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Abstract: Drug distribution is an important process in pharmacokinetics because it has the potential
to influence both the amount of medicine reaching the active sites and the effectiveness as well
as safety of the drug. The main causes of 90% of drug failures in clinical development are lack of
efficacy and uncontrolled toxicity. In recent years, several advances and promising developments
in drug distribution property prediction have been achieved, especially in silico, which helped to
drastically reduce the time and expense of screening undesired drug candidates. In this study, we
provide comprehensive knowledge of drug distribution background, influencing factors, and artificial
intelligence-based distribution property prediction models from 2019 to the present. Additionally, we
gathered and analyzed public databases and datasets commonly utilized by the scientific community
for distribution prediction. The distribution property prediction performance of five large ADMET
prediction tools is mentioned as a benchmark for future research. On this basis, we also offer future
challenges in drug distribution prediction and research directions. We hope that this review will
provide researchers with helpful insight into distribution prediction, thus facilitating the development
of innovative approaches for drug discovery.

Keywords: ADMET; distribution prediction; drug discovery; artificial intelligence; machine learning;
deep learning

1. Introduction

Pharmacokinetics, the study of how pharmaceuticals are handled in the body, consists
of four stages: absorption, distribution, metabolism, and excretion (ADME) (Figure 1A). It
plays a very important role in drug research and development (R&D) because any drug
candidate must be checked for pharmacokinetics and toxicity (ADMET) properties to
ensure efficacy and safety. The average capitalized investment in R&D to bring a new
medicine to the market is estimated at USD 1.1417 billion, after considering the cost of
unsuccessful studies [1]. A key problem in drug R&D is the failure of compound candidates
in clinical trials. Increasing success rates in clinical trials is believed to be the most profound
factor in overall cost reductions and to outweigh savings in other phases [2]. If research
improves the prediction of a drug’s failure by 10% before clinical trials, it could save
about USD 100 million in development expenses for each drug [3]. Therefore, identifying
chemical candidates with higher efficacy and no toxic or otherwise unfavorable side effects
is a major challenge.

Early ADMET property assessment research may considerably increase the drug’s
success rate, decrease the drug’s R&D costs, minimize the incidence of side effects and
toxicities, and provide a direct therapeutic rationale for drug usage. Drug distribution is a
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critical step in the ADMET process because it has the potential to influence both the amount
of drug that reaches the active sites as well as the effectiveness and toxicity of the drug.
Lack of efficacy and uncontrolled toxicity are the main causes of 90% of medication failures
during clinical development [4]. Drug distribution can cause unwanted reactions and side
effects. Moreover, optimizing the distribution property affects other properties of ADMET
because drug distribution is an important mediating process. Therefore, predicting drug
distribution properties is essential during the early phases of drug research.
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Figure 1. (A) Schematic description of the pharmacokinetic (ADME) process. (B) Drug administration
and drug distribution process in the body [5].

In traditional drug R&D, predicting distribution properties relies heavily on in vitro
and in vivo studies. Despite progress in technological innovation, conventional experi-
mental evaluations of distribution properties are often costly and time consuming. For
example, assessing the blood–brain barrier penetration of every chemical takes one week
and costs nearly USD 10,000 in a non-good laboratory practice facility [3]. Moreover,
in vitro screening of compounds is typically limited to a few properties, with emphasis
placed on only a few of the most promising chemical candidates. As a result, in silico
distribution-related models are widely employed for quick and early screening of the
drug distribution properties before they are further explored in vitro [6]. Because of the
recent enormous success of artificial intelligence (AI) in many fields, AI-based drug R&D
is ready to become a large force in the field of pharmaceuticals and is projected to make
significant improvements in preclinical research. AI systems can efficiently and cheaply
screen thousands or millions of candidate molecules rather than limiting the examination
of distribution features to a select few. To construct, optimize, and improve the model
performance, it is crucial to have a clear understanding of the distribution properties and
the latest advances in AI-based distribution prediction models. Therefore, in this study,
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we comprehensively reviewed recent studies that used AI to predict drug distribution
properties. Additionally, we collected available databases and datasets that the scientific
community often uses for distribution prediction. We provided a list of free tools that
support ADMET property prediction, along with the distributional property prediction
performance of five recent tools. Finally, challenges and future directions for researchers
working on AI-based distribution prediction are discussed. We believe that it will be helpful
for researchers to work on improving the distribution property prediction model and other
properties of the ADMET. It is important to note that the examination of drug distribution
should be evaluated within the context of a particular drug delivery strategy. However,
this manuscript primarily focuses on the application of AI-based models for predicting
drug distribution.

2. Drug Distribution Process and Factors Affecting the Process

Once absorbed into the bloodstream, the medication circulates rapidly throughout the
body. Drugs are transported from the bloodstream to body tissues during the recirculation
process, which is the drug distribution stage. Drug distribution is the process by which an
unmetabolized drug is distributed throughout the bloodstream and tissues of an organism
(Figure 1B). The effectiveness or toxicity of medicine is dependent on its distribution in cer-
tain tissues, which explains in part why there is a lack of relationship between plasma levels
and observed effects [7]. Drugs have varying distributions in various tissues, including fat,
muscle, lungs, and brain, depending on their molecular structure and administration. The
pharmacological effect of a drug depends on its concentration at the action site. This means
that the distribution is a key factor in determining when, how strong, and sometimes how
long the drug will work.

