposition reaction of host–guest explosive and how do they affect the decomposition process mechanism of host–guest explosive? What is the influence of the same guest on the pyrolysis of the host–guest explosive at different high temperatures? Therefore, detailed studies of the mechanism of the α -CL-20/nitrogen-guest detonation reaction at different high temperatures are necessary.

ReaxFF-MD [25,27,28] can conduct in-depth and detailed research on the pyrolysis mechanism of host–guest explosive at the microscopic scale and find how guest molecules participate in the pyrolysis reaction of the guest is an important factor affecting the energy release and detonation performance of the host explosives. In this study, we investigated the initial reaction of CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH and compared with the pure CL-20/H₂O at various temperatures (2500, 2750, 3000, 3250, and 3500 K) by ReaxFF-lg reactive MD simulations (MD/ReaxFF-lg). The initial reaction paths, the change of generated/destroyed chemical bond numbers, the main product compositions, kinetic parameters in the different stages were analyzed. The mechanism for the improvement of the explosive energy and stability by incorporation of CO₂, N₂O and NH₂OH is also discussed.

2. Results and Discussion

2.1. Potential Energy (PE) and Total Energy for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH Systems

The evolution of potential energy (PE) of CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems with time at (a) 2500 K, (b) 2750 K, (c) 3000 K, (d) 3500 K is shown in Figure 2. All the PE of CL-20/guest are much larger than that of $CL-20/H_2O$. It demonstrates that the addition of small guest molecules significantly increases the energy levels of CL-20 just shown in Figure 3. All the systems exhibit an initial rise in the PE curves at different temperatures which correspond to the endothermic reaction stage. When PE is maximized, the value thereafter decreases, signifying that the reaction becomes exothermic. The maximum value of PE increases in the order incorporation of $H_2O < NH_2OH <$ $CO_2 < N_2O$ at different temperatures, and the heat release is also increased. That is, the incorporation of guests may have remarkable influence on heat release during the reaction. At a relatively low temperature of 2500 K, the PE curve is smooth. However, when the temperature increases to 2750 K, the PE curve is a little bit steeper. As the temperature increases to, much higher, 3000 K and 3500 K, the PE curve changes little. That is, no obvious heat release occurs during the reaction for much higher temperatures. With the increase of temperature, the PE is observed to be close to equilibrium for much shorter time. Therefore, the higher the temperature, the earlier the complete reaction.

The evolution of potential energy (PE) of (a) CL-20/H₂O, (b) CL-20/CO₂, (c) CL-20/N₂O, (d) CL-20/NH₂OH system with time at different temperatures is shown in Figure 4. The trend of PE curves for CL-20/H₂O and CL-20/N₂O is very similar. The trend of PE curves for CL-20/CO₂ and CL-20/NH₂OH is very similar. That is, the incorporation of N₂O may have the same influence on heat release with H₂O. However, the incorporation of CO₂ may have the same influence on heat release with NH₂OH.

Figure 2. Evolution of potential energy of $CL-20/H_2O$, $CL-20/CO_2$, $CL-20/N_2O$, $CL-20/NH_2OH$ system with time at (a) 2500 K, (b) 2750 K, (c) 3000 K, (d) 3500 K. Thick trendline corresponds to the actual concentration data of corresponding matching color.

Figure 3. Evolution of potential energy of (a) $CL-20/H_2O$, (b) $CL-20/CO_2$, (c) $CL-20/N_2O$, (d) $CL-20/NH_2OH$ system with time at different temperatures. Thick trendline corresponds to the actual concentration data of corresponding matching color.

Figure 4. The total energy of $CL-20/H_2O$, $CL-20/CO_2$, $CL-20/N_2O$, $CL-20/NH_2OH$ systems with time at 2500 K. Thick trendline corresponds to the actual concentration data of corresponding matching color.

2.2. Initial Decomposition Stage

2.2.1. Initial Reaction Path of CL-20/Nitrogen-Guest

Table 1 shows the initial reaction paths of host–guest molecules and their occurrence frequency for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at four high temperatures. There are two main initial decomposition reactions of host CL-20 molecules $C_6H_6O_{12}N_{12} \rightarrow C_6H_6O_{10}N_{11} + NO_2$ and $C_6H_6O_{12}N_{12} \rightarrow C_6H_5O_{12}N_{12} + H$. The frequency of $C_6H_6O_{12}N_{12} \rightarrow C_6H_6O_{10}N_{11} + NO_2$ is much more than that of $C_6H_6O_{12}N_{12} \rightarrow C_6H_5O_{12}N_{12} + H$. As the increase with the temperatures, the frequency of both main initial decomposition reaction improves for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH. A small part of H₂O, N₂O, NH₂OH is broken to smaller pieces except for CO₂ with no decomposition. At the same high temperature, the frequency of both main initial decomposition reactions is not significantly different for CL-20/H₂O, CL-20/CO₂, CL-20/CO₂, CL-20/CO₂, CL-20/N₂O, CL-20/N₂OH. It demonstrates that different guests have little influence on the initial decomposition paths.

