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Abstract: Copper (Cu) is an essential micronutrient for the correct development of eukaryotic
organisms. This metal plays a key role in many cellular and physiological activities, including
enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial
for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due
to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency
and the accumulation of this metal since its dyshomeostasis may favor the development of multiple
diseases, such as Menkes’ and Wilson’s diseases, neurodegenerative diseases, diabetes mellitus,
and cancer. As the relationship between Cu and cancer has been the most studied, we analyze
how this metal can affect three fundamental processes for tumor progression: cell proliferation,
angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity,
and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular
processes that promote their progression are affected by Cu, and the mechanisms that occur may be
similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on
therapeutic strategies derived from this metal.

Keywords: copper; gynecological diseases; Cu chelators; Cu ionophores; ovarian cancer; polycystic
ovarian syndrome; cervical cancer; endometrial cancer; endometriosis

1. Introduction

Copper (Cu) is an essential micronutrient for the proper development of eukaryotic
organisms [1]. Because it cannot be created or destroyed through metabolic processes,
this metal must be acquired from external sources, primarily food and water. According
to recommendations, adults should consume approximately 0.9 mg of Cu/day, and in
conditions such as pregnancy and lactation, around 1.3 mg/day [2]. In general, the average
intake of most people meets or exceeds this requirement since it is estimated that Cu
ingested through food, water, and supplements ranges between 1.1 and 1.7 mg/day in
adults [3], of which only 15% is retained in tissues: the rest is excreted through the bile
and, to a lesser extent, through urine. This micronutrient is present at high concentrations
in foods such as liver, crustaceans, red meat, milk, chocolate, seeds, fish, mushrooms,
and nuts [4]. Cu is mainly accumulated in the liver, kidneys, brain, heart, muscles, and
skeleton [5]. The serum concentration of Cu in healthy adults ranges between 70 and
110 mg/dL, where 70% is bound to its principal transporter, ceruloplasmin (Cp) [6,7].

As a vital trace element, Cu plays a key role in many cellular and physiological pro-
cesses, such as enzyme activities, oxygen transport, and cell signaling. Being a catalytic
cofactor of redox proteins, it is clear that Cu plays a crucial role in carrying out biologi-
cal functions necessary for growth and development [8]. These functions are due to its
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two oxidation states: the reduced form (Cu+) and the oxidized form (Cu2+), which give
it the ability to act as an electron recipient or donor. The extracellular environment con-
tains mainly Cu2+, while inside the cells, the reduced form of Cu is found [9,10]. Cu2+

may regulate various growth factors and membrane receptors, while Cu+ is involved in
intracellular regulation by affecting the activation state of membrane receptors or binding
to transcription factors to alter gene expression [11]. Analysis of the human proteome has
so far identified more than fifty Cu-binding proteins, of which some examples include
Cu/Zn superoxide dismutase (SOD1), cytochrome C oxidase (CCO), Cp, lysyl oxidase
(LOX), tyrosinase, and dopamine-β-hydroxylase (DβH), among others (Table 1). The main
functions of Cu involve oxidation-reduction reactions that ultimately produce free oxy-
gen radicals. For this reason, free cellular Cu concentrations must be maintained at low
levels [8]. Given its essential role in cellular physiology, it is important to understand the
mechanisms related to Cu metabolism in biological systems.

Table 1. Functions of the main cuproenzymes.

Cuproenzyme Function

LOX Required for the formation of the extracellular matrix.

SOD Catalyzes the conversion of superoxide radicals to molecular oxygen
and hydrogen peroxide.

Cp Multicopper ferroxidase; principal Cu carrier in serum.

Hephaestin Multicopper ferroxidase. It supports the transportation of Fe released from
intestinal enterocytes.

CCO Electron transfer protein. It catalyzes ATP production.

Tyrosinase Catalyzes phenol oxidation; it is required for melanin synthesis, a
fundamental pigment for hair, skin, and eyes.

DβH Oxidoreductase. It catalyzes the conversion of dopamine to epinephrine.

MEK Kinases that belong to the mitogen-activated protein kinase cascade and
that mainly promote cell proliferation and survival.

ULK1/2 Autophagy-initiating kinases.

MEMO1 Regulation of cell motility and ROS production.

1.1. Copper Metabolism

In mammals, Cu absorption, distribution, storage, and excretion take place at both systemic
and cellular levels. During the last 20 years, the mechanisms related to these processes have
been widely studied [12]. A schematic diagram of Cu metabolism in mammals is shown
in Figure 1. Cu homeostasis depends mainly on the precise regulation of these processes
by organ systems and individual cells. Studying the various alterations that may cause Cu
dyshomeostasis is one of the most attractive focuses in Cu research at the present time.

1.1.1. Copper Uptake

Copper is acquired mainly from food and water and is absorbed through the intestinal
epithelium to reach the liver through the portal vein [10]. In the digestive tract, Cu2+ can be
incorporated by epithelial cells through the action of divalent metal transporter 1 (DMT1);
however, specific deletion of Dmt1 in enterocytes does not prevent intestinal absorption of
Cu [13], indicating that other mechanisms of transport are also in place. The reduction of Cu2+

by metalloreductases such as DCYTB and STEAP 2, 3, and 4 on the surface of mammalian
cells [14,15] allows Cu+ ions to then be incorporated by CTR1 (copper transporter 1, encoded
in humans by the Slc31a1 gene). CTR1 is a high-affinity Cu importer belonging to the SLC31
family, and it plays a fundamental role in Cu homeostasis, being the main pathway of Cu+

incorporation into cells [1]. It is located on the apical membrane of enterocytes [16], but it can
also be found on the basolateral membrane and within intracellular organelles [17]. CTR1 is a
homotrimeric protein that forms a pore in the membrane, where each monomer displays an
extracellular N-terminal domain for Cu binding [18]. It also has three transmembrane domains
(TMDs): TMD1 and TMD2 interact with Cu, and TMD3 is essential for CTR1 oligomerization.
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The cytoplasmic C-terminus allows intracellular delivery of Cu by undergoing conformational
changes upon metal binding [19]. Enterocyte-specific Ctr1 knockout mice experience severe
Cu deficiency in peripheral tissues, cardiac hypertrophy, liver iron overload, and severe
growth and viability defects [20], while systemic inactivation of CTR1 leads to embryonic
death [21], confirming the importance of CTR1 in Cu uptake and normal cellular function.
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Figure 1. Schematic diagram of copper metabolism in mammals. After intestinal absorption, Cu travels
through the portal vein bound to soluble proteins, such as albumin and transcuprein. On the surface
of mammalian cells, metalloreductases such as STEAP 2, 3, and 4 reduce Cu2+ ions to Cu+ so that cells
can absorb Cu through CTR1. (A) In the mitochondrial intermembrane space, COX17 is responsible for
delivering Cu+ to either SCO1 or COX11 to contribute to the correct assembly of CCO, which utilizes
Cu for energy production through oxidative phosphorylation. (B) CCS chaperone transfers Cu+ to
SOD1, which is critical in the defense against oxidative stress because it catalyzes the degradation of
superoxide radicals. (C) ATOX1 is responsible for providing Cu to the ATPases (ATP7A and ATP7B) that
are principally located in the trans-Golgi network (TGN). ATPases pump Cu+ from the cytosol into the
lumen of the TGN to promote the synthesis of cuproenzymes, such as Cp, LOX, and SOD3, which are
secreted out of the cells to mediate the Cu transport through the circulatory system. (D) Since free Cu ions
have the potential to generate reactive oxygen species, excess intracellular Cu+ is sequestered mainly by
glutathione (GSH) and metallothioneins (MTs) that uptake Cu for storage. GSH can also deliver Cu to
MTs. (E) When the cytoplasmic Cu concentration increases, ATP7A and ATP7B move within endocytic
vesicles toward the plasma membrane to transfer excess Cu into the bloodstream. ATP7A is expressed
in many tissues except in the liver, where it is replaced by ATP7B. In hepatocytes, ATP7B ensures the
movement of Cu through the canalicular membrane for its subsequent elimination through the bile.
(F) The concentration of mammalian CTR1 at the plasma membrane is negatively regulated in response
to elevated Cu levels (red dotted arrow), with CTR1 being removed from the cell surface. (G) ATOX1
can carry Cu into the cell nucleus and act as a transcription factor for the expression of genes encoding
cyclin D1 and SOD3 (green dotted arrow). High concentrations of cellular Cu may also stimulate the
transcription of MT genes. Created with BioRender.com (accessed on 11 November 2023).
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1.1.2. Copper Distribution

The Cu-transporting ATPase α (ATP7A) in intestinal epithelial cells is the essential
protein transporting Cu from the intestine to the rest of the body. ATP7A is expressed
in many tissues except the liver, where it is replaced by its paralog, Cu-transporting
ATPase β (ATP7B) [22]. ATP7B is mainly expressed in the liver, kidney, heart, brain,
placenta, and lung [22]. In the placenta and blood–brain barrier, ATP7A ensures sufficient
amounts of Cu for proper development of the fetus and brain [23]. After absorption into
the enterocyte, ATP7A secretes Cu into the portal circulation, where it binds to soluble
chaperones, including albumin, transcuprein, and macroglobulins [24–26]. Upon reaching
the liver, Cu enters hepatocytes through CTR1, and the liver becomes the main depot of
Cu in the body, distributing it to peripheral organs through the bloodstream or excreting
it through the bile [27]. Within the cytoplasm, Cu trafficking is tightly coordinated by
high-affinity Cu chaperones that deliver Cu to specific proteins and metallothioneins (MTs)
that bind Cu for storage [22,24,28,29]. The major Cu chaperones include cytochrome C
oxidase (CCO), Cu chaperone for SOD (CCS), and antioxidant chaperone 1 (ATOX1).