There are two stages in the transport of medications from the bloodstream to the
tissues outside the blood vessels: one, the rapid passage of free or unbound medication
from the blood through the capillary wall and into the interstitial/extracellular fluid (ECF),
and two, the passage of drug from the ECF across cell membranes to the intracellular
fluid [8]. Various tissues absorb the drug from the plasma at various speeds and to varying
degrees, leading to a non-uniform distribution of the drug throughout the body. Drug
distribution is a passive process influenced by many factors, including drug permeability
across tissues, organ/tissue size, perfusion rate, drug binding to tissue components, and
other factors, as depicted in Figure 2. In preclinical in silico studies, the endpoints or
properties of distribution were determined based on these factors. Based on large ADMET
prediction systems and recent studies, we synthesized some properties (endpoints) of
the distribution, such as physicochemical properties (molecular weight, heavy atoms, log
P, log D, log S, pKa, etc.), plasma protein binding, blood–brain barrier, human placenta
barrier, volume of distribution, fraction unbound in human plasma, and fraction unbound
in the brain.
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3. Performance Metrics to Evaluate and Compare AI-Based Distribution Prediction
Methods

Evaluating the performance of AI methods is important to measure how effective a
method is and to compare the performance of different methods fairly. In this review, we
present the following evaluation metrics: accuracy (ACC), precision, recall, F1 score, area
under the receiver operating characteristic curve (AUC), mean absolute error (MAE), root
mean squared error (RMSE), coefficient of determination (R2), predictive relevance (Q2),
and geometric mean fold error (GMFE). The formulas are as follows:

ACC =
TP + TN

TP + TN + FP + FN
Range[0, 1] (1)

Precision =
TP

TP + FP
Range[0, 1] (2)

Recall =
TP

TP + FN
Range[0, 1] (3)

F1score =
2× Precision× Recall

Precision + Recall
Range[0, 1] (4)

AUC
= Area under the receiver operating characteristic curve Range[0, 1]

(5)
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MAE =
1
N

N

∑
i=1
|yi − ŷ| (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (7)

R2 = 1− ∑(yi − ŷ)2

∑ (yi −
−
y)

2 Range[0, 1] (8)

Q2 = 1− ∑(yi − ŷ)2

∑ (yi −
−
y)

2 Range[0, 1] (9)

GMFE =
1
N

N

∑
i=1

∣∣∣∣log10

(
ŷ
yi

)∣∣∣∣ (10)

In the Equations (1)–(3), TN, FN, TP, and FP represent the number of true negatives,
false negatives, true positives, and false positives, respectively. In the Equations (6)–(10), N,

yi, ŷ, and
−
y represent total numbers of observation, the actual value for the ith observation,

the predicted value of y, and mean value of y, respectively.
ACC is a measure of how many predictions made by a model are correct. It is

calculated by dividing the number of correct predictions by the total number of predictions
made. When the positive and negative classes are uneven, evaluating system performance
based on accuracy may result in excessive bias [9]. In virtual screening data, the number
of negative samples is frequently much greater than the number of positive ones. The
accuracy score would exaggerate the performance of a failing prediction model that labels
all cases as negative (i.e., inactive, or non-interacting). Precision is a measure of a model’s
positive predictions’ accuracy. It is computed by dividing the number of accurate positive
predictions by the total number of positive predictions generated by the model. Recall
quantifies the proportion of actual positive cases that the model accurately identified. It is
determined as the number of accurate positive predictions divided by the total number of
actual positive cases. The F1 score quantifies the balance between recall and precision. It is
computed based on the harmonic mean of precision and recall. AUC is a measure of the
performance of a binary classification model. It is calculated by plotting the true positive
rate against the false positive rate at various classification thresholds. The AUC ranges from
0 to 1, with higher values indicating better performance. MAE is a measure of the difference
between predicted and actual values that is calculated by taking the mean of the absolute
differences between the predicted and actual values. It is easy to understand and interpret,
but it is not as sensitive to outliers as other measures. RMSE is calculated by taking the
square root of the mean of the squared differences between the predicted and actual values.
It is one of the most widely used measures of model performance, as it is easy to interpret
and sensitive to both the mean and the variance of the error. R2 is a measure of how well
a model fits the data. It is calculated as the ratio of the variance of the predicted values
to the variance of the actual values. An R2 value of 1 indicates that the model perfectly
fits the data, while a value of 0 indicates that the model does not fit the data at all. Q2 is a
measure of the performance of a model in a predictive modeling context. It is calculated as
the ratio of the variance of the predicted values to the total variance of the observed data. It
ranges from −1 to 1, with a higher value indicating a better performing model. The main
difference between R2 and Q2 is that R2 is a measure of model fit, while Q2 is a measure of
model predictive ability [10]. R2 is calculated using the same data that was used to fit the
model, while Q2 is calculated using a different set of data (i.e., a “holdout” set). This means
that Q2 is a more conservative estimate of a model’s performance, as it reflects the model’s
ability to generalize to new data. Another difference between R2 and Q2 is that R2 is only
defined for regression models, while Q2 can be used for both regression and classification
models. GMFE is calculated as the geometric mean of the fold errors, where the fold error
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is defined as the absolute value of the difference between the predicted and actual values.
A lower GMFE indicates a better performing model.

It is worth noting that the results presented in the following sections are based on a spe-
cific dataset that may not have enough chemical diversity to accurately predict properties
for new, first-in-class therapeutics.