Host-Guest Crystal	Temperatures	Initial Reaction Paths	Frequency
CL-20/H ₂ O	2500	$\begin{array}{c} C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{6}O_{10}N_{11} + NO_{2} \\ C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{5}O_{12}N_{12} + H \\ H_{2}O \rightarrow H + OH \end{array}$	29 21 20
	3000	$\begin{array}{c} C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{6}O_{10}N_{11} + NO_{2} \\ C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{5}O_{12}N_{12} + H \\ H_{2}O \rightarrow H + OH \end{array}$	51 31 20
	3500	$\begin{array}{c} C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{6}O_{10}N_{11} + NO_{2} \\ C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{5}O_{12}N_{12} + H \\ H_{2}O \rightarrow H + OH \end{array}$	69 41 27
CL-20/CO ₂	2500	$\begin{array}{c} C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{6}O_{10}N_{11} + NO_{2} \\ C_{6}H_{6}O_{12}N_{12} \rightarrow C_{6}H_{5}O_{12}N_{12} + H \end{array}$	41 25
	3000	$\begin{array}{c} C_6H_6O_{12}N_{12} \rightarrow C_6H_6O_{10}N_{11} + NO_2 \\ C_6H_6O_{12}N_{12} \rightarrow C_6H_5O_{12}N_{12} + H \end{array}$	60 38
	3500	$\begin{array}{c} C_6H_6O_{12}N_{12} \rightarrow C_6H_6O_{10}N_{11} + NO_2 \\ C_6H_6O_{12}N_{12} \rightarrow C_6H_5O_{12}N_{12} + H \end{array}$	65 34

Table 1. The initial reaction paths of host–guest molecules and their occurrence frequency for $CL-20/H_2O$, $CL-20/CO_2$, $CL-20/N_2O$, $CL-20/NH_2OH$ at four high temperatures.

Host-Guest Crystal	Temperatures	Initial Reaction Paths	Frequency
		$C_6H_6O_{12}N_{12} \rightarrow C_6H_6O_{10}N_{11} + NO_2$	30
-	2500	$C_6H_6O_{12}N_{12} \to C_6H_5O_{12}N_{12} + H$	25
		$N_2O \rightarrow N + NO$	5
		$N_2O \rightarrow N_2 + O$	18
	3000	$C_6H_6O_{12}N_{12} \to C_6H_6O_{10}N_{11} + NO_2$	63
CL-20/N ₂ O		$C_6H_6O_{12}N_{12} \rightarrow C_6H_5O_{12}N_{12} + H$	31
		$N_2O \rightarrow N + NO$	5
_		$N_2O \rightarrow N_2 + O$	34
	3500	$C_6H_6O_{12}N_{12} \to C_6H_6O_{10}N_{11} + NO_2$	77
		$C_6H_6O_{12}N_{12} \to C_6H_5O_{12}N_{12} + H$	49
		$N_2O \rightarrow N + NO$	11
		$N_2O \rightarrow N_2 + O$	24
	2500	$C_6H_6O_{12}N_{12} \to C_6H_6O_{10}N_{11} + NO_2$	31
		$C_6H_6O_{12}N_{12}\to C_6H_5O_{12}N_{12}+H$	22
		$NH_2OH \rightarrow NH_2 + OH$	8
_		$NH2OH \rightarrow NH_2O + H$	11
	3000	$C_6H_6O_{12}N_{12} \to C_6H_6O_{10}N_{11} + NO_2$	41
		$C_6H_6O_{12}N_{12} \to C_6H_5O_{12}N_{12} + H$	31
$CL_{20}/NH_{20}H$		$NH_2OH \rightarrow NH_2 + OH$	27
CL-20/10112011		$NH_2OH \rightarrow NH_2O + H$	15
	3500	$C_6H_6O_{12}N_{12} \to C_6H_6O_{10}N_{11} + NO_2$	69
		$C_6H_6O_{12}N_{12} C_6H_5O_{12}N_{12} + H$	48
		$C_6H_6O_{10}N_{11} \to C_6H_6O_8N_{10} + NO_2$	6
		$C_6H_5O_{12}N_{12} \to C_6H_5O_{10}N_{11} + NO_2$	7
		$C_6H_6O_{12}N_{12} \rightarrow C_6H_4O_{12}N_{12} + 2H$	5
		$NH_2OH \rightarrow NH_2 + OH$	35
		$NH_2OH \rightarrow NH_2O + H$	20

Table 1. Cont.

2.2.2. Effect of Nitrogen-Guest on the k1

There are three stages for the evolution of the thermal decomposition of CL-20/nitrogenguest. Firstly, the initial decomposition stage is characterized by rate constant k_1 and activation energy E_{a1} . Then, the intermediate decomposition stage is characterized by rate constant k_2 and activation energy E_{a2} . Finally, the final product evolution stage is characterized by rate constant k_3 and activation energy E_{a3} .

During the initial decomposition stage, the reaction rate was calculated by the change of the number of CL-20 molecules. The decay of the number of CL-20 molecules with time follows first-order decay exponential function [29]: $N(t) = N_0 \times \exp[-k_1(t - t_0)]$, where N_0 is the initial number of CL-20 molecules, t_0 is the time when CL-20 started to decompose, and k_1 is the initial decomposition stage rate constant (Table 2).

Table 2. Reaction rate constant k_1 in the initial endothermic reaction stage.

Host-Guest Crystal	T/K	k_1/ps^{-1}
	2500	1.417
	2750	1.918
CL-20/H ₂ O	3000	2.388
	3250	2.932
	3500	3.476
	2500	1.179
	2750	1.745
CL-20/CO ₂	3000	2.131
	3250	3.075
	3500	3.984

ost–Guest Crystal	T/K	k_1/ps^{-1}
	2500	1.848
	2750	2.344
CL-20/N ₂ O	3000	2.839
_	3250	4.357
	3500	5.653
	2500	1.434
	2750	2.163
CL-20/NH ₂ OH	3000	2.851
-	3250	3.985
	3500	4.944

Table 2. Cont.