Cytochrome C oxidase utilizes Cu for mitochondrial function and oxidative phos-
phorylation (Figure 1A). CCO consists of two subunits, COX1 and COX2, which bind
Cu at conserved sites [30]. The Cu chaperone COX17, located in the mitochondrial in-
termembrane space (IMS), transports Cu from the cytosol to the IMS to contribute to the
correct assembly of CCO [28]. In the IMS, COX17 delivers Cu+ to SCO1 (synthesis of cy-
tochrome C oxidase 1) for transfer to the COX2 subunit or COX11 for delivery to the COX1
subunit [31,32]. Other participants could be involved in Cu trafficking to mitochondria,
such as COX19 and a non-protein, anionic copper ligand [32]. Mitochondria provide the
main intracellular reservoir of Cu, which is essential for their energy production through
oxidative phosphorylation [8,32]. Within enterocytes and other cells, CCS delivers Cu to
the SOD1 enzyme to scavenge free radicals (Figure 1B). A recent study suggested that CCS
first acquires Cu from CTR1 and then delivers it to SOD1 by forming a CTR1-CCS-SOD1
complex that can be dissociated upon SOD1 activation [33]. CCS expression is regulated
by cellular Cu content because when Cu levels decrease, CCS increases, while when Cu
content increases, this chaperone is degraded [34]. The SOD family of proteins is critical in
the defense against oxidative stress because they catalyze the degradation of superoxide
radicals into hydrogen peroxide and oxygen [35]. There are several isoforms of SOD, of
which SOD1 (intracellular dimeric) and SOD3 (extracellular tetrameric) contain Cu, whereas
SOD2 is a mitochondrial enzyme that contains Mn. In addition, ATOX1 is responsible
for transferring Cu to ATP7A and ATP7B, which are membrane pumps characterized by
eight TMDs, including multiple Cu binding sites located mainly on TMD6, TMD7, and
TMD8 (Figure 1C) [36,37]. These ATPases are located in the trans-Golgi network (TGN), in
endocytic vesicles, or in the plasma membrane, pumping Cu+ from ATOX1 to the other
side of the membrane [38]. The central role of ATOX1 is reflected in the perinatal death of
Atox1 knockout mice due to the altered Cu balance [39].

Since free Cu ions have the potential to generate reactive oxygen species (ROS) in cells,
excess intracellular Cu+ must be sequestered by molecules such as MTs and glutathione
(GSH) (Figure 1D). MTs are a family of low-molecular-weight proteins capable of binding
excess Cu+ ions through thiol groups [29]. In humans, four distinct MTs are known: MT1,
MT2, MT3, and MT4. MT1 and MT2 are widely expressed throughout the body, while
MT3 and MT4 are principally expressed in the central nervous system [29]. Glutathione
is a tripeptide containing glutamate, cysteine, and glycine residues that is also capable of
buffering excess Cu. It is probably the first acceptor of Cu as soon as it enters the cell [40,41].
Millimolar cytoplasmic GSH concentrations are estimated to markedly exceed Cu levels [42].
This fact enables GSH to act as a cytosolic Cu buffer that prevents the rise of free Cu ions
and drives CTR1-mediated Cu influx by maintaining a negative concentration gradient
at the plasma membrane [40]. GSH and other molecules with thiol groups, together with
the enzyme, glutaredoxin 1, may generate a reducing environment conducive to the redox
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regulation of ATP7A and ATP7B, modulating the binding of Cu to cysteine residues, being
fundamental for the export of the metal [41].

1.1.3. Copper Excretion

After being stored, Cu can be released into the bloodstream for subsequent distribution
to specific tissues and organs [12,24]. This occurs through several pathways, where ATP7A
and ATP7B are the central players. These ATPases have a dual role in the cell; first,
they have a biosynthetic function because they promote the synthesis of enzymes loaded
with Cu (cuproenzymes) in the TGN, such as Cp, LOX, and tyrosinase, which are then
secreted out of the cells (Figure 1C) [23]. Cp is the main transport medium for Cu in the
circulatory system; therefore, the abundance of Cp in plasma may serve as a biological
marker of systemic concentration of this metal [43,44]. In addition, ATP7A and ATP7B
have a homeostatic function because when the cellular concentration of Cu increases, they
move within endocytic vesicles toward the plasma membrane to transfer excess Cu out of
the cell (Figure 1E) [45]. In hepatocytes, ATP7B ensures the movement of Cu through the
canalicular membrane for its subsequent elimination through the bile so that any overload
is excreted through the digestive tract [38]. Although biliary excretion is the main form of
endogenous Cu excretion, there are other routes for Cu elimination, such as urine, sweat,
and menstruation [24].

1.2. Copper Homeostasis

Although the redox activity of Cu is essential for enzymatic reactions, this property
also makes it potentially toxic at high levels [12]. During the change between Cu+ and Cu2+

states, electron transfer results in the generation of ROS, including superoxide anion (O2−),
nitric oxide (NO), hydroxyl radical (OH−), and hydrogen peroxide (H2O2), via the Fenton
reaction [46]. ROS can attack bio-membranes, destabilizing their structure and affecting
their cellular functions, and can also oxidize proteins and denature DNA and RNA, altering
the repair mechanisms of these nucleic acids [47]. All of these changes may contribute
to the development of cancer, neurodegenerative diseases, and cellular aging [48]. In
contrast, a deficiency in Cu can lead to alterations in energy levels, glucose and cholesterol
metabolism, and immune cell function, increasing the risks of infections and cardiovascular
disorders [44,49,50]. The activities of SOD1, Cp, catalase, and glutathione peroxidase, as
well as MT and GSH, are also compromised by an imbalance in the levels of Cu [44]. The
dual roles of Cu as an essential and toxic element require specific regulatory mechanisms
to prevent both deficiency and accumulation since dyshomeostasis can promote the devel-
opment of multiple diseases, affecting liver function, lipid metabolism, the central nervous
system, and resistance to chemotherapy, among others [51].

Copper homeostasis is highly regulated by transcriptional control and selective trans-
port mechanisms [47]. High levels of cellular Cu negatively regulate the concentration of
mammalian CTR1 at the plasma membrane, which trigger CTR1 removal via endocytosis-
dependent internalization or degradation (Figure 1F) [52]. In contrast, when Cu concentra-
tion is reduced, internalized CTR1 returns to the plasma membrane [53]. In vitro studies
have shown that transcription of the Ctr1 gene is regulated by the transcription factor Sp1
(Specificity protein 1) in a Cu-dependent manner, where overload produces a negative
regulation of Ctr1 [54]. In vivo, mice fed a Cu-deficient diet had increased CTR1 expression
in the intestine [55]. CTR1 function can also be regulated via the generation of a truncated
protein (tCTR1) through the removal of its high-affinity Cu-binding domain [56]. tCTR1
is produced within endosomal compartments, has lower uptake activity than CTR1, and
requires interactions with CTR2 (copper transporter 2), which is the only other SLC31
family protein in mammals. Initially, CTR2 was proposed as a low-affinity Cu transporter;
however, it is currently believed that CTR2 has lost the ability to transport Cu and that its
primary role is to produce tCTR1 [57].

Another protein involved in Cu homeostasis is the ATOX1 chaperone, which can
act as a transcription factor stimulated by Cu, translocating to the nucleus to bind to
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promoters of genes that encode cyclin D1, the organizer of the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase p47phox, and SOD3 (Figure 1G) [58–60]. It
has also been reported that high concentrations of cellular Cu can improve MT gene
transcription, mediated by metal-regulatory transcription factor 1 (MTF1) and nuclear
factor erythroid 2-related factor 2 (Nrf2) [61,62].

Regulating the localization and function of ATP7A and ATP7B is essential in control-
ling Cu export from the cell [23]. At physiological levels of Cu, these transporters pump
Cu from the cytosol into the lumen of the TGN to load Cu+ into cuproenzymes, which
mediate the transport of Cu through the circulatory system [7]. When intracellular Cu
increases, ATPases move to the post-Golgi vesicular compartments, which are loaded with
Cu, and release this metal into the extracellular medium after fusion with the plasma
membrane [38,45]. After Cu levels are restored to physiological levels, ATP7A and ATP7B
are transported back to the TGN through the action of several protein complexes, such as
AP-1, Arp2/3, WASH, and COMMD/CCDC22/CCDC93 [63].

1.3. Copper and Pathogenesis

The participation of Cu in both the development and progression of diseases has
been documented in numerous reports that show an alteration of Cu homeostasis with
aberrant levels of this metal. Mutations in the genes encoding ATP7A and ATP7B cause
inherited disorders of Cu metabolism, known as Menkes’ disease and Wilson’s disease,
respectively [64,65]. Menkes’ disease is an X-linked recessive disorder, fatal to male infants,
in which the dysfunction of ATP7A leads to reduced Cu availability in tissues, causing
growth retardation, hypotonia, kinky, brittle hair (pili torti), deterioration of the nervous
system, and severe intellectual disability [64]. Wilson’s disease is an autosomal recessive
disorder characterized by a profound accumulation of Cu, primarily in the liver, brain, and
kidneys, due to mutations in the ATP7B gene that impair the ability to excrete Cu into the
bile. This triggers hepatic and neuropsychiatric symptoms in these patients [65,66].