4. AI-Based Distribution Property Prediction

AI is an area of computer science that aims to develop machines exhibiting human-like
intelligence in problem solving, task performance, and learning [11]. Machine learning
(ML) is a subset of AI involving the use of algorithms and statistical models to enable ML
and improve its performance without explicit programming, which requires feeding the
machine with large amounts of data and allowing it to learn patterns and relationships in
the data. Deep learning (DL) is a specific type of ML that involves using neural networks
designed to mimic the structure and function of the human brain. Deep learning algorithms
are particularly effective on complex tasks and can process and analyze vast amounts of
data and make decisions based on the patterns and relationships in the data. AI techniques
can be used to analyze and predict potential ADMET properties of molecules, based on their
structural and chemical properties. These techniques can be used to identify and prioritize
molecules likely to exhibit good ADMET properties, which are important considerations
during drug development. These techniques can also help reduce the time and cost of
traditional testing methods by identifying molecules that are likely to have poor ADMET
properties and removing them before clinical testing.

Drug distribution property prediction, notably AI-based drug distribution property
prediction, has made great strides in recent years, allowing researchers to drastically reduce
the time and money spent on eliminating unsuitable drug candidates. An overview of the
general structure of an AI-based drug distribution property prediction model using the ML
and DL approaches is presented in Figure 3. In this section, we focus on some properties
such as plasma protein binding (PPB), fraction unbound in plasma (Fu), blood–brain barrier
(BBB), and volume of distribution (Vd). For every distribution property, we discuss why
it should be predicted and the evolution of AI-based studies that have predicted it in
recent years.

4.1. Blood–Brain Barrier Permeability Prediction

BBB refers to the unique features of the central nervous system’s (CNS’s) microvascula-
ture [12]. Drugs that target the CNS must penetrate the BBB to reach their molecular target.
In contrast, drugs with peripheral targets may require minimal or no BBB penetration to
avoid adverse CNS effects. Furthermore, the BBB plays an important role in protecting
the brain parenchyma from blood-borne pathogens and significantly interferes with the
entry of drug and other exogenous compounds into the CNS [13]. The logarithmic ratio
of drug concentrations in the brain and blood, log BB, is the most commonly used quan-
titative measure of a molecule’s capability [14]. Experiments in vivo to determine log BB
are complex and time consuming; the log BB data obtained are usually small with no high
reliability. To overcome these disadvantages, recent AI-based BBB permeability prediction
methods have focused on classifying whether a given compound is BBB permeable (BBB+)
or not (BBB-) rather than on the log BB data.

Recently, AI-based approaches have increasingly been used to predict of BBB per-
meability (Table 1). Some commonly used ML algorithms, such as random forest (RF),
support vector machine (SVM), k-nearest neighbor (k-NN), decision trees (DT), gradient
boosting (GB), and extreme boosting system (XGB), achieve a prediction accuracy higher
than 80% [15–19]. Notably, the LightBBB server [16] was developed by Shaker et al. They
used the light gradient boost machine (LightGBM) algorithm, a large dataset of 7162 com-
pounds collected from previous studies and 2432 1D and 2D descriptors. Using 10-fold
cross-validation, they achieved an ACC of 89% and an AUC of 93%. This performance
was lower than that of the mixed DL model on the same dataset, with an ACC of 92% and
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an AUC of 96% [20]. However, they built a useful BBB prediction tool, that is available
at http://ssbio.cau.ac.kr/software/bbb (accessed on 15 October 2022). Two ML-based
ADMET predictors, admetSAR 2.0 [21] and FP-ADMET [22], also achieved very high BBB
prediction results with an ACC of 90.7% and 81%, respectively.
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In the last few years, several researchers have presented various DL algorithms for BBB
permeability prediction with excellent results, such as artificial neural networks (ANN),
deep neural networks (DNN), convolutional neural networks (CNN), recurrent neural
networks (RNN), and graph convolutional neural networks (GCNN) [23–31]. Alsenan et al.
used an RNN model to improve the accuracy of BBB permeability prediction [29]. The
dataset for their experiment contains 2350 compounds collected from Wang et al. [32]
and 6394 descriptors and fingerprints for each compound. With an ACC of 96.53% and
an AUC of 98.6%, the obtained results demonstrated that their RNN model solved the
three identified issues of the previous BBB prediction model: imbalanced datasets, high
dimensionality, and enhanced classifier performance. Their DL model also achieved the
same performance using the same dataset [30].

Despite their outstanding performance, these models have a problem in common with
other AI-based models: lack of interpretability [27]. This nature of the “black box” does
not help researchers learn how to better design CNS drugs. To overcome this drawback,
Yu’s research team developed a method to combine the strengths of ML and DL to produce
a set of simple rules that are simple to understand and make predictions with better
accuracy [27]. This is a hybrid method between the SVM and GCNN algorithms using
a dataset of 940 drugs on the market and eight optimum descriptors with the highest
essential scores. As a result, the novel hybrid ensemble model performed better than other
traditional constitutive quantitative structure–activity relationship (QSAR) models, with an

http://ssbio.cau.ac.kr/software/bbb
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ACC of 96% and an AUC of 98%. This hybrid model is not limited to CNS drug prediction
but can also be used for other ADMET property predictions.

AI-based BBB permeability prediction models use smaller datasets and fewer features,
which are often less reliable because they do not cover sufficient chemical diversity [16].
Therefore, reliable datasets that are sufficiently large to build models should be chosen.

Table 1. Summary of recent AI-based studies predicting BBB property.

Method Data Sources No. of Compounds Performance Ref.