The logarithm of k_1 plotted against the inverse temperature (1/*T*) at 2500, 2750, 3000, 3250, and 3500 K is shown in Figure 5. The E_{a1} values of the CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems are 64.90, 87.12, 81.93 and 90.12 kJ·mol⁻¹, respectively. Clearly, incorporation of CO₂, N₂O, NH₂OH impede the initial decomposition. This indicates that nitrogen-guest can inhibit the trigger decomposition of CL-20/H₂O.

Figure 5. The logarithm of reaction rate $(\ln(k_1/s^{-1}))$ against inverse temperature (1/T) in the exothermic decomposition stage at different temperatures. Thick trendline corresponds to the actual concentration data of corresponding matching color.

In addition, k_1 of CL-20/N₂O system is significantly larger than that of CL-20/H₂O at high temperatures. This indicates that N₂O significantly accelerates the reaction rate in the initial decomposition stage at high temperatures. k_1 of CL-20/NH₂OH system is significantly larger than that of CL-20/H₂O at relatively higher temperatures (3500 K, 3250 K, 3000 K, 2750 K). As the temperature decreased to 2500 K, the difference between k_1 of the CL-20/NH₂OH and CL-20/N₂O systems almost disappears. This indicates that NH₂OH significantly accelerates the reaction rate in the initial decomposition stage at relatively higher temperature. k_1 of CL-20/CO₂ system is much complex. At higher temperatures, k_1 of CL-20/CO₂ is much larger than that of CL-20/H₂O. However, k_1 of CL-20/CO₂ is much smaller than that of CL-20/H₂O at relatively lower temperatures. This indicates the temperature has significant influence on the initial decomposition rate for CL-20/CO₂.

2.3. Intermediate Decomposition Stage

2.3.1. Effect of Nitrogen-Guest on the Main Intermediate Products

Figure 6 shows the evolution curves of the main intermediate products and host-guest molecules at different temperatures. For CL-20/H₂O at 2500 K, the number curve of host CL-20 fluctuates slightly, but the overall level remains horizontal before 0.5 ps. The NO_2 fragments appears immediately at about 0ps. However, the number curve of guest H₂O fluctuates slightly, but the overall level remains horizontal before 0.9 ps. This demonstrates that the initial decomposition of $CL-20/H_2O$ may have broken the $C-NO_2$ bonds of host CL-20 to form NO₂. During 0.5 ps~1 ps, the number of host CL-20 decreases sharply and disappears at 1ps, while the number of NO₂ fragments increases rapidly. During 0.9 ps~1 ps, the number of guest H_2O decreases, while the number of guest H_2O reaches the minimum value. It demonstrates that guest H₂O begins to participate the decomposition reaction deeply. The results of the trend are consistent with those of PE before 1ps for endothermic decomposition stage. During 0.5 ps~1 ps, the number of guest NO₂ increases sharply, while the number of guest NO_2 reaches the maximum value. Due to the participation of H_2O , the pyrolysis products begin to diversify. The NO_3 and NO fragments begin to appear. All the curves for NO_3 and NO fragments are similarity at the high temperatures. However, the amount of NO_3 and NO fragments would improve as the increase of temperatures. As the temperature increased, the variation curves of the main intermediate produces and host-guest molecules for CL-20/H2O remains the same approximately. However, the reaction rates (k_2) are significantly different. The influence of high temperature on k_2 will be analyzed in the following section.

Figure 6. Cont.

Figure 6. Evolution curves of the main intermediate products and host–guest molecules at different temperatures (**a**–**l**). Thick trendline corresponds to the actual concentration data of corresponding matching color.

For CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at high temperatures, the evolution tendency of the main intermediate products and host molecules is similar with that for CL-20/H₂O at 2500 K. The variation curves of the guest are quite different.

Figures 7–9 show the evolution curves of the host and guest molecules for $CL-20/H_2O$, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at 2500 K, 3000 K, 3500 K. All the host CL-20 variation tendency are similarity. The influence of different guest on k_2 is not significant at 2500 K. With higher temperature, the k_2 significantly larger. The guest H₂O and CO₂, they are the main decomposition products. The variation tendency can divide into four stages: firstly, the tendency of guest is a level for little changeable. Secondly, it decreases for guest decomposition quickly. Then, it increases quickly as the main products. Finally, it reaches horizontal for the completely decomposition. There are two differences for the variation tendency: the first is that H_2O and CO_2 start to decrease at different times. The longer time to stay at the first stage for CO_2 shows that CO_2 may be more stability than H_2O , and the second is that the minimum values of H_2O and CO_2 are different. It a greater intensity in pyrolysis reaction for H_2O than that of CO_2 . As the increase of temperatures, the shorter time to stay the first stage and the smaller minimum for CO_2 and H_2O . It displays that the more intense in pyrolysis reaction at higher temperatures. For N₂O, NH₂OH just as the role for guest, the variation tendency slowly decreases and then sharply decreases until disappears. However, the reaction rates (k_2) for CO₂, N₂O, NH₂OH are significantly different at different temperatures.

Figure 7. Evolution curves of the host and guest molecules for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at 2500 K. Thick trendline corresponds to the actual concentration data of corresponding matching color.