In addition to the genetic disorders described above, Cu dyshomeostasis has been
associated with a large number of diseases, namely neurodegenerative disorders, such
as Alzheimer’s, Parkinson’s, and Huntington’s diseases, and amyotrophic lateral scle-
rosis [67,68], as well as atherosclerosis [69], diabetes mellitus [70], and cancer [10,71,72].
Recent studies have demonstrated a strong correlation between Cu and three fundamental
processes for tumor progression: cell proliferation, angiogenesis, and metastasis [71,72].
Cu also has a role in oxidative stress and chronic inflammation, which promote cell trans-
formation [35,73]. Furthermore, gene expression analysis has revealed multiple alterations
in Cu-sensitive or Cu-binding proteins [74], which indicate a relationship between Cu
dyshomeostasis and cancer pathogenesis. Therefore, it has been proposed that an impor-
tant risk factor for carcinogenesis could be elevated levels of Cu in tissues or serum [47,75].
Preclinical studies demonstrated that daily administration of CuSO4 through drinking
water significantly increased tumor growth in a murine model of breast cancer [76]. In
conjunction with these results, elevated Cu levels in serum and malignant tissues have
been documented in different human cancers, including breast, gastrointestinal, and gy-
necological malignancies [77–80]. While Cu elevation in cancer cells may be involved in
carcinogenesis, it could also be a feature of the cancer phenotype for two main reasons.
Tumors, especially fast-growing ones, have greater metabolic demands than healthy tis-
sues that do not divide [47]. As Cu is a cofactor for multiple enzymes in cellular energy
metabolism, such as CCO, and in antioxidant defenses, such as SOD [47,77], the demand for
Cu could increase in cancer cells. Second, in tissues undergoing hypoxia, upregulation of
CTR1 has been observed [81]. Hypoxia-inducible factor 1-alpha (HIF-1α) may activate the
transcription of genes related to Cu metabolism (e.g., those that control CTR1), contributing
to higher Cu levels in hypoxic tumor cells [82].

Due to the popularity of copper intrauterine devices (Cu IUDs) as a contraceptive
method interfering with fertilization and/or implantation [83], it would be interesting to
evaluate whether their use could modify serum Cu levels. In a recent review [84], eight of
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twelve studies analyzed found that Cu IUDs would not change the serum concentrations of
this metal. Although the in situ release of Cu ions is very low, research is limited, and there
is no clear evidence. Since Cu IUD users generally experience abnormal uterine bleeding
or abdominal pain and have not shown clinical signs of toxicity, it is believed that Cu
homeostasis mechanisms may be sufficient to prevent the accumulation of this metal. In an
animal study, Wistar rats were implanted with Cu IUDs of different doses, with no toxic
effects evident [85]. Because they were exposed to much higher Cu levels than those used
in humans, the results are reassuring about the Cu IUDs’ safety; however, more research
is needed.

Although Cu is involved in a spectrum of diseases, its role in cancer has been the most
studied, permitting an analysis of how this metal can affect different cellular processes
related to tumor progression. This will be described in the following subsections, and
subsequently, our focus will be to evaluate the crosstalk between Cu deregulation and gy-
necological diseases, which mainly include benign and malignant tumors. The mechanisms
that occur in both types of tumors may be similar, where the starting point is abnormal cell
proliferation [86]. Finally, we will focus on new Cu-based therapeutic strategies, especially
for those gynecological diseases with high prevalence, morbidity, and mortality that do not
respond adequately to other treatments.

1.3.1. Copper and Cell Proliferation

Cuproplasia is defined as Cu-dependent cell growth and proliferation that can lead
to neoplasia and hyperplasia [10]. This process is related to mitochondrial respiration,
redox signaling, autophagy, antioxidant defense, and kinase signaling and may involve
enzymatic and non-enzymatic Cu activities [10]. It has been observed that CCS can pro-
mote carcinogenesis. For example, in patients with breast cancer, the levels of CCS were
increased along with the ability of CCS to promote proliferation through the MAPK/ERK
pathway [87]. It was also shown that a specific inhibitor of CCS and ATOX1 reduced cancer
cell proliferation and tumor growth [88]. Another emerging concept, metalloallostery, has
expanded knowledge about the contributions of Cu to cellular signaling events since it
proposes a new paradigm in which the dynamic binding of Cu occurs at sites other than
the active sites of proteins to regulate them [89]. In the context of positive metalloallostery,
Cu directly binds to MEK1 and MEK2 kinases and enhances their ability to phosphorylate
ERK1 and ERK2 in a dose-dependent manner, stimulating the RAF–MEK–ERK signaling
cascade, and ultimately, further promoting tumor proliferation [90]; this makes Cu an
attractive target as this signaling cascade is one of the best-defined axes that promote cell
proliferation and it is abnormal in most human cancers.

Autophagy is a cellular degradation process that plays an essential role in the devel-
opment and differentiation of cells, constituting a means to cope with intracellular and
environmental stress and potentially promoting tumor progression [91]. Recent studies
have shown that increased intracellular Cu promotes the growth and survival of cancer
cells by activating autophagy, stimulating the autophagic kinases ULK1 and ULK2 [91,92].

1.3.2. Copper and Angiogenesis

One of the main processes involved in tumor growth is angiogenesis, where vascular
endothelial cells migrate, proliferate, and differentiate to create a network of new blood
vessels extending from surrounding vessels into the expanding tumor [93]. Angiogenesis
is regulated by angiogenic-stimulating factors (angiogenin, vascular endothelial growth
factor [VEGF], fibroblast growth factor [FGF], transforming growth factor beta [TGF-β]),
and interleukins (IL-1, IL-6, IL-8), as well as through inhibitors (angiostatin and endostatin).
The role of Cu as a pro-angiogenic metal was first proposed in 1980, with the discovery
that Cu salts induce endothelial cell migration, an early step in angiogenesis [94]. Cu
may be involved in the entire angiogenic signaling cascade, promoting the growth and
mobility of vascular endothelial cells, regulating the synthesis and secretion of the main
pro-angiogenic mediators (VEGF and FGF), and directly binding to angiogenin to modulate
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its affinity for endothelial cells [95]. Cu-dependent activation of HIF-1α transcriptional
activity requires interaction with CCS, inducing the expression of pro-angiogenic genes [96].
Cu chelation has been shown to block HIF-1α-mediated VEGF expression [96,97] and to
suppress the transcriptional activity of nuclear factor kappa B (NF-κB), thereby inhibiting
the expression of FGF, VEGF, IL-1, IL-8, and IL-6 [98,99]. Overexpression of Cu-dependent
SOD1 markedly increases VEGF production, while a reduction in SOD1 activity induces
vascular abnormalities and impairs angiogenesis [100]. Additionally, Cu ions increase
NO production, an inducer of vascular dilation, by activating endothelial nitric oxide
synthase [95].

Copper transporters and chaperones also participate in angiogenesis. Upon stimu-
lation by VEGF, cysteine 189 of the cytoplasmic C-terminal domain of CTR1 is sulfeny-
lated, leading to the formation of a disulfide bond between CTR1-VEGFR2 and its co-
internalization into early endosomes, promoting angiogenesis via VEGFR2 [101]. Indeed,
silencing CTR1 expression in Cu-treated endothelial cells inhibits tube formation and re-
duces VEGF expression [102]. Regarding ATOX1, since it can act as a transcription factor
for NADPH oxidase, it causes inflammatory neovascularization [58]. ATOX1 may also
stimulate cyclin D1 in a Cu-dependent manner [59], potentially contributing to cancer
cell proliferation and angiogenesis. In this regard, depletion of ATOX1 inhibits vascular
smooth muscle cell migration stimulated by platelet-derived growth factor (PDGF), sup-
porting a role for ATOX1 in vascular remodeling and tumor angiogenesis [103]. There may
also be a role for ATP7A, as it can limit the degradation of VEGFR2, thereby promoting
angiogenesis [104]. In summary, blocking Cu-dependent angiogenesis is an interesting
strategy that can be further explored to inhibit tumor growth.

1.3.3. Copper and Metastasis

Processes such as the development of pre-metastatic niches, escape from immune
defenses, and angiogenesis will advance and sustain cancer progression. Cu and its binding
proteins are involved in the metastatic spread of tumors [105], playing a critical role in the
metastatic cascade, both within cells and in the tumor microenvironment. Cu participates
in the epithelial–mesenchymal transition (EMT), an early step of metastasis, conferring
migratory and invasive capabilities to the cancer cells [71,106,107]. In EMT, molecular repro-
gramming occurs, deactivating the expression of genes that encode epithelial markers, such
as E-cadherin and occludin, and activating mesenchymal genes, such as N-cadherin and
vimentin, which are targets of several transcription factors (Snail, Twist, Slug) [106]. The
participation of Cu in the remodeling of the extracellular matrix (ECM) and the establish-
ment of a pre-metastatic niche occurs mainly through the activity of LOX and Cu-dependent
LOX-like (LOXL) proteins [108,109], which catalyze the cross-linking of collagen and elastin
in the ECM. When LOX is active, it stimulates transcription via Twist to promote EMT in
the tumor environment [110], and increased expression of LOXL2 correlates with metastasis
and poor survival in breast cancer patients [111]. Both angiogenesis and metastasis were
suppressed with LOX inhibitors during carcinogenesis examined in vivo, and the decrease
in LOX expression inhibited cell migration and neovascular formation in tumor endothelial
cells [112].