SVM, RF, XGB [32–35] 1970 AUC = 0.957, ACC = 0.910 [15]

LightGBM [17,18,32,36–40] 7162 AUC = 0.94, ACC = 0.89 [16]

Mixed DL: Multilayer Perceptron (MLP),
CNN [16] 7162 AUC = 0.96, ACC = 0.92 [20]

RF, MLP, Sequential Minimal
Optimization [33,36,41] 2313 ACC = 0.88 [17]

Logistic Regression, DT, RF, GB [42] 968 AUC = 0.78, ACC = 0.817 [18]

SVM, k-NN, DT, DNN SIDER [40,43] 1000 ACC = 0.97, AUC = 0.98 [19]

Multichannel Substructure-Graph Gated
Recurrent Unit Architecture [37] 2053 AUC = 0.753 [23]

CNN [37] 2039 AUC = 0.694 [24]

CNN [35,44] 2254 ACC = 0.755, AUC = 0.784 [25]

CNN [15,16,18,36,37,40] 7224 ACC = 0.74, AUC = 0.83 [45]

ANN [46,47] 300 RMSE = 0.171 [26]

SVM and GCNN [48] 940 ACC = 0.96, F1 score = 0.95 [27]

Fully Connected Neural Network, CNN [37,40] 2264 AUC = 0.995 [28]

RNN [32] 2350 ACC = 0.965, AUC = 0.98 [29]

DNN [32] 2350 ACC = 0.962, AUC = 0.968 [30]

XGraphBoost [38,49] 2039 AUC = 0.932 [31]

4.2. Plasma Protein Binding Prediction

One of the main mechanisms of drug absorption and distribution is through PPB.
Therefore, drug binding to plasma proteins has a strong effect on the pharmacodynamic
activity of drugs. PPB can directly affect oral bioavailability because free drug concen-
trations are at stake when the drug binds to serum proteins [50]. Figure 4 depicts the
bi-dimensional interaction between drug–protein binding in the plasma, drug distribution,
and drug elimination [51]. Many in silico predictive PPB models using ML and DL have
been constructed using various datasets and evaluation units (Table 2). In this sense, in
silico approaches can be cost effective, quick, and potent for screening large amounts of
molecules, even without the need to synthesize the substance, as its structure suffices [52].

In an in silico strategy, Yuan et al. developed a QSAR model for predicting human
PPB on a large dataset that was collected and curated from multiple studies over the past
15 years with 6741 compounds [53]. The QSAR model for different levels was constructed
for the three corresponding descriptor sets: ADMET, Dragon, and the PaDEL, using five
ML algorithms: RF, support vector regression (SVR), k-NN, boost tree (BT), and gradient-
enhanced regression (GER). The best performance of their model is much higher than that
of the previous models, with an MAE of 0.076 on the test set and an MAE falling to 0.041
at high binding (PPB > 0.8), 0.127 at moderate binding (PPB = 0.4–0.8), and 0.156 at low
binding (PPB < 0.4). Their models performed well in the external evaluation set, which
included 99 compounds from traditional Chinese medicine with an MAE value of 0.149.
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Recently, Venkatraman et al. used the RF algorithm based on the fingerprint to
predict PPB for 8103 compounds, achieving a balanced ACC of 84% and an AUC of
92% [22]. Xiong and co-authors developed an ADMET prediction-free web tool using the
multitask graph attention framework [50]. They used 4712 compounds to predict PPB,
and their model yielded a high-accuracy prediction with an R2 of 0.733 and an RMSE of
0.135. An enhanced Graph Isomorphism Network (MolGIN) was proposed by Peng et al.,
utilizing the bond features and distinctions in the impact of atom neighbors for predicting
ADMET properties [54]. The PPB dataset was collected by Wang et al. [55] contained
1830 compounds. The test results for an R2 of 0.738 show that MolGIN is significantly
superior to other baseline models (RF, graph neural network (GNN), DNN) in terms of
efficiency measurement and achieves performance comparable to or superior to modern
models (admetSAR 2.0 [21], ADMETLab 1.0 [6]) on the same dataset.

In 2022, Lou et al. proposed a new strategy for predicting and optimizing the human
BBB for substances using an interpretable DL approach [56]. They used the attentive finger-
print algorithm, 3921 compounds, and Morgan fingerprints to develop an interpretable DL
model. With an RMSE of 0.112 on the test set, their model showed promising predictive
ability. Moreover, it could offer lead compounds with particular structural change plans
to improve the PPB properties, unlike conventional QSAR models. Interpretable DL ap-
proaches allow us to understand why the model generates such predictions, helping us
comprehend chemical pathways and rationally construct a structural change scheme.

Other PPB prediction studies are summarized in Table 2. In general, most models are
built on different datasets; therefore, their performances cannot be compared with each
other. Nevertheless, they will be helpful tools for assessing PPB during the process of drug
design or structural modification.
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Table 2. Summary of recent AI-based studies predicting PPB property.

Method Data Sources No. of Compounds Performance Ref.

RF [57] 670 R2 = 0.74, RMSE = 0.12 [52]

RF [53,58] 8103 ACC = 0.84, AUC = 0.92 [22]

SVM AstraZeneca in-house 100,550 RMSE = 0.444, R2 = 0.721 [59]

k-NN, SVR, RF, BT, and GER [55,60–69], CHEMBL
and DrugBank 6741 MAE = 0.076 [53]

GCNN [62] 1209 R2= 0.668, RMSE = 0.191 [21]

Multitask graph attention framework ChEMBL, PubChem,
OCHEM, Literature 4712 R2 = 0.733, RMSE = 0.135 [50]

GNN [61,62] 1744 R2 = 0.747 [70]

MolGIN method [55] 1830 R2 = 0.738 [54]

GCNN, GAT ChEMBL, PubChem,
DrugBank, Literature 1830 R2 = 0.563, RMSE = 0.211 [71]