Figure 8. Evolution curves of the host and guest molecules for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at 3000 K. Thick trendline corresponds to the actual concentration data of corresponding matching color.

Figure 9. Evolution curves of the host and guest molecules for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at 3500 K. Thick trendline corresponds to the actual concentration data of corresponding matching color.

2.3.2. Effect of Nitrogen-Guest on the k₂

After the PE reached the maximum value, the intermediate exothermic decomposition indicates the chemical reaction stage. The intermediate decomposition stage rate constant k_2 can be obtained by fitting the PE curves with a first order decay exponential function [30]: $U(t) = U_{\infty} + \Delta U_{exo} \exp[-k_2(t - t_{max})]$, where U(t) is the potential energy value at time t, U_{∞} is the asymptotic value of PE, ΔU_{exo} is the reaction heat, and its size is the difference between the maximum potential energy U_{max} and U_{∞} .

The chemical reaction rate constants obtained by fitting equation at different temperatures are shown in Table 3. The value of ΔU_{exo} has little change with a gradually increase of U_{∞} and k_2 as temperature increases. This indicates that temperature has a limited effect on the exothermic reaction [31].

Host–Guest Crystal	T/K	$U_{\rm max}$	u_{∞}	ΔU_{exo}	k_2/ps^{-1}
	2500	-1,424,794	-1,650,929	226,135	0.1523
	2750	-1,413,953	-1,636,452	222,499	0.2251
CL-20/H ₂ O	3000	-1,403,193	-1,621,948	218,755	0.2963
	3250	-1,397,567	-1,606,748	209,181	0.38057
	3500	-1,384,266	-1,591,748	207,482	0.46484
	2500	-1,398,845	-1,630,254	231,409	0.11404
	2750	-1,389,461	-1,617,052	227,591	0.17252
CL-20/CO ₂	3000	-1,379,278	-1,603,764	224,486	0.23059
	3250	-1,3694,15	-1,589,817	220,402	0.30645
	3500	-1,359,754	-1,575,870	216,116	0.38217
	2500	-1,381,272	-1,616,532	235,260	0.12789
	2750	-1,372,536	-1,602,557	230,021	0.19377
CL-20/N2O	3000	-1,363,624	-1,588,473	224,849	0.25909
	3250	-1,354,660	-1,572,699	218,039	0.35959
	3500	-1,345,497	-1,556,825	211,328	0.46010
CL-20/NH ₂ OH	2500	-1,403,762	-1,639,940	236,178	0.14567
	2750	-1,395,173	-1,625,769	230,596	0.21743
	3000	-1,385,384	-1,611,798	226,414	0.28695
	3250	-1,377,669	-1,595,917	218,248	0.378106
	3500	-1,369,830	-1,580,037	210,207	0.47146

Table 3. Partial parameters of PE curve attenuation process.

The logarithm of k_2 plotted against the inverse temperature (1/*T*) at 2500, 2750, 3000, 3250, and 3500 K is shown in Figure 10. The E_{a2} values of the CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems are 80.76, 87.58, 92.73 and 84.88 kJ·mol⁻¹, respectively. Clearly, incorporation of CO₂, N₂O, NH₂OH can inhibit the intermediate decomposition of CL-20/H₂O.

Figure 10. The logarithm of reaction rate $(\ln(k_1/s^{-1}))$ against inverse temperature (1/T) in the exothermic decomposition stage at different temperatures. Thick trendline corresponds to the actual concentration data of corresponding matching color.

The pre-exponential factor derived from the pyrolysis simulations of the CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems are 29.65, 29.68, 30.03, 29.80. Assuming unimolecular decomposition, transition state theory leads to A = (k_BT/h)exp(Δ S/R) where Δ S_(CL-20/H2O) = -17.47 J·mol⁻¹·K⁻¹, Δ S_(CL-20/CO2) = -17.23 J·mol⁻¹·K⁻¹, Δ S_(CL-20/N2O) = -14.32 J·mol⁻¹·K⁻¹, Δ S_(CL-20/NH2OH) = -16.23 J·mol⁻¹·K⁻¹. This negative activation of entropy is consistent with the TST for multimolecular reactions, suggesting that the reaction involves a multimolecular transition state [32]. The decrease of entropy at the transition state because of the embedding of nitrogen-containing guests.

In addition, k_2 of CL-20/CO₂ system is significantly smaller than that of CL-20/H₂O at high temperatures. This indicates that CO_2 significantly inhibits the reaction in the intermediate decomposition stage at high temperatures. k₂ of CL-20/N₂O system is significantly smaller than that of $CL-20/H_2O$ at relatively lower temperatures (2500 K and 2750 K). As the temperature increased to 3500 K, the difference between k_2 of the CL-20/H₂O and CL-20/N₂O systems almost disappears. This indicates that N₂O significantly restrains the reaction in the intermediate decomposition stage at relatively low temperature. With increasing temperature, N_2O has increasingly less effect on the reaction rate. However, k_1 of CL-20/N₂O indicates that N₂O significantly accelerates the reaction in the initial decomposition stage at high temperatures. The conclusion is contrary to that for ICM-102/HNO₃ [27]. This maybe caused by the hydrogen content for nitrogen-guest. k_2 of CL-20/H₂O and CL-20/NH₂OH systems are little difference at high temperatures, NH₂OH has little effect on the reaction rate at high temperatures. The opposite effect of $CL-20/H_2O_2$ [33] maybe due to the difference of hydrogen content in the guest. The influence of CO_2 and N_2O on the decomposition reaction of host explosive may be the little interaction between CO_2 , N_2O and CL-20 [27]. However, the influence of H_2O_2 on the decomposition reaction of host explosive may be the significant interaction between H_2O_2 and CL-20 [27].