Adaptation to microenvironmental stressors such as hypoxia is an early characteristic
of growing tumors, where HIF-1α plays a key role [113]. Cu and CCS activate HIF-1α by
regulating binding to hypoxia-response elements (HREs), promoting the transcription of
the target genes involved in EMT [96]. Indeed, Cu depletion in a tumor cell line inhibited
the cellular characteristics of hypoxia-induced EMT by downregulating the expression of
vimentin and fibronectin genes, which are under the control of the HIF1-α/Snail/Twist
signaling pathway, and Cu depletion also inhibited angiogenesis in a mouse model [107].
HIF-1α also induces the expression of LOX, which promotes the synthesis of the HIF-
1α protein upon activation of the PI3K/Akt pathway. Therefore, the synergistic action
and regulation of both proteins results in the promotion of tumor progression [113,114].
The mediator of the cell motility 1 (MEMO1) protein was identified as a pro-metastatic
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mediator in breast cancer, where it acts as a Cu-dependent redox protein that promotes a
more oxidized intracellular environment through the production of ROS [115]. MEMO1 is
thought to have a metal-binding pocket similar to that of metal-dependent redox enzymes,
where Cu can be coordinated to favor ROS production [115].

2. Copper in Gynecological Diseases

Over the years, investigating the role of Cu has gained increasing importance, and re-
searchers have joined forces in trying to understand its action. As we previously described,
Cu is a crucial element involved in each step of cancer development, from tumorigenesis
to metastasis, and there is a large amount of research on the role of Cu in various types of
cancer. However, to date, there are very few studies on the specific role of Cu in gyneco-
logical diseases [73,77,116]. These diseases mainly include benign and malignant tumors
and endocrine diseases [117]. We will evaluate the impact of Cu dyshomeostasis in these
diseases, focusing on therapeutic strategies based on altering the role of Cu.

2.1. Ovarian Diseases
2.1.1. Ovarian Cancer

Gynecological cancers include all cancers that affect the female reproductive organs,
including endometrial cancer, cervical cancer, ovarian cancer (OC), fallopian tube cancer,
vaginal cancer, and vulvar cancer. Among the different gynecological cancers, OC is the
most lethal worldwide [118,119]. More than 20 microscopically distinct types of OC can be
identified, which are mainly classified into three groups: (1) epithelial cancers, (2) germ
cell tumors, and (3) specialized stromal cell cancers [117]. Although significant progress
has been made in early detection and treatment, OC is usually detected at a late stage and
has a poor prognosis [120]. The overall 5-year survival rate for epithelial OC (EOC), which
comprises about 90% of ovarian malignancies, is approximately 30% [119]. In addition to
genetic and reproductive risk factors, it has been postulated that chronic inflammation,
oxidative stress, and damage caused by free radicals to epithelial cells play a fundamental
role in ovarian carcinogenesis [121]. EOC cells form spheroids to avoid immune detection
and to resist cell death, where communication between these cells and the peritoneal
ecosystem plays a crucial role in the progression and dissemination of the disease [122].

Elevated Cu levels have been reported in the serum of patients with OC [123–125], and
it is also elevated in OC tumors [80], possibly due to alterations in trace elements with a
reduced catabolism or an increase in the neoplastic synthesis of Cp, since elevated levels of
both Cu and Cp have been found in patients with OC [123]. A meta-analysis demonstrated
not only an increase in circulating Cu concentration but also a decrease in Zn levels in
patients diagnosed with OC [125]. In another study, Cu levels were found to be elevated
in patients with OC or endometrioma compared to the control groups [124]. However,
a meta-analysis showed that using any type of IUD, including Cu IUDs, was associated
with a lower incidence of OC [126]. A recent bioinformatics study demonstrated that
analyzing the prognostic signature of Cu metabolism-related genes (CMRGs) could provide
a useful predictive biomarker and a potential therapeutic target for patients with OC [127].
Additionally, the study showed that CMRGs help define the immune environment, which
could serve to identify specific patient subgroups to receive specialized treatment.

The first-line treatments for OC are cytoreductive surgery and platinum-based chemother-
apy [128]. Although the response rate is high, most patients typically experience relapses
within 2 to 3 years [128]. At first relapse, 25% of patients have platinum resistance or refractory
disease with a poor prognosis [129,130]. Numerous studies have identified the transport
mechanisms of platinum-containing drugs [131], where it has been observed that many of the
proteins involved also participate in Cu homeostasis. Reduced CTR1 expression has been re-
lated to cisplatin (CDDP) resistance in patients with OC [132], and higher CTR1 expression has
been associated with a better response to CDDP treatment and favorable overall survival [133].
However, ATP7A and ATP7B are necessary to confer resistance to CDDP, carboplatin, and
oxaliplatin in OC cell lines [131,134]. ATP7A- and ATP7B-dependent chemoresistance is
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linked to the impaired accumulation of CDDP in the nucleus and, consequently, the decreased
formation of platinum-DNA adducts [131]. Other studies have proposed that CDDP binds
to the Cu binding site of ATOX1 and is then transferred to ATP7B, promoting CDDP resis-
tance [135,136]. However, the knockout of ATOX1 did not affect the acquisition of resistance
to CDDP, indicating that other mechanisms are involved [137].

2.1.2. Polycystic Ovary Syndrome

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder that oc-
curs in approximately 6% to 20% of women of reproductive age and is a leading cause of
infertility [138]. According to a large community-based cohort study, 72% of PCOS patients
were infertile compared to 16% of the control group [139]. This disease is characterized
by menstrual disorders, polycystic ovaries, and phenotypes related to hyperandrogenism,
such as acne, alopecia, and hirsutism [140,141], in addition to a higher risk of spontaneous
abortion and pregnancy-related complications [142]. PCOS is associated with obesity, dys-
lipidemia, insulin resistance (IR), type 2 diabetes mellitus, cardiovascular diseases, and
endometrial cancer [143–147]. Regarding the etiology of PCOS, increasing evidence sug-
gests that it could be a multifactorial and polygenic disorder with considerable epigenetic
and environmental implications, including dietary and lifestyle factors [148–150].

The role of Cu in PCOS is complex and may vary with the phenotype. Several studies
have found elevated Cu levels in patients with PCOS [151–160], while others have found no
differences from the control group [161–163]. Considering metabolic factors, a significant
increase in serum Cu levels was found in both obese and non-obese patients with PCOS
compared to healthy subjects [153], and this increase was linked to IR [152,164]. Conse-
quently, controlling Cu in these patients has been recommended as a potential strategy to
lower oxidative stress and IR that could be caused by this metal and to minimize long-term
metabolic complications [154]. Another study confirmed that patients with PCOS and IR
had higher Cu levels than those without IR; however, Cu levels were lower in patients with
PCOS than in the control group [165], similar to another work [166]. When Cu levels were
measured in the follicular fluid, concentrations were higher in patients with PCOS than in
controls [155], and this increase could negatively affect the development of follicles and be
related to anomalies in steroidogenesis. Consistently, other investigators found that dietary
intake of Cu was positively correlated with the risk of PCOS, and that this metal altered
ovarian steroidogenesis, affecting ovarian follicle development [167], promoting premature
follicular atresia, and inhibiting follicular maturation and the formation of multiple follicles.

2.2. Uterine Diseases
2.2.1. Uterine Cervix Cancer

Uterine cervix cancer or cervical cancer (CC) is the fourth most common cancer in
women worldwide, particularly in developing countries, making it a significant health
problem [118]. High-risk human papillomavirus (HPV) infection is considered responsible
for more than 90% of CC cases [168], so the prevalence varies depending on the prevalence
of HPV infection [169]. Immunization against this virus can help prevent CC, and HPV
testing is essential for early CC detection [170,171]. The overall 5-year survival rate is close
to 66%; however, as treatment options are limited, patients with metastatic or recurrent
disease have a lower survival rate [120]. Aside from HPV infection, some of the most rele-
vant factors for the pathogenesis of CC are inflammation of the epithelium, elevated levels
of lipid peroxides, reduced levels of non-enzymatic antioxidants, and altered activities
of antioxidant enzymes [172]. One study found that Cu IUD use is not associated with
cervical neoplasia [173], and patients have a lower risk of high-grade cervical lesions than
oral contraceptive users [174].

High levels of Cu have been found in most studies in patients with CC. An early
investigation observed a higher tissue concentration of Cu and a higher Cu/Zn ratio in
patients with CC, along with a decrease in Zn levels compared to the control group [175],
these results being confirmed in a later study [176]. A meta-analysis recently documented
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the association between increased serum Cu levels and CC risk [177], and subsequently,
this association was confirmed for cervical and endometrial cancers as well as OC. CC
patients had the highest Cu concentrations [178], and this increase was positively correlated
with the stages of the disease, while Cu decreased after different treatments (surgery,
chemotherapy, radiotherapy, or a combination of both) [179]. This result differs from a
study where the authors observed that increased serum Cu levels were not modified after
chemoradiotherapy in patients with CC [180]. In summary, Cu is indicated as a possible
risk factor associated with CC that could be useful to monitor this type of cancer and
potentially to control the progress of the disease [177–179].