Attentive fingerprint algorithm
(GNN) [56] 3921 R2 = 0.841, RMSE = 0.112 [56]

4.3. Fraction Unbound in Plasma Prediction

In pharmacodynamic and pharmacokinetic studies, the Fu is a critical determinant of
therapeutic efficacy. Most drugs in plasma are in an equilibrium state between unbound
and bound to serum proteins [50]. The unbound fraction of the drug diffuses into tissues
and is metabolized, or eliminated from the body [72]. In other words, only this fraction
can be transferred to the sites of action across the membranes, whereas the bound fraction
acts as a reservoir for the free drug concentration and prolongs the duration of action [73].
Distinct pharmacokinetic effects were observed as this fraction varied. The degree to which
a drug attaches to proteins in the bloodstream may impair its efficacy; the more bound it
is, the less efficiently it may pass cellular membranes or diffuse. Fu influences the renal
glomerular filtration rate and hepatic metabolism. As a result, it affects the drug’s volume
of distribution and total clearance, both of which are critical elements in determining its
pharmacokinetics [74]. Consequently, it is critical to make an accurate estimate of the Fu
of drug candidates, particularly in low-value regions, throughout the drug development
process. This section summarizes the progress of AI-based Fu prediction studies since 2019
(see Table 3).

Venkatraman investigated the efficiency of fingerprint-based RF models for predicting
many ADMET-related properties [22]. In particular, his Fu prediction method achieved
comparable or better performance compared with traditional 2D and 3D molecular descrip-
tors on 2391 compounds with an R2 of 0.63 and an RMSE of 0.44. The QSAR model was
constructed by Wang et al. using several highly efficient, powerful, and widely used ML
methods such as RF, SVM, GB, and XGB [75]. They used a dataset of 1352 drugs from a
previous study [76], and the results once again proved that the RF model has a superior
predictive power to the other methods in predicting Fu, with an R2 of 0.818 and an RMSE of
0.291. Recently, Mulpuru and Mishra used a freely available automated ML framework, in-
cluding AutoKeras, PyCaret, Auto-Sklearn, and TPOT, with chemical fingerprints to build
Fu predictions [77]. Their best prediction model on a large dataset of 5471 compounds from
ChEMBL was impressive, with an R2 of 0.85, giving their model a significant contribution
to ADMET modeling.

In addition to the ML techniques, DL techniques have also been exploited by many
authors with the goal of improving prediction efficiency on large datasets. Zhou et al. built
a QSAR model using DNNs and chemical fingerprints on 24 industrial ADME datasets
from Lilly’s in-house ADME assay with 9730 molecules to train the Fu prediction model [78].
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However, the comparison results showed that their DNN model was not better than the
SVM model on the same dataset, with an RMSE of 0.086 (SVM: RMSE = 0.083). In another
study, Feinberg et al. built an ADMET prediction model with multitask deep featurization
using a GCNN on a large dataset of 13,388 training compounds and 4462 testing com-
pounds [79]. Their prediction model achieved significantly higher prediction accuracy than
with the RF model, which had an R2 of 0.919 (RF: R2 = 0.582).

Table 3. Summary of recent AI-based studies predicting Fu property.

Method Data Sources No. of Compounds Performance Ref.

SVM, RF, GB, XGB [76] 1352 R2 = 0.82, RMSE = 0.291 [75]

AutoML Framework ChEMBL v.27 5471 R2 = 0.85, RMSE = 8.44 [77]

QSAR/Partial Least Squares (PLS) model [69,80] 599 Q2 = 0.69 [81]

DNNs ADMET assays 9730 RMSE = 0.086 [78]

PotentialNet GCNNs ADMET assays 17,850 R2 = 0.919 [79]

4.4. Volume of Distribution Prediction

The volume of distribution (Vd) is a pharmacokinetic measure that indicates how long
a drug will remain in the plasma or whether it will redistribute to other tissue compart-
ments [82]. In other words, Vd is a theoretical concept of the dose used with actual initial
concentrations in circulation, and it is a critical property for describing drug distribution in
the human body [50]. Vd affects the half-life and duration of the activity of the compound
at a steady state [83]. When two drugs have the same daily dose, the one with a lower Vd
(shorter half-life) may require more frequent dosing (at lower individual doses) to attain a
pharmacodynamic profile comparable to that with a higher Vd at a steady state. Vd is also a
critical pharmacokinetic metric for determining the plasma concentration–time profile and
half-life of drugs [84]. Figure 5 illustrates how to calculate Vd when we use three different
drugs (A, B, and C) at a dose of 500 mg in an intuitive manner [85]. In addition, the table
in Figure 5 shows the Vd values of some commonly used drugs. Several AI-based models
have been successful in predicting Vd (Table 4).

Based on the ML technology, three authors used RF algorithms to develop Vd predic-
tion models and made significant contributions in the past year [22,59,86]. Especially, the
FP-ADMET prediction software was developed by Venkatraman [22]. This is a powerful
tool for ADMET prediction based on fingerprints. The efficiency of the Vd prediction model
for 1951 compounds were R2 = 0.45 and RMSE = 0.51. AstraZeneca has nearly 20 years of
development experience in AI-based ADME models [59]. AstraZeneca’s in-house data and
models are updated regularly, and their accuracy increased over time. Their Vd prediction
model achieved high accuracy with an R2 of 0.67 and an RMSE of 0.371. Simeon et al.
constructed a QSAR model for predicting Vd in humans, rats, dogs, mice, and monkeys
using RF, PLS, and ANN algorithms [87]. Their models were built using physicochemical
descriptors, electronic state descriptors, fingerprint descriptors, or a combination of physic-
ochemical descriptors and one of the other two descriptors. Using the Vd human dataset of
1442 compounds, the RF model had a highly accurate prediction on the test set with an R2