2.4. Final Product Evolution Stage

2.4.1. Effect of Nitrogen-Guest on the Final Products

To clarify the effect of CO_2 , N_2O and NH_2OH molecules on the main products, the population of CO_2 , N_2 , H_2O after the complete decomposition reaction for $CL-20/H_2O$, $CL-20/CO_2$, $CL-20/N_2O$, $CL-20/NH_2OH$ at 2500 K, 3000 K and 3500 K are shown at Figures 11–13.

Figure 11. The population of CO₂ after the complete decomposition reaction for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at 2500 K, 3000 K and 3500 K.

Figure 12. The population of N₂ after the complete decomposition reaction for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at 2500 K, 3000 K and 3500 K.

Figure 13. The population of H_2O after the complete decomposition reaction for CL-20/ H_2O , CL-20/ CO_2 , CL-20/ N_2O , CL-20/ N_2O at 2500 K, 3000 K and 3500 K.

The population of CO₂ for CL-20/NH₂OH and CL-20/H₂O are nearly equivalent at high temperatures. The population of CO₂ for CL-20/N₂O is the lowest, while the population of CO₂ for CL-20/H₂O is largest at 2500 K. As the temperature increase, the more population of CO₂ for CL-20/N₂O grows acutely. However, the population of CO₂ for CL-20/NH₂OH decrease acutely. It demonstrates that the CO₂-produced mechanism for a N₂O guest is different with CO₂ and NH₂OH guests. The populations of N₂ for CL-20/NH₂OH and CL-20/H₂O are nearly equivalent at high temperatures. As the temperature increases, the more the population of CO₂ for CL-20/CO₂, CL-20/NH₂OH and CL-20/H₂O are nearly equivalent at high temperatures. As the temperature increases, the more the populations of CO₂ for CL-20/CO₂, CL-20/N₂O guests. The populations of H₂O for CL-20/CO₂ and N₂O guests. The populations of H₂O for CL-20/NH₂OH and CL-20/H₂O are nearly equivalent at high temperatures. The varying tendency of population for the three main products shows that the influence of guest NH₂OH and H₂O, CO₂ and N₂O are much same to each other. This may be caused by the hydrogen for two guest groups.

2.4.2. Effect of Nitrogen-Guest on the k₃

The final products of thermal decomposition of CL-20/guest are N₂, CO₂ and H₂O. The formation rates k_3 can be obtained by fitting the variation trend of the final products with the exponential function [34]: $C(t) = C_{\infty} \{1 - \exp[-k_3(t - t_i)]\}$, where C_{∞} is the asymptotic number of the product, k_3 is the formation rate constant of the product, and t_i is the time of appearance of the product.

Comparison of the k_3 values of CO₂, H₂O and N₂ for the (a) CL-20/H₂O, (b) CL-20/CO₂, (c) CL-20/N₂O, (d) CL-20/NH₂OH at different temperatures is shown in Figure 14. All the k_3 values of CO₂, H₂O and N₂ are increased as the temperature improvement. This may be due to the facilitation on production the three main products. The k_3 value of H₂O is larger than that of N₂, while the k_3 value of N₂ is larger than that of CO₂ for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH. This demonstrates that the production of H₂O is the easiest and the production of CO₂ is the most difficult.

Figure 14. Comparison of the k_3 values of CO₂, H₂O and N₂ for (a) CL-20/H₂O, (b) CL-20/CO₂, (c) CL-20/N₂O, (d) CL-20/NH₂OH at different temperatures. Thick trendline corresponds to the actual concentration data of corresponding matching color.

Comparison of the k_3 values of CO₂, H₂O and N₂ for the CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at different temperatures is shown in Figure 15. For the CL-20/CO₂ system, the k_3 value of CO₂ is slightly higher than that for CL-20/H₂O, CL-20/N₂O, CL-20/NH₂OH systems, while the k_3 values of N₂ and H₂O are slight smaller than that for CL-20/H₂O, CL-20/N₂O, CL-20/N₂O, CL-20/NH₂OH systems. This indicates that CO₂ restrains the formation of H₂O and N₂ molecules. For the CL-20/N₂O system, the k_3 value of CO₂ is slightly smaller than that for CL-20/H₂O, CL-20/H₂O, CL-20/H₂O, CL-20/N₂O systems. This indicates that N₂O restrains the formation of CO₂. For the CL-20/NH₂OH systems, the k_3 value of H₂O is slightly larger than that for CL-20/H₂O, CL-20/NH₂OH system, the k_3 value of H₂O is slightly larger than that for CL-20/H₂O, CL-20/N₂O systems. This indicates that NH₂OH accelerates the formation of H₂O.

Figure 15. Comparison of the k_3 values of CO₂, H₂O and N₂ for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH at different temperatures. Thick trendline corresponds to the actual concentration data of corresponding matching color.

3. Discussion

We have performed MD/ReaxFF-lg simulations to investigate the thermal decomposition reaction of the CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems at different temperatures. In this work, guest is not only enhanced the safety but also improved its detonation performance.