2.2.2. Endometrial Cancer

Uterine cancer or endometrial cancer (EC) is the fifteenth most common cancer in gen-
eral and the sixth most common cancer in women [118]. Risk factors for the development
of EC are obesity, high levels of estrogen, low levels of progesterone, PCOS, IR, diabetes,
and estrogen-secreting ovarian tumors [181]. Most patients with early-stage disease have
a good prognosis; however, the 5-year overall survival rate for advanced EC is 47% to
69% in stage III and 15% to 17% in stage IV [182]. Specific serum markers have not been
established for clinical use in patients with EC. Regarding Cu, there is limited research on
EC. A recent analysis evaluated the serum concentrations of Cu and Zn in patients with EC,
finding lower levels of these metals compared to the control group [183]. In turn, patients
with a greater degree of myometrial invasion had lower Cu levels than those with less my-
ometrial invasion. In contrast, one study found elevated Cu levels without alteration in Zn
levels [184], and others reported no changes in tissue Cu in patients with EC [80] or serum
Cu in patients with OC and EC [185]. Other investigators found higher mean Cu levels in
the serum of EC patients, but the results were not statistically significant. However, the
authors observed that the menopausal status and body mass index of the patients were risk
factors for EC, which may be affected by Cu concentrations [186]. Furthermore, in a review,
the authors found that Cu IUD use could reduce the risk of EC, but the mechanism of action
is unclear [187]. It is evident that the results obtained over the years have contradicted each
other; therefore, more studies evaluating Cu levels are required to determine the possible
clinical relevance in patients with EC.

2.2.3. ‘Benign’ Diseases

Benign neoplasms have received less attention than malignant tumors, probably due
to the biased view that ‘malignant’ is life-threatening and ‘benign’ has little effect. While
this may be true, benign tumors can put pressure on vital organs, disrupt hormonal balance,
and become malignant over time. Although both types of tumors have marked differences
(for example, the ability to metastasize), they can be very similar at a mechanistic level,
starting from abnormal cell proliferation [86].

Benign uterine diseases are common gynecological disorders in women of reproduc-
tive age, and this category includes endometrial polyps [188], uterine leiomyomas [189],
and endometriosis [190], among others. Symptoms range from dysmenorrhea and irregular
uterine bleeding to the risk of infertility. Associated factors are age, diet, lifestyle, pregnancy,
abortion, and hormone use [188–191]. Endometrial polyps are common endothelial tumors
that cause abnormal uterine bleeding and comprise endometrial glands, stroma, blood
vessels, and fibrous tissue [188,192]. Although most are benign, malignant transformation
has been observed in some cases [192], and estrogen and progesterone play an important
role in their pathogenesis, controlling their growth and development [193,194]. Uterine
leiomyomas (also called fibroids or myomas) are benign monoclonal neoplasms of the
myometrium and represent the most common pelvic tumors in women, affecting more than
70% worldwide [189]. There are three cell populations in fibroids: well-differentiated cells,
intermediately differentiated cells, and stem cells, which are believed to be the origin of
fibroids [195]. Fibroid-initiating stem cells are more prevalent in women of Afro-American
descent and lower in Caucasian women [196]. Searching the relationship between Cu
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and these uterine diseases revealed few articles on the subject. One study of patients
diagnosed with polyps, fibroids, or other benign uterine diseases reported a significant
increase in serum Cu levels compared to healthy women [197]. Another showed that Cu
levels were higher in patients with uterine fibroids compared to the control group and
significantly higher in patients with CC compared to those with fibroids [175]. In patients
with endometrial polyps, no differences were found in serum Cu levels compared to the
control group [198], but the Cu/Zn ratio was statistically higher, so the authors suggested
that oxidative stress would play a role in the pathogenesis of endometrial polyps. By
comparing different gynecological diseases, the lowest serum Cu values were found in
patients with endometrial polyps and highest in patients with EC, along with elevated Zn
levels in uterine fibroids [186].

Endometriosis (EDT) is an estrogen-dependent disease characterized by endometrial-
like tissue growing outside the uterine cavity. EDT is considered a chronic and systemic
disease, affecting 5–10% of reproductive-age patients in the world [190]. Although EDT
is not cancer in itself, it presents similar characteristics: progressive and invasive growth,
recurrence, ability to develop its own blood supply, and tendency to metastasize [199];
therefore, it is interesting to know whether Cu has some relationship with this pathology.
The first studies reported elevated Cu levels in serum and urine samples from patients
with EDT [200,201], which were associated with oxidative stress [200,202]. In patients with
advanced-stage EDT [200], a positive correlation was found between Cu and the total
oxidant status and between Cu and the oxidative stress index. In another work carried
out in animals with induced EDT, the authors demonstrated that elevated Cu levels were
positively correlated with the volume of endometriotic-like lesions, high nitrite levels
in peritoneal fluid, and increased catalase and glutathione peroxidase activity [202]. In
endometriotic lesions, SOD1 has also been found to have increased activity compared
to controls [203], which is important for tumor formation [204]. Cu could also stimulate
the main signaling pathways of cell proliferation in EDT [205], contributing to malignant
transformation within this pathology. Considering that EDT is an estrogen-dependent
disease, it is interesting to highlight that Cu is capable of modulating steroidogenesis. It
has been observed that, at low levels, this metal can decrease the concentration of estradiol
precursor hormones [206], while at high levels, it promotes the expression of enzymes
related to the synthesis of this estrogen [207]. We found that the surgical establishment
of EDT in mice increased the concentrations of Cu and estradiol, and the administration
of a Cu chelating drug decreased both concentrations to values similar to the group with
placebo surgery [208]. We also found similar results in another study [209], in which
elevated Cu and estradiol levels were efficiently reduced by a Cu chelator in a murine
model deficient in tumor necrosis factor (TNF-α) receptor 1 (TNFR1), which presents an
aggravated state of EDT [202,210,211].

3. Therapeutic Strategies

The recognition that Cu can have a crucial role in disease pathogenesis has led to the de-
velopment of therapeutic strategies designed to modulate Cu transport and concentrations;
to date, the main focus has been on strategies to treat different types of cancer [72,212,213].
Currently, there is significant interest in strategies to mitigate Cu dyshomeostasis, and
hence, the attractiveness of applying these therapeutic strategies to the gynecological
diseases analyzed in this review. We will focus on the two main strategies, namely Cu
chelators, which decrease the bioavailability, and Cu ionophores, which increase intracellu-
lar Cu levels. We will subsequently analyze new strategies related to nanotechnology and
plant-derived natural compounds, which have been gaining ground as potential treatments
for gynecological diseases.

3.1. Copper Chelators

A chelator is a chemical compound capable of selectively binding to a particular metal
atom or ion through a coordination bond, forming a stable structure [214]. The mechanism
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of action of Cu chelators involves binding to the metal with subsequent excretion of
Cu to inhibit cuproplasia. Historically, Cu chelators were developed to treat Wilson’s
disease [66], and the most representative examples are D-penicillamine, trientine, and
tetrathiomolybdate (Table 2). While the first two have been used clinically for Wilson’s
disease for many years, tetrathiomolybdate is a more recent addition—it has been approved
in Europe but is still undergoing clinical trials in the US [65]. Considering the critical role
of Cu in cancer progression, different authors investigated whether Cu chelators could
serve as an antitumor strategy in animal models and clinical trials [77], promoting the
emergence of many reports with interesting results. Cu chelation therapy is promising, not
only because of its effectiveness but because these agents have the ability to act selectively
on malignant tumors, exerting little toxicity on normal cells [47,79].

Table 2. Examples of Cu chelators.

Compound Name Chemical Formula Structural Formula 1
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3.1.1. D-penicillamine

D-penicillamine is a byproduct derived from penicillin that, in addition to binding
Cu with great strength, has the ability to chelate other divalent cations such as Ni, Zn, and
Pb [77]. The mechanism of action is based on the chelation of Cu2+ ions with the subsequent
formation of a stable complex that is excreted through the urine [215]. D-penicillamine
is commonly used to treat Wilson’s disease; however, it has been associated with severe
toxicity due to numerous adverse effects, such as dystonia, hypersensitivity, pancytopenia,
fever, renal failure, congestive heart failure, and tremor, among others [216]. This drug
can also be used for cystinuria, rheumatoid arthritis, and heavy metal poisoning [216].
It was shown that Cu chelation by D-penicillamine inhibited neovascularization and
human endothelial cell proliferation, affecting angiogenesis [217] and decreasing tumor
growth [218]. It also inhibited LOX activity and reduced VEGF expression, causing deficient
collagen cross-link formation and delaying tumor progression [219]. In a recent study,
the authors observed that treatment with D-penicillamine (but not trientine) caused the
inhibition of cell proliferation and EMT by affecting TGF-β/Smad signaling in glioblastoma
cells [220]. In oxaliplatin-resistant cervical cancer cells, the combination of D-penicillamine
with oxaliplatin or CDDP had a synergistic lethal effect, promoting a greater formation
of platinum-DNA adducts, with an increase in the expression of CTR1 and a decrease in
ATP7A through the transcription factor Sp1 [221]. Clinical trials with D-penicillamine have
been developed for Wilson’s disease, rheumatoid arthritis, cystinuria, and brain tumors.