of 0.61 and an RMSE of 0.41.
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In another study, Wang et al. used four ML algorithms, RF, SVM, GBM, and XGB, to
develop a quantitative property–structure relationship (QSPR) model to predict Vd [75].
Their models were assessed by 10-fold cross-validation on a dataset containing 1352 drugs
from Lomabardo et al. [76] using 209 selected features. The best-performing model was the
SVM model, with an R2 of 0.870 and an RMSE of 0.208. A new model called DeepPharm,
using integrated transfer learning and multitask learning approaches, was developed
by Ye et al. [88]. DeepPharm is more efficient than conventional ML methods such as
PLS regression, SVM, ANN, RF, and k-NN on 412 molecules from the FDA, with an
accuracy of 63.33% and a MAE of 0.175. To improve ADMET prediction, Feinberg and
co-authors proposed a multitask deep featurization method applying GCNN using a large
dataset containing 45,229 compounds for training and 15,076 compounds for testing [79].
However, compared with the RF method on the same dataset, this method did not improve
significantly, with an R2 of 0.525 (RF: R2 = 0.520).

Table 4. Summary of recent AI-based studies predicting Vd property.

Method Data Sources No. of Compounds Performance Ref.

RF [89] 1303
GMFE = 2.15
% < 2-fold = 54
% < 3-fold = 73

[86]

RF AstraZeneca in-house 1440 RMSE = 0.371, R2 = 0.67 [59]

SVM, RF, GB machine, XGB [76] 1352 R2 = 0.87, RMSE = 0.208 [75]

PLSANN, RF ChEMBL [76,90] 1442 R2 = 0.61, RMSE = 0.41 [87]

PLS regression, SVM, ANN, RF, k-NN,
multitask learning feed-forward
neural network, DeepPharm

Drugbank 412 ACC = 0.63, MAE = 0.174 [88]

PotentialNet GCNNs ADMET assays 63,305 R2 = 0.525 [79]
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5. Public AI-Based ADMET Prediction Tools

With the continual collection of experimental ADMET data in recent years, many
AI-based prediction tools for diverse endpoints have been developed to efficiently facilitate
ADMET evaluation. More specifically, they can help researchers evaluate the ADMET
properties in a time and money-saving manner, screen for undesirable compounds, and
gather timely feedback on ADMET information for lead optimization. Moreover, they are
also good support for distribution prediction researchers in developing and improving
models. In Table 5, we list popular AI-based ADMET prediction tools that have been newly
developed or updated in the last few years. These tools have built-in drug distribution
property predictions and are available for free.

Table 5. Public AI-based ADMET prediction tools.

Name No. of ADMET
Prediction Models Methods Website * Ref.

OECD QSAR Toolbox 902 QSAR https://qsartoolbox.org/ [91]

iDrug ADMET prediction 60 AI https://drug.ai.tencent.com/console/
en/admet

AdmetSAR 2.0 52 RF, SVM, k-NN http://lmmd.ecust.edu.cn/admetsar2/ [21]

ADMETlab 2.0 67 GNN https://admetmesh.scbdd.com/ [50]

Interpretable-ADMET 59 GCNN
GAT

http://cadd.pharmacy.nankai.edu.cn/
interpretableadmet/ [71]

HelixADMET 52 RF, GNN https://paddlehelix.baidu.com/app/
drug/admet/train [70]

FP-ADMET 50 RF https://gitlab.com/vishsoft/fpadmet [22]

SwissADME 35 MLR, SVM, RNN, etc. http://www.swissadme.ch/ [92]

vNN-ADMET 15 k-NN https://vnnadmet.bhsai.org/ [93]

ICDrug ADMET 14 RF www.icdrug.com/ICDrug/ADMET [94]

Virtual Rat 12 RF, C5.0, DT https://virtualrat.cmdm.tw/ [3]

LightBBB 1 (BBB) Light GBM http://ssbio.cau.ac.kr/software/bbb [16]

Deep B3 1 (BBB) CNN http://cbcb.cdutcm.edu.cn/deepb3/ [45]

* The websites were accessed on 10 October 2022.

In particular, we are interested in five publicly available ADMET predictors devel-
oped from 2019 to 2022, namely AdmetSAR 2.0 [21], ADMETLab 2.0 [50], FP-ADMET [22],
Interpretable-ADMET [71], and HelixADMET [70]. They predicted most of the main
ADMET-related properties (from 50 to 67 endpoints) and demonstrated good predictive
performance. In Table 6, we analyze the predictive performance across the four distribu-
tion properties. These free and user-friendly tools can help ADMET researchers quickly
and easily identify ADMET profiles for a wide range of drug candidates. Furthermore,
these tools can serve as benchmarks for future ADMET studies. More interestingly, the
Interpretable-ADMET tool helps optimize drug candidates with undesirable ADMET
properties by automatically creating a new set of virtual candidates based on matching
molecular pair rules.

https://qsartoolbox.org/
https://drug.ai.tencent.com/console/en/admet
https://drug.ai.tencent.com/console/en/admet
http://lmmd.ecust.edu.cn/admetsar2/
https://admetmesh.scbdd.com/
http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/
http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/
https://paddlehelix.baidu.com/app/drug/admet/train
https://paddlehelix.baidu.com/app/drug/admet/train
https://gitlab.com/vishsoft/fpadmet
http://www.swissadme.ch/
https://vnnadmet.bhsai.org/
www.icdrug.com/ICDrug/ADMET
https://virtualrat.cmdm.tw/
http://ssbio.cau.ac.kr/software/bbb
http://cbcb.cdutcm.edu.cn/deepb3/
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Table 6. Performance of five ADMET prediction tools on distribution property prediction.