During the thermal decomposition reaction of CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH systems at different temperatures, the initial reaction path is not significantly influenced by the incorporation of CO₂, N₂O, NH₂OH: C₆H₆O₁₂N₁₂ \rightarrow C₆H₆O₁₀N₁₁ + NO₂ and $C_6H_6O_{12}N_{12} \rightarrow C_6H_5O_{12}N_{12}$ + H. At the same high temperature, the frequencies of both two main initial decomposition reaction are not significantly different for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH. As for the increase with the temperatures, the frequency of both main initial decomposition reactions improve for CL-20/H₂O, CL-20/CO₂, CL-20/N₂O, CL-20/NH₂OH. The nitrogen guest can inhibit the trigger decomposition for the larger E_{a1} and E_{a2} values. Embedding N₂O and NH₂OH can significantly accelerate the reaction in the initial decomposition rates at high temperatures for the larger k_1 at high temperatures. However, incorporation of CO₂, higher temperature has a significant influence on the initial decomposition for the complex k_1 . Embedding CO₂ and N₂O significantly inhibits the reaction in the intermediate decomposition stage at high temperatures for the smaller k_2 at high temperatures. Incorporation of NH₂OH has little effect on the reaction rate at high temperatures, with a small difference of k_2 . All the k_3 values of CO_2 , H_2O and N_2 are increased as the temperature improves. Guest CO_2 restrains the formation of H_2O and N_2 molecules for the higher k_3 value. Guest N_2O restrains the formation of CO₂ for the higher k_3 value. Guest NH₂OH accelerates the formation of H₂O

molecules for the higher k_3 value. The influence of guest NH₂OH and H₂O, N₂O and CO₂ on decomposition products may be similar for the same amount products.

The results of this study revealed that the guest CO₂, N₂O and NH₂OH played a certain inhibitory role during the early stages of the host CL-20 thermal decomposition reaction. The study provided a theoretical basis for the synthesis of new energetic materials with host-guest inclusion strategy.

4. Computational Methods

The initial unit cell structures of CL-20/H₂O, CL-20/CO₂, CL-20/N₂O and CL-20/NH₂OH were obtained from the Cambridge Crystallographic Data Centre. In the unit cell, there are eight CL-20 molecules and four guest molecules (H₂O, CO₂, N₂O and NH₂OH) (Figure 16). We enlarged the unit cell 48 times along both the *a*, the *b* and *c* axes to construct a $6 \times 4 \times 2$ supercell containing 48 unit cells ((a) contain 384 of CL-20 and 384 of guest. The supercell of (b), (c), (d) contains 384 of CL-20 and 192 of guest).

Figure 16. (a) α -CL-20/H₂O, $6 \times 4 \times 2 \alpha$ -CL-20/H₂O supercell, (b) α -CL-20/CO₂, $6 \times 4 \times 2 \alpha$ -CL-20/CO₂ supercell, (c) α -CL-20/N₂O, $6 \times 4 \times 2 \alpha$ -CL-20/N₂O supercell, (d) α -CL-20/NH₂OH, $6 \times 4 \times 2 \alpha$ -CL-20/NH₂OH supercell. The blue atoms represent nitrogen, the red atoms represent oxygen, the white atoms represent hydrogen, the gray atoms represent carbon. The supercell of (a) contains 384 of CL-20 and 384 of guest. The supercell of (b–d) contains 384 of CL-20 and 192 of guest.

First, the canonical ensemble (NVT) and the Berendsen thermostat were applied to the molecular dynamics (MD) simulation with a total time of 10 ps at 1 K, which further relaxed the α -CL-20/guest supercell. Then, ReaxFF-lg isobaric-isothermal MD (NPT-MD) simulations were performed for 5 ps at 300 K controlled by the Berendsen thermostat based on the relax supercell. Finally, the target temperatures (2500, 2750, 3000, 3250, and 3500 K) are all direct heat from 300 K with NVT-MD simulations. The five different high temperatures are selected to accurately calculate the reaction rate constant and energy barrier. The damping constant is set to 0.25 fs. Komeiji demonstrated that 0.25 fs is enough for calculation accuracy of bonds and angles in molecular dynamics simulations. NVT-MD simulations of the supercell system with the Berendsen thermostat were performed until the potential energy (PE) stabilized. An analysis of the fragments was performed with a 0.3 bond order cutoff value for each atom pair to identify the chemical species [35,36]. The information of the dynamic trajectory was recorded every 20 fs, which was used to analyze the evolution details of α -CL-20/guest in the pyrolysis process.

To verify the suitability of the ReaxFF-lg force field for the CL-20/guest system, we compared the lattice parameters and density of relaxed CL-20/guest at 298 K and 0 Pa with the initial structure from the CCDC (Table 4). The cell parameters and density of relaxed CL-20/guest calculated by MD/ReaxFF-lg agreed well with the initial structure values for the error value < 5%. This preliminarily indicated that ReaxFF-lg can describe the decomposition of CL-20/guest system.

Crystal	Method	a/Å	b/Å	c/Å	$ ho/{ m g}\cdot{ m cm}^{-3}$
CL-20/H ₂ O	from CCDC	9.477	13.139	23.380	2.081
	ReaxFF-lg	9.370	12.993	23.119	2.153
CL-20/CO ₂	from CCDC	9.673	13.203	23.553	2.033
	ReaxFF-lg	9.467	13.167	23.489	2.049
CL-20/N ₂ O	from CCDC	9.577	13.256	23.625	2.038
	ReaxFF-lg	9.427	13.049	23.256	2.137
CL-20/NH ₂ OH	from CCDC	9.789	13.123	23.509	2.000
	ReaxFF-lg	9.602	12.873	23.059	2.119

Table 4. Comparison of lattice parameters and density of CL-20/guest.