3.1.2. Trientine

Due to the severe side effects induced by D-penicillamine treatment, triethylenete-
tramine or trientine was introduced. This drug has a lower Cu-chelating capacity and

http://www.drugbank.com/
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better tolerability than D-penicillamine and is indicated in those patients with Wilson’s
disease who do not tolerate D-penicillamine [222]. Trientine has a polyamine structure
that chelates Cu through a stable ring, promoting cupriuresis [222]. The risk of neuro-
logical deterioration with trientine is similar to that of D-penicillamine, which usually
resolves by reducing the dose [223]. Other adverse events are headache, anemia, arthralgia,
rash, and gastrointestinal upset. Trientine has been investigated as a potential anticancer
agent. It suppressed tumor development in mice [224] and in hepatocellular carcinoma
cell lines [225] and reduced tumor growth in a murine fibrosarcoma model [226]. It also
inhibited tumor angiogenesis by decreasing endothelial cell proliferation and expression
of CD31 [224] and IL-8 [225]. In addition, trientine is an inhibitor of telomerase [227], an
essential factor for cell immortalization that is expressed in most human cancers [228].
Because Cu chelation has been shown to enhance platinum uptake by tumor cells, a small
clinical trial combined trientine with carboplatin and pegylated liposomal doxorubicin for
the treatment of OC, fallopian tube cancer, and recurrent peritoneal cancer refractory to
platinum therapy (ClinicalTrials.gov ID: NCT03480750, Table 3) [229]. The results showed
that the combination was safe, but antitumor activity was modest, with no correlation
between the clinical response and Cu or Cp levels. This finding was inconclusive, possibly
due to the small sample size or the potential influence of ethnic distribution [229].

3.1.3. Tetrathiomolybdate

Another highly specific and widely studied Cu chelator is tetrathiomolybdate, particu-
larly ammonium tetrathiomolybdate (TM), which is rapidly absorbed and has a good safety
profile. The first indication of its Cu-binding capacity was the recognition that ruminant
animals fed Mo-rich grasses developed a Cu deficiency syndrome (tear disease) [230]. The
initial report suggested the administration of molybdates to treat Wilson’s disease; how-
ever, a subsequent study showed no clinical benefit in patients [231]. Unlike ruminants, in
which rumen cellulose disulfide reacts with Mo, the human gastric mucosa cannot reduce
molybdate to the form that can bind Cu [232]. Eventually TM, a reduced form of molybdate,
was introduced to diminish Cu levels in humans. If Cu levels are normal, TM is converted
to molybdate, incapable of binding Cu, and is excreted via the urine. In the presence of
excessive levels of Cu, TM interferes with Cu absorption at the intestinal level when taken
with meals and, between meals, forms a stable tripartite complex with serum albumin and
circulating Cu to promote biliary excretion, reducing excessive levels of the metal [100,222].
The side effects can be anemia, leukopenia, and increased transaminases, which are easily
reversed by reducing the daily dose of TM [233]. Despite the low toxicity of TM, its clini-
cal use is somewhat limited due to the instability of ammonium with oxygen, so a more
stable and pharmacologically equivalent TM derivative, bis-choline tetrathiomolybdate
(ALXN1840), is also available and is being investigated for the therapy of Wilson’s disease.

Ammonium tetrathiomolybdate has also been shown to reduce tumor growth and
function as an effective antiangiogenic agent in both preclinical studies and clinical tri-
als in cancer [98,234–238]. TM can (a) suppress the transcriptional activity of NF-κB,
which in turn decreases the expression of angiogenic factors, such as VEGF, FGF, IL-1α,
IL-8 [99], (b) induce the degradation of HIF-1α and therefore, reduce the expression of
pro-angiogenic factors [97], and (c) suppress Cu chaperone proteins, inhibiting the delivery
of Cu to cuproenzymes such as LOX [100,239]. Among these enzymes, inhibition of SOD1
is one of the main therapeutic targets of TM, producing antiangiogenic and antiproliferative
effects [240]. Recently, other studies have suggested that TM-induced Cu depletion inhibits
MEK1/2 kinase activity, suppressing BRAFV600E-driven tumorigenesis [90,241,242]. In
research carried out with OC and EC cell lines, it was found that treatment with TM de-
creased the protein levels of HIF-1α by mediating its degradation independently of Akt
signaling, affecting VEGF levels [97]. It was also observed that trientine or D-penicillamine
does not decrease HIF-1α, even at a concentration three times higher than that used with
TM [97]. If high Cu levels are reduced, it is possible to sensitize cells to chemotherapy and
radiotherapy; therefore, combining these treatments with TM is of interest [237,243–246].



Int. J. Mol. Sci. 2023, 24, 17578 15 of 39

Research confirmed that Cu depletion sensitized OC cells to therapy with mitomycin C, fen-
retinide, and 5-fluorouracil by increasing ROS production and inducing DNA damage [237].
TM treatment also improved the efficacy of CDDP in EC and OC cells [245], exerting an
antiproliferative effect. TM also enhanced the cytotoxic effects of doxorubicin in EC and OC
cells by increasing ROS levels and inducing apoptosis [237,246]. A recent study evaluated
the combined effect of TM and lenvatinib (a VEGFR inhibitor) in a model of hepatocellular
carcinoma [247]. Tumor burden was positively correlated with Cu concentration, and TM
in combination with lenvatinib suppressed tumor growth and angiogenesis to a greater
extent than either drug alone, indicating the potential value of this combination as an
anticancer treatment.

There is currently no cure for endometriosis, so it is necessary to investigate new
treatments that allow the control of EDT progression [248]. Due to the demonstrated
implication of Cu in the progression of EDT, our research group first investigated TM
as a potential therapy [208,209] and found that it was highly effective in a model with
induced EDT. TM decreased the size of the lesions and reduced the elevated levels of
Cu and estradiol to physiological levels, along with antiproliferative and antiangiogenic
effects [208]. Observing these promising results, we investigated the therapeutic potential of
TM in a TNFR1-deficient murine model with induced EDT, which presents an aggravation
of the pathology [209]. TM inhibited the EDT progression in the deficient mice, notably
affecting cell proliferation, angiogenesis, and oxidative stress while restoring the levels
of Cu and estradiol, which are higher in this aggravated version of EDT [209]. TNF-α
secretion can be regulated by Cu [212], and several studies have reported the crucial role
played by TNF-α, TNFR1, and TNF-α receptor 2 (TNFR2) in EDT [202,210,249,250]. Cell
survival, cell proliferation, and cell death occur as a balance between the TNFR1 and
TNFR2 signaling pathways, demonstrating the significant crosstalk between them [251,252].
Without TNFR1 expression, TNFR2-dependent pathways that promote tumor progression
become relevant [251]. We found that TM also decreased the expression of Tnfr2 [209], and
this is important since blocking TNFR2 has been shown to reduce tumor growth [253] and
EDT development [254]. Table 3 shows some of the clinical trials where the effectiveness of
Cu chelators in gynecological diseases has been evaluated. As can be observed, despite the
promising preclinical results, TM has not yet been investigated as a single or combination
therapy in gynecological diseases. The last active clinical trial is a Phase 2 study in breast
cancer (ClinicalTrials. gov ID: NCT00195091, Table 3), where it has so far shown that
patients with triple-negative breast cancer were more responsive to TM treatment than
patients with other breast cancer subtypes [238]. ALXN1840 has only been tested for the
therapy of Wilson’s disease (Table 3).

Table 3. Examples of clinical trials on drugs related to Cu. Information was obtained from the public
database (http://www.clinicaltrials.gov/), accessed on 11 November 2023.

Disease Trial Phase Intervention Trial ID Status Study
Completion

Breast
Cancer Phase 2 TM NCT00195091 Active, not

recruiting 06/2025

Wilson’s
Disease Phase 2 ALXN1840 NCT04422431 Completed 05/2023

EOC, TC,
PPC Phase 1–2 Trientine 2HC

+ PLD + carboplatin NCT03480750 Completed 12/2019

Advanced
cancers Phase 1 Trientine 4HC

+ carboplatin NCT01178112 Completed 08/2014

EOC, TC,
PPC Phase 2 Elesclomol +

paclitaxel NCT00888615 Completed 08/2016

CC Phase 2 64CuII(atsm) NCT00794339 Terminated 12/2011

CIN Phase 2 Curcumin NCT04266275 Not yet
recruiting 03/2025

http://www.clinicaltrials.gov/
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Table 3. Cont.

Disease Trial Phase Intervention Trial ID Status Study
Completion

CC Phase 1–2 Curcumin
+ radiotherapy NCT05947513 Not yet

recruiting 11/2024

CC Phase 2 Curcumin NCT04294836 Withdrawn 12/2023

EDT Phase 2 Curcumin NCT04493476 Unknown
Status 12/2022

CC, EC Phase 2
Pembrolizumab

+ radiation +
curcumin + immune
modulatory cocktail

NCT03192059 Completed 06/2021

EC Phase 2 Curcumin NCT02017353 Completed 10/2016

3.2. Copper Ionophores

Unlike the sequestering nature of Cu chelators, Cu ionophores transport this metal into
cells, forcing an increase in the intracellular Cu concentration and exerting cytotoxic effects
through different pathways [10,255]. Examples of Cu ionophores are disulfiram, clioquinol,
elesclomol, and bis(thiosemicarbazone) analogs [mainly CuII(atsm) and CuII(gtsm)]. Sev-
eral years ago, it was determined that tumor cells were more sensitive to elevated levels of
ROS than were normal cells [256]. Despite the promoting effects of Cu on tumor progres-
sion, inducing Cu accumulation within cancer cells could promote ROS elevation to take
advantage of ROS toxicity as a potential antitumor therapy [257]. Cuproptosis is a specific
type of cell death recently postulated by Tsvetkov et al. [258], which is triggered by the
accumulation of intracellular Cu. The authors showed the ability of Cu to bind to lipoylated
proteins of the tricarboxylic acid (TCA) cycle, promoting increased mitochondrial energy
metabolism and toxicity stress, which ultimately causes cell death. The mode of action of
Cu ionophores is believed to be interaction with DNA, inhibition of the proteasome, and
the ability to displace other metals from the binding sites on critical proteins [259,260].