Property Tool Methods No. of Compounds
Performance

AUC R2

BBB

AdmetSAR 2.0 SVM 1839 0.944

ADMETLab 2.0 GNN 1601 0.908

FP-ADMET RF 7236 0.92

Interpretable-ADMET GCNN & GAT 1830 0.897

HelixADMET GNN 1791 0.944

PPB

AdmetSAR 2.0 GCNN 1209 0.668

ADMETLab 2.0 GNN 1573 0.733

FP-ADMET RF 8103 0.92

Interpretable-ADMET GCNN & GAT 2044 0.563

HelixADMET GNN 1744 0.747

Fu

AdmetSAR 2.0 - - - -

ADMETLab 2.0 GNN 1494 0.763

FP-ADMET RF 2319 0.63

Interpretable-ADMET - - - -

HelixADMET - - - -

Vd

AdmetSAR 2.0 - - - -

ADMETLab 2.0 GNN 1399 0.782

FP-ADMET RF 1951 0.45

Interpretable-ADMET - - - -

HelixADMET - - - -

Overall, practical applications demonstrate that the tool is limited to qualitative
analysis of chemicals and cannot accurately anticipate the quantitative values of certain
properties [95]. Moreover, most reports indicate that these tools achieve very high or accept-
able prediction accuracies. However, most predictive data have considerable uncertainty,
and the decision is sensitive to a particular property [96]. We should choose tools with a
larger amount of training data, higher accuracy, and higher citations, and use various tools
to analyze data to make more accurate decisions.

6. Data Sources for Distribution Prediction Research

The success of an AI-based predictive model is highly dependent on the data and the
modeling approach. The availability of an increasing number of public datasets on human
pharmacokinetics facilitates the collection of a large number of structural substances and
their associated experimental values for modeling purposes. A thorough understanding
of the origin and reliability of the data is essential. Table 7 summarizes the most popular
data sources for ADMET prediction research, specifically AI-based distribution prediction.
In addition, researchers in the field of distribution prediction often use multiple datasets
aggregated from different studies to develop and test their models. Interested readers may
refer to the additional data sources from the literature provided in Section 3. Although the
data sources for the study predicting the distribution were numerous, their quality was
insufficient. Therefore, when using any source of test data to build a model, experts must
carefully evaluate the certainty and reliability of the test. We should select reliable data
sources, aggregate them, and use datasets that are sufficiently large for model training.
Sharing more experimental data from pharmaceutical companies would be helpful to the
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scientific community. We hope that further development of big data will bring promising
prospects for future drug distribution research.

Table 7. Public data sources for AI-based distribution prediction research.

Name Data Size (Compounds) * Website * Ref.

ZINC20 >750 million https://zinc20.docking.org/ [97]

ChemSpider 115 million http://www.chemspider.com/ [98]

PubChem >111 million https://pubchem.ncbi.nlm.nih.gov/ [99]

Therapeutics Data Commons 4,264,939 https://tdcommons.ai/ [100]

OCHEM 4.2 3,791,680 https://ochem.eu/home/show.do [58]

openFDA >3 million https://open.fda.gov/ [101]

ChEMBL >2.2 million www.ebi.ac.uk/chembl/ [102]

GOSTAR 1.76 million https://www.gostardb.com/

BindingDB >1 million https://www.bindingdb.org/ [103]

Supernatural II 325,508 http://bioinformatics.charite.de/supernatural [104]

NIST Chemistry WebBook >70,000 http://webbook.nist.gov/ [105]

SIDER 4.1 55,730 http://sideeffects.embl.de/ [43]

ContaminantDB >54,000 https://contaminantdb.ca/

DrugBank 5.1.9 14,665 http://www.drugbank.ca/ [106]

IMPPAT 2.0 17,967 https://cb.imsc.res.in/imppat [107]

KEGG 12,000 https://www.kegg.jp/

* Data size and websites were accessed on 10 October 2022.

7. Challenges for AI-Based Distribution Prediction Researcher

The increasingly powerful AI technology in drug R&D presents not only many op-
portunities but also many challenges for researchers in predicting drug distribution and
ADMET properties.

The first challenge is the lack of data quality [95,108–113]. Public data sources for drug
R&D are undeniably increasing significantly; however, AI algorithms need not only the
quantity of data but also the quality of data that are high enough to make accurate models.
The chemicals tested should be sufficiently diverse to allow generation methods to cover
the entire chemical search space [114]. Therefore, to solve this problem, it is important to
collect high-quality data. Experts argue that more empirical data are required to create
higher quality models and maximize the potential of AI-based applications [109]. However,
in vivo and in vitro data collection is complex and limited [115]. Other problems related to
the variability of the experiment, such as errors occurring in the process of data collection,
management, and manipulation, also affect the quality of data. The statistical challenges
and combination of diverse data with varying noise and bias are significant. Therefore,
extracting and collecting high-quality data to train computational models is a laborious
and challenging task that must be performed by experts. Recently, data sources from
fields such as biology, chemistry, pharmacology, and clinical trials have been collected
to build “big data” for drug R&D [116]; however, many obstacles still exist. Technical
challenges, such as missing data, dimensional inaccuracies, and bias control, make big
data analytics complex [117]. More time is needed to build a complete big data system for
drug discovery and development. Meanwhile, there are many useful sources of data from
proprietary pharmaceutical companies that are yet to be shared publicly with the research
community [118]. Therefore, security and reasonable sharing policies are essential and
contribute to solving data difficulties during this period.