Author Contributions: Investigation, M.Z.; data curation, M.Z. and J.L.; writing—original draft preparation, M.Z. and D.X.; writing—review and editing, D.X.; supervision, D.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Provincial Science Foundation of Hubei (Grant No. 2022CFB634), Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2022D01A329), Jingzhou Science and Technology Bureau Scientific Research Special Project (Grant No. 2022CC54-02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Wang, Y.; Song, S.; Huang, C.; Qi, X.; Wang, K.; Liu, Y.; Zhang, Q. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy. *J. Mater.* **2019**, *7*, 19248–19257. [CrossRef]
- 2. Song, S.; Wang, Y.; He, W.; Wang, K.; Yan, M.; Yan, Q.; Zhang, Q. Melamine n-oxide based self-assembled energetic materials with balanced energy & sensitivity and enhanced combustion behavior. *Chem. Eng. J.* **2020**, *395*, 125114. [CrossRef]
- 3. Bennion, J.C.; Chowdhury, N.; Kampf, J.W.; Matzger, A.J. Hydrogen peroxide solvates of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane. *Angew. Chem.* 2016, 128, 13312–13315. [CrossRef]
- Xu, J.; Zheng, S.; Huang, S.; Tian, Y.; Liu, Y.; Zhang, H.; Sun, J. Host–guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. *Chem. Commun.* 2019, 55, 909–912. [CrossRef]
- Sun, S.; Zhang, H.; Wang, Z.; Xu, J.; Huang, S.; Tian, Y.; Sun, J. Smart host–guest energetic material constructed by stabilizing energetic fuel hydroxylamine in lattice cavity of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane significantly enhanced the detonation, safety, propulsion, and combustion performances. ACS Appl. Mater. Interfaces. 2021, 13, 61324–61333. [CrossRef]
- Guo, Z.; Wang, Y.; Zhang, Y.; Ma, H. Energetic host-guest inclusion compounds: An effective design paradigm for high-energy materials. *CrystEngComm* 2022, 24, 3667–3674. [CrossRef]
- Muravyev, N.V.; Wozniak, D.R.; Piercey, D.G. Progress and performance of energetic materials: Open dataset, tool, and implications for synthesis. J. Mater. Chem. A 2022, 10, 11054–11073. [CrossRef]
- Nielsen, A.T.; Chafin, A.P.; Christian, S.L.; Moore, D.W.; Nadler, M.P.; Nissan, R.A.; Vanderah, D.J.; Gilardi, R.D.; George, C.F.; Flippen-Anderson, J.L. Synthesis of polyazapolycyclic caged polynitramines. *Tetrahedron* 1998, 54, 11793–11812. [CrossRef]
- 9. Liu, G.; Li, H.; Gou, R.J.; Zhang, C. Packing structures of CL-20-based cocrystals. *Cryst. Growth Des.* 2018, 18, 7065–7078. [CrossRef]
- 10. Saint Martin, S.; Marre, S.; Guionneau, P.; Cansell, F.; Renouard, J.; Marchetto, V.; Aymonier, C. Host-guest inclusion compound from nitramine crystals exposed to condensed carbon dioxide. *Chem.-Eur. J.* **2010**, *16*, 13473–13478. [CrossRef]
- 11. Millar, D.I.; Maynard-Casely, H.E.; Allan, D.R.; Cumming, A.S.; Lennie, A.R.; Mackay, A.J.; Oswald, I.D.H.; Tang, C.C.; Pulham, C.R. Crystal engineering of energetic materials: Co-crystals of CL-20. *CrystEngComm* **2012**, *14*, 3742–3749. [CrossRef]
- Bennion, J.C.; Siddiqi, Z.R.; Matzger, A.J. A melt castable energetic cocrystal. *Chem. Commun.* 2017, 53, 6065–6068. [CrossRef] [PubMed]
- 13. Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High power explosive with good sensitivity: A 2: 1 cocrystal of CL-20: HMX. *Cryst. Growth Des.* **2012**, *12*, 4311–4314. [CrossRef]
- Han, Q.; Zhu, W. Effect of particle size on the thermal decomposition of nano ε-CL-20 by ReaxFF-lg molecular dynamics simulations. *Chem. Phys. Lett.* 2020, 761, 138067. [CrossRef]