3.2.1. Disulfiram and Dithiocarbamates

The best-known dithiocarbamates are pyrrolidine dithiocarbamate and diethyldithio-
carbamate, the active form of disulfiram (DSF). DSF has been used for many years to treat
alcohol dependence since it inhibits the enzyme, aldehyde dehydrogenase (ALDH) [261],
and the first evidence of its effectiveness in cancer was in 1977 when it was used in an
alcoholic patient with metastatic breast cancer who received DSF and went into spon-
taneous remission [262]. Since then, its possible use as an anticancer agent has gained
interest [263–266]. DSF has been shown to inhibit cell proliferation, migration, and in-
vasion by altering the nuclear translocation of NF-κB and the expression of Smad4 [267].
This downregulates proteins such as Snail and Slug, inhibiting EMT and hindering tumor
metastasis. In OC cells, DSF also inhibits ALDH [268,269], which has been related to
poor prognosis because it promotes resistance to therapy, the maintenance of cancer stem
cells, and the mitigation of oxidative stress [270,271]. DSF also prevents the growth of
endometriotic lesions by reducing angiogenesis, cell proliferation, and NF-κB expression.
In an animal model of endometriosis, DSF increased the serum concentration of malondi-
aldehyde (a marker of lipid peroxidation) and lowered the total antioxidants, TNF-α, and
IL-1β compared to the control group [272]. DSF also enhances the anticancer activity of
chemotherapeutic drugs, such as CDDP and temozolomide [266,273], which is why DSF
is often used in combination therapy. Beneficial effects have been observed in OC, where
the combination of DSF with docosahexaenoic acid (DHA) [274] and PARP inhibitors [275]
suppressed tumor growth, improving drug sensitivity. In these studies, DSF ameliorated
DHA-induced oxidative stress by upregulating Nrf2-mediated HO-1 (heme oxygenase
1) gene transcription [274] and inhibiting the expression of genes associated with DNA
damage repair [275]. In turn, it was demonstrated in chemoresistant OC cells that DSF
combined with CDDP synergistically inhibited tumor growth, possibly promoting the
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downregulation of Smad3 [276]. By adding Cu, it is possible to enhance the DSF activity
in some cases by the DSF/Cu complex formation [266,277–279]. Evidence has shown that
the main targets of DSF/Cu may be the levels of ROS, the ubiquitin–proteasome system,
and NF-κB [263,265,273,280]. DSF/Cu preferentially targets cancer cells and cancer stem
cells rather than normal cells [281–284]. An example of this was observed by Xu et al.,
where DSF/Cu was cytotoxic in a dose-dependent manner for leukemia stem cells without
affecting normal hematopoietic progenitor cells [282]. In another study, DSF increased Cu
absorption in cancer cells, with an increase in Cu redox reactions, promoting oxidative
stress [285]. In human osteosarcoma cells, DSF/Cu reduced cell growth by autophagy and
apoptosis in a ROS-dependent manner with the implication of the ROS/JNK pathway [286],
similar to the effects observed in CC cell lines [287]. Although several dithiocarbamates and
their derivatives have demonstrated Cu-dependent anticancer activity [288], and promising
preclinical results have been observed with DSF, clinical studies in cancer patients have
not been successful. When DSF/Cu was administered as monotherapy, it did not produce
significant benefits in patients with solid tumors, probably due to insufficient bioavailability
of DSF and its metabolite in blood [273].

3.2.2. Clioquinol

The best-known derivative of the 8-hydroxyquinoline class of drugs is clioquinol,
which was initially synthesized as an antimicrobial agent for shigellosis and intestinal ame-
biasis [289]. It has subsequently been studied in different diseases ranging from neurode-
generative disorders to cancer [280]. The first study to evaluate clioquinol as an antitumor
agent showed that it decreased viability by inducing apoptosis in eight different cancer
cell lines and prevented the growth of OC xenografts in mice [290], with similar results in
prostate cancer cells and xenografts [291]. Another study reported that a different OC cell
line was sensitive to the combination of clioquinol and DHA, with toxicity mediated by the
action of PPARα [292]. Similar to DSF, the anticancer activity of clioquinol is enhanced by
Cu and has been linked to proteasome inhibition and oxidative stress [290,293–295]. One
of the targets of clioquinol is the X-linked inhibitor of an apoptosis protein (XIAP), which
modulates caspase activity, allowing selective action with apoptosis being only triggered in
cancer cells [293] and an insignificant effect in normal cells. Clioquinol increases the tissue
content of Cu2+, indicating that the clioquinol–Cu2+ complex could be the metabolite that
triggers the death of cancer cells, and it could be formed intracellularly or extracellularly
and transported into the cells [296]. Clioquinol can trigger autophagy by inducing LC3
lipidation and autophagosome formation in myeloma and leukemia cells [295]. It can also
exacerbate the anticancer activity of macrophages toward CC cells, promoting the secretion
of interleukins and cytokines, such as TNF-α [297]. Although clioquinol has shown selec-
tive promise in cancer chemotherapy, it has also caused serious neurotoxicity that led to
its clinical prohibition [298]. Various routes of administration or combination with other
drugs for safer application are still being investigated [255,299]. Further derivatives of
8-hydroxyquinoline, such as PBT2 and nitroxoline, might have greater effectiveness as anti-
cancer agents by inhibiting the proliferation of cancer cells with fewer side effects [300,301];
nevertheless, they have not yet been tested in gynecological diseases.

3.2.3. Elesclomol and Derivatives

Elesclomol is a carbohydrazide, bis(thio-hydrazide amide), developed from a parent
molecule, which had anticancer activity but was chemically and metabolically unstable [302].
Elesclomol is stable and causes a 10-fold increase in cancer cell cytotoxicity compared
to the parent molecule. It induces oxidative stress in cancer cells [303–306] and alters
mitochondrial metabolism, particularly the TCA cycle, promoting cuproptosis [258,307].
The anticancer activity is due to the formation of an elesclomol–Cu2+ complex [308] that
facilitates transport into the mitochondria, where reduction to Cu+ leads to oxidative stress
and subsequent cell death [305]. Using CRISPR-Cas9 deletion, the mitochondrial protein
ferredoxin-1 (FDX1) was shown to bind to the elesclomol–Cu2+ complex, reducing Cu2+
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to Cu+ and promoting the anticancer activity of this ionophore [307]. In a mouse model,
treatment with elesclomol–Cu2+ inhibited the development of endometriosis through
FDX1-mediated cuproptosis [309].

Inactivating mutations in the AT-rich interactive domain-containing protein 1A (ARID1A)
are found more frequently in gynecological cancers [310], and in 14 gynecological cancer cell
lines, loss of ARID1A caused increased levels of ROS. Elesclomol inhibited tumor growth and
induced apoptosis in these ARID1A mutant cells [303]. In another in vitro study, elesclomol
with anisomycin inhibited the proliferation of OC stem cells, while elesclomol alone was
ineffective [311]. In an OC relapse model, both disulfiram and elesclomol promoted cell
death following treatment with carboplatin compared to carboplatin alone [312]. Although
these laboratory studies have been promising, when elesclomol was administered in clinical
trials as monotherapy or in combination with other chemotherapeutics for different types
of tumors [313–315], the benefit has been small or negligible. In a phase II clinical study,
elesclomol with paclitaxel was used as a treatment for cisplatin-resistant OC, fallopian tube
cancer, and peritoneal cancer [313]. Although this combination showed a good safety profile, it
did not produce the expected response, possibly because elesclomol is not effective at elevated
levels of the enzyme, lactate dehydrogenase (LDH) [313,316], suggesting that elesclomol may
be less effective in situations with a high rate of glycolysis. Hypoxia has been associated
with more aggressive tumors that have elevated LDH levels. Elesclomol is more effective in
non-hypoxic conditions because it interferes with metabolic processes in oxygenated tumor
cells [305]. For more information, in a recent review, special attention is paid to elesclomol as
an anticancer therapy [317].