The second challenge is model quality. In addition to data quality, a suitable learning
model is required to harness the power of AI to predict distributional properties. First, it

https://zinc20.docking.org/
http://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/
https://tdcommons.ai/
https://ochem.eu/home/show.do
https://open.fda.gov/
www.ebi.ac.uk/chembl/
https://www.gostardb.com/
https://www.bindingdb.org/
http://bioinformatics.charite.de/supernatural
http://webbook.nist.gov/
http://sideeffects.embl.de/
https://contaminantdb.ca/
http://www.drugbank.ca/
https://cb.imsc.res.in/imppat
https://www.kegg.jp/
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requires researchers to have extensive knowledge of building AI-based models such as
ML and DL algorithms. Without the expertise needed to build an effective data-mining
project, researchers sometimes rely on incorrect methods that can lead to common errors
or overly optimistic results [119]. AI-based models are evolving rapidly, and their com-
plexity is increasing exponentially, requiring researchers to grasp new techniques quickly.
Additionally, the current data landscape also necessitates the creation of powerful novel
computational approaches capable of accurately predicting outcomes with diverse, large,
multidimensional, and sparse data.

The third challenge faced by researchers is the difficulty in understanding the nature of
AI models. Although the performance of AI-based distributed property prediction models
is impressive, the mechanistic interpretation is still lacking. Therefore, it is difficult for
scientists to assess the novelty or reliability of the hypothesis generated by AI because of
its black-box nature, which hinders the improvement of the model and the optimization of
compounds with undesirable distribution properties.

As in drug discovery, drug distribution is multidisciplinary. To study and build
predictive models of distribution characteristics, researchers need to equip themselves with
relevant knowledge in areas such as biology, bioinformatics, pharmacology, chemistry,
and chemical informatics [120]. This is a big challenge for independent researchers. In
fact, programmers and modelers who analyze huge datasets and build AI models often
have a theoretical background and are ignorant of data-generating experiments and their
flaws. AI experts are rarely chemists or biologists, especially structural representation
specialists. Therefore, identifying potential mistakes in large datasets and interpreting
the results of AI models remains difficult. Researchers must understand drug properties,
endpoint roles, effects, metrics and assessments, structure–exposure–activity relationships,
drug interactions, and other related knowledge aspects. Not all distribution properties are
detrimental to all medicines. For instance, medications that target disorders of the central
nervous system must typically be able to cross the BBB, although this trait is generally
absent in other diseases. Therefore, collaboration between scientists is essential to ensure
the correctness, effectiveness, and usability of drug property prediction models.

8. Conclusions and Future Perspectives

The application of AI to improve the drug R&D process is still in its infancy at this
point [121]. For AI to reach the pinnacle of drug R&D, time and effort are required from
multidisciplinary researchers. This is both an opportunity and a challenge for researchers.
An accurate prediction of the distribution property is an important part of determining
the ADMET profile of a drug candidate. Optimization of the distribution properties has a
direct influence on the effectiveness and toxicity of the drug. Despite data challenges, the
current efforts of AI-based, distributed property prediction models have made positive
contributions, such as reducing costs and time in drug R&D.

One approach to overcome the challenges in AI-based drug distribution prediction
is to focus on improving the quality and quantity of the data used for training and test-
ing the models. This can be achieved by incorporating a wider range of data sources,
including clinical trials, electronic health records, and real-world evidence. Additionally,
implementing advanced data-cleaning and preprocessing techniques can help reduce the
noise and bias in the data, leading to more accurate and reliable predictions. Another
direction for future research in this field is the development of more sophisticated and
robust AI algorithms that can handle complex and dynamic data. This includes the use
of DL techniques, which have shown promising results in various medical and health
applications. Additionally, it is crucial to ensure the interpretability of AI-based drug
distribution predictions, which can be achieved by developing methods to visualize and
interpret the underlying mechanisms and processes behind the model’s predictions, thus,
increasing trust and confidence in the results and enabling good decision making in drug
development and personalized medicine. Furthermore, it is essential to incorporate human
expertise and domain knowledge into the development and evaluation of AI-based drug
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distribution prediction models. This can be achieved through collaboration between AI
researchers and medical experts, such as pharmacologists and clinicians, to ensure that the
models align with existing knowledge and practices in the field.

The core problem of AI systems is the process of “learning”. Good learning requires
high-quality data and a high-quality learning model. “Quality” requires expert supervision.
In the future, drug R&D data for learning will increase rapidly in quantity and complex-
ity, requiring powerful AI-based predictive models such as DL. Ensuring the correctness
and effectiveness of an AI-based predictive model requires close collaboration between
multidisciplinary scientists. The contribution and sharing of data from pharmaceutical com-
panies and academic researchers will accelerate the development of big data. In the next
decade, data, computation, and multidisciplinary scientists will become highly connected to
AI-based drug R&D. There is a continuous feedback loop between interpretable AI and ex-
perimental biology. Through incremental improvements to workflow and comprehensible
insights, researchers can track, evaluate, and construct better prediction models.

In this study, the recent development of AI-based distribution property prediction
models were analyzed and synthesized. Although each model has its own limitations, the
models show a remarkable effort by researchers. The basics of distribution and the role
of endpoints, along with related resources such as public data sources and free prediction
tools, are provided. We hope that this is a useful document for researchers who develop
and improve distribution property prediction models and other properties of ADMET
based on AI.
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