- 15. Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M.R. Continuous engineering of nano-cocrystals for medical and energetic applications. *Sci. Rep.* **2014**, *4*, 6575. [CrossRef] [PubMed]
- Simpson, R.L.; Urtiew, P.A.; Ornellas, D.L.; Moody, G.L.; Scribner, K.J.; Hoffman, D.M. CL-20 Performance Exceeds that of HMX and its Sensitivity is Moderate. *Propell. Explos. Pyrot.* 1997, 22, 249–255. [CrossRef]
- 17. van der Heijden, A.E.; Bouma, R.H. Crystallization and Characterization of RDX, HMX, and CL-20. *Cryst. Growth Des.* 2004, 4, 999–1007. [CrossRef]
- Pu, L.; Xu, J.; Song, G.; Tian, Y.; Zhang, H.; Liu, X.; Sun, J. Investigation on the thermal expansion of α-CL-20 with different water contents. J. Therm. Anal. Calorim. 2015, 122, 1355–1364. [CrossRef]
- Fedyanin, I.V.; Lyssenko, K.A.; Fershtat, L.L.; Muravyev, N.V.; Makhova, N.N. Crystal Solvates of Energetic 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane Molecule with [bmim]-Based Ionic Liquids. *Cryst. Growth Des.* 2019, 19, 3660–3669. [CrossRef]
- Zharkov, M.N.; Kuchurov, I.V.; Zlotin, S.G. Micronization of CL-20 using supercritical and liquefied gases. *CrystEngComm* 2020, 22, 7549–7555. [CrossRef]
- Yudin, N.V.; Sinditskii, V.P.; Filatov, S.A.; Serushkin, V.V.; Kostin, N.A.; Ivanyan, M.V.; Zhang, J.G. Solvate of 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-Hexaazaisowurtzitane (CL-20) with both N₂O₄ and Stable NO₂ Free Radical. *ChemPlusChem* 2020, 85, 1994–2000. [CrossRef] [PubMed]
- 22. Liu, G.; Wei, S.H.; Zhang, C. Review of the intermolecular interactions in energetic molecular cocrystals. *Cryst. Growth Des.* **2020**, 20, 7065–7079. [CrossRef]
- Zhao, X.; Huang, S.; Liu, Y.; Li, J.; Zhu, W. Effects of noncovalent interactions on the impact sensitivity of hns-based cocrystals: A DFT study. Cryst. Growth Des. 2018, 19, 756–767. [CrossRef]
- 24. Wang, K.; Zhu, W. Insight into the roles of small molecules in CL-20 based host-guest crystals: A comparative DFT-D study. *CrystEngComm.* **2020**, *22*, 6228–6238. [CrossRef]
- Xiao, Y.; Chen, L.; Yang, K.; Geng, D.; Lu, J.; Wu, J. Mechanism of the improvement of the energy of host-guest explosives by incorporation of small guest molecules: HNO₃ and H₂O₂ promoted C–N bond cleavage of the ring of ICM-102. *Sci. Rep.* 2021, 11, 10559. [CrossRef]
- Xiao, Y.; Chen, L.; Geng, D.; Yang, K.; Lu, J.; Wu, J. A quantum-based molecular dynamics study of the ICM-102/HNO₃ host-guest reaction at high temperatures. *Phys. Chem. Chem. Phys.* 2020, 22, 27002–27012. [CrossRef]
- Xiao, Y.; Chen, L.; Geng, D.; Yang, K.; Lu, J.; Wu, J.; Yu, B. Reaction mechanism of embedding oxidizing small molecules in energetic materials to improve the energy by reactive molecular dynamics simulations. *J. Phys. Chem. C* 2019, 123, 29144–29154. [CrossRef]
- 28. Zhang, L.; Jiang, S.L.; Yu, Y.; Chen, J. Revealing solid properties of high-energy-density molecular cocrystals from the cooperation of hydrogen bonding and molecular polarizability. *Sci. Rep.* **2019**, *9*, 1257. [CrossRef]
- 29. Rom, N.; Zybin, S.V.; Van Duin, A.C.; Goddard, W.A., III; Zeiri, Y.; Katz, G.; Kosloff, R. Density-dependent liquid nitromethane decomposition: Molecular dynamics simulations based on ReaxFF. *J. Phys. Chem. A* 2011, *115*, 10181–10202. [CrossRef]
- Wang, F.; Chen, L.; Geng, D.; Wu, J.; Lu, J.; Wang, C. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations. J. Phys. Chem. A 2018, 122, 3971–3979. [CrossRef]
- Zhang, L.; Zybin, S.V.; Van Duin, A.C.; Dasgupta, S.; Goddard, W.A., III; Kober, E.M. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. *J. Phys. Chem. A* 2009, *113*, 10619–10640. [CrossRef] [PubMed]
- Liu, L.; Bai, C.; Sun, H.; Goddard, W.A., III. Mechanism and kinetics for the initial steps of pyrolysis and combustion of 1, 6-dicyclopropane-2, 4-hexyne from ReaxFF reactive dynamics. *J. Phys. Chem. A* 2021, 115, 4941–4950. [CrossRef] [PubMed]
- Zhou, M.; Ye, C.; Xiang, D. Theoretical studies on the role of guest in α-CL-20/guest crystals. *Molecules* 2022, 27, 3266. [CrossRef]
 [PubMed]
- 34. Bai, H.; Gou, R.; Chen, M.; Zhang, S.; Chen, Y.; Hu, W. ReaxFF/lg molecular dynamics study on thermal decomposition mechanism of 1-methyl-2, 4, 5-trinitroimidazole. *Comput. Theor. Chem.* **2022**, *1209*, 113594. [CrossRef]
- 35. Strachan, A.; van Duin, A.C.; Chakraborty, D.; Dasgupta, S.; Goddard, W.A., III. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. *Phys. Rev. Lett.* **2003**, *91*, 098301. [CrossRef]
- 36. Strachan, A.; Kober, E.M.; Van Duin, A.C.; Oxgaard, J.; Goddard, W.A., III. Thermal decomposition of RDX from reactive molecular dynamics. *J. Chem. Phys.* 2005, 122, 054502. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.