3.2.4. Bis(thiosemicarbazones)

Thiosemicarbazones and bis(thiosemicarbazones) are capable of binding to metals,
forming stable, lipophilic, and often neutral complexes [318]. Diacetyl-bis-(N4-methylthiose
micarbazonato)-copper(II) [CuII(atsm)] and glyoxal-bis-(N4-methylthiosemicarbazonato)-
copper(II) [CuII(gtsm)] have a similar structure, but differences in their redox behavior [319].
Due to the elevated Cu levels in cancer, these ionophoric Cu compounds have been in-
vestigated to determine if they could selectively treat tumor cells without altering normal
cells. A study on a TRAMP (transgenic adenocarcinoma of the mouse prostate) model
documented CuII(gtsm) selectivity for cancer cells with high Cu levels [260]. CuII(gtsm)
increased ROS in TRAMP cells along with decreased GSH but did not do so in normal
mouse prostate epithelial cells. In another study investigating CuII(atsm) and CuII(gtsm)
as anticancer agents [320], CuII(gtsm) was cytotoxic against prostate cancer cells and sig-
nificantly reduced the tumor burden, while the CuII(atsm) action was insignificant. It is
important to note that CuII(gtsm) dissociates upon entering the cell, increasing the intracel-
lular bioavailability of Cu and causing toxicity, while the ligand (H2gtsm) is recycled out
of the cell and re-enters with more re-coordinated Cu [320]. This property explains how
increasing extracellular Cu improves the anticancer activity of CuII(gtsm), which could be
applicable in patients with elevated serum Cu levels. In contrast, CuII(atsm) retains Cu due
to its lower reduction potential in intracellular reducing environments [318,321]. CuII(atsm)
is selective toward cells with low oxygen levels since a more forced-reducing environment
(such as hypoxia) leads to the reduction of CuII(atsm) and its dissociation [319,322], as
demonstrated in hypoxic neuroblastoma cells where CuII(atsm) caused higher intracellular
Cu levels compared to control cells [321]. As a result of this characteristic, radiolabeled
Cu complexes have been synthesized that are theranostic, i.e., they allow simultaneous
imaging diagnosis and therapy [323], especially with the 64Cu isotope [324]. In one of the
first studies, 64CuII(atsm) demonstrated anticancer activity as a radiotherapy agent in a
hamster colon cancer model, increasing survival time without toxic effects [325]. Several
studies in cancer patients have been performed to evaluate survival concerning the uptake
of these isotopes. When 60CuII(atsm) was used as a marker of hypoxia, higher uptake
predicted a worse prognosis in patients with CC [326]. In another study of CC, 60CuII(atsm)
promoted the overexpression of VEGF, cyclooxygenase-2, epidermal growth factor receptor
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(EGFR), carbonic anhydrase 9 (CA-9), along with an increase in cell death [327]. In a com-
parative study, 64CuII(atsm) was shown to be more effective than 60CuII(atsm) in obtaining
better-quality images for patients with CC [328]. Cu ionophores may offer great selectivity
toward cancer cells with antitumor activity against different cancer types but, to date, most
preclinical results have not been replicated in patient trials, reflecting the need to better
understand the action mechanism and pharmacokinetics of these compounds [47].

3.3. New Therapeutic Strategies

Recognizing that alterations in Cu homeostasis are involved in the pathogenesis of
various diseases and the potential value of Cu-based therapies has prompted the devel-
opment of new compounds based on Cu [329]. Nanotechnological strategies and natural
plant-derived compounds have been gaining ground as potential treatments for gynecolog-
ical diseases.

3.3.1. Cu-Based Nanoparticles

Nano-oncology involves the use of nanotechnological strategies for cancer treatment.
In this sense, nanoparticles (NPs) can function directly as an antitumor treatment or as a
vehicle to mediate the controlled administration of drugs to increase their effectiveness
and decrease their side effects [330]. Cu-based NPs (CuNPs) form a stable structure with
a diameter of 10–50 nanometers, and they are used in a variety of industrial processes
that release them into the environment. CuNPs pass through wastewater treatment plants
into water systems and enter vegetation through the agricultural use of fertilizers and
pesticides [331], but current levels of environmental exposure have not been linked to
disease pathogenesis. Due to their high surface-to-volume ratio, CuNPs can interact
efficiently with tissues, an attractive characteristic for use in oncology. The Cu-induced
toxicity of CuNPs is related to oxidative damage through increasing ROS, the formation of
peroxy radicals, lipid peroxidation, and reduction in CCO activity [331]. The production of
NPs can be accomplished via ‘green synthesis’ using plants, algae, and microorganisms,
which is presumably an environmentally friendly process.

Copper-based nanoparticles have been investigated as antitumor agents in several
types of cancer [332–335]. In OC cell lines, CuNPs synthesized from a Camellia sinensis leaf
extract were effective in causing tumor cell death [332]. In CC lines, CuNPs synthesized
from a pumpkin seed extract caused a decrease in cell viability, increased production of ROS,
apoptosis induction, and the suppression of cell migration with the antitumor effect linked
to inhibition of the PI3K/Akt signaling pathway [335]. Similarly, other CuNPs synthesized
using an extract of Houttuynia cordata were effective as antitumor agents in CC cells [336].
The development of CuNP–transferrin loaded with doxorubicin also successfully inhibited
tumor growth in mice [337], and these NPs were able to specifically enter CC and breast
cancer cell lines that overexpressed the transferrin receptor. CuNPs synthesized from the
red alga Pterocladia capillacea and loaded with nedaplatin improved the antitumor activity
in OC compared to treatment with nedaplatin alone [338]. There have recently been reports
on an innovative and promising strategy to improve the precision of cancer treatment by
using NPs in photothermal therapy. Copper sulfide (CuS) NPs target tumor cells and enter
the nucleus; subsequent near-infrared laser irradiation activates the NPs to increase the
temperature within the nucleus, leading to apoptosis of the tumor cell. The main goal is to
target both the primary tumor and malignant cells that have escaped, thereby minimizing
metastasis. Initial studies in mice have demonstrated that photothermal therapy was
effective and safe in eliminating residual CC cells and preventing tumor recurrence [339].
Another investigation showed that CuS NPs, together with laser irradiation, effectively
killed tumor cells in mouse models of OC with a minimal effect on surrounding healthy
tissue [340].
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3.3.2. Natural Compounds Derived from Plants

In recent years, attempts have been made to identify natural molecules that can be used
in oncology. Although these compounds are considered to act as antioxidants, the objective
is to have them work as pro-oxidants in the presence of Cu, catalyzing ROS formation
and DNA degradation. In this regard, several plant-derived Cu-binding molecules have
been reported to exert anticancer effects and increase the antitumor activity of other known
chemotherapeutics with low side effects.

Curcumin

Curcumin, a bioactive turmeric polyphenol derived from the rhizomes of Curcuma
longa, chelates Cu with a wide range of biological effects, including antioxidant, anti-
inflammatory, and antimicrobial properties when examined in a variety of laboratory
models [341]. It may also have protective effects against different types of cancer, including
lung cancer, breast cancer, colon cancer, and gynecological cancers [342–344], but when
given orally, it is poorly absorbed and rapidly inactivated, limiting the potential for clinical
use. Strategies to improve the pharmacokinetics have included the creation of curcumin-
metal NP, and a curcumin–Cu complex was shown to have higher anticancer activity
compared to curcumin alone [345,346]. In an in vitro study with EC cells, curcumin treat-
ment suppressed tumor growth, inhibited cell proliferation, and promoted ROS-induced
apoptosis [347]. It also attenuated cell migration by increasing the expression of the Slit2
protein, causing the downregulation of SDF-1 (stromal cell-derived factor 1) and CXCR4
(C-X-C motif chemokine receptor 4) and, therefore, of MMP (matrix metalloproteinase)
2 and 9. The decrease in the expression of MMPs, with implications for invasion, migra-
tion [348], and cell proliferation [349], has been documented by other investigators. In
CC cells, curcumin suppresses proliferation and invasion by affecting the Wnt/β-catenin
and NF-κB pathways [350] and elevates intracellular ROS levels but not in healthy ep-
ithelial cells, leading to cell-specific apoptosis [351]. Regarding OC, curcumin has shown
great anticancer potential because it suppresses cell cycle progression, promotes apoptosis
and autophagy, and inhibits tumor metastasis, so current efforts are focused on finding
suitable derivatives to overcome the pharmacokinetic limitations (reviewed in detail by
Liu et al. [352]).

Curcumin has also been studied in animal models of PCOS, where it (a) reduces
testosterone levels and increases estrogen levels [353], (b) promotes an anti-inflammatory
mechanism by reducing proteins involved [354], (c) improves ovarian function [354,355],
(d) improves the levels of total cholesterol, HDL, LDL, and triglycerides [353,355], and
(e) decreases malondialdehyde levels and increases the activities of SOD, catalase, and
GSH [353,355], among other effects. However, the results in clinical trials are discrepant,
probably due to the inclusion and exclusion criteria used and the number of participants.
For example, in a clinical trial in patients with PCOS, curcumin reduced serum insulin,
fasting glucose, and the index of insulin resistance (HOMA-IR) [356], while no differences
were found in another clinical trial [357]. Regarding EDT, in an in vitro study, curcumin
induced a lower expression of ICAM-1, VCAM-1, IL-6, IL-8, and MCP-1 by inhibiting the
activation of NF-κB induced by TNF-α without affecting the viability of endometriotic
stromal cells [358]. However, another study showed that the number of endometriotic
lesions, their volume, and the degree of adhesions, along with the levels of IL-1β, IL-6,
HIF-1α, and VEGF, were reduced in mice treated with curcumin compared with the control
group [359]. Reduced secretion of pro-angiogenic chemokines and pro-inflammatory
cytokines, upregulation of IL-10 and IL-12, and abrogation of IKKα/β, NF-κB, STAT3, and
JNK signaling pathways have been demonstrated in eutopic endometrial stromal cells from
patients with EDT treated with curcumin [360]. Curcumin reduces cell survival, VEGF
expression, and cell proliferation in endometriotic cells [361] and lowers estradiol levels that
are elevated in EDT [362]. In addition, curcumin may decrease EDT by promoting apoptosis
through p53-dependent and -independent mitochondrial pathways [363]. Patients with
EDT receiving a combination of quercetin, turmeric, and N-acetylcysteine reported a
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reduction in pain and lower use of non-steroidal anti-inflammatory drugs (NSAIDs) [364].
The role of curcumin and other plant-derived compounds as potential treatments for EDT
has been reviewed in detail by Meresman et al. [365]. Table 3 shows some clinical trials that
use or have used curcumin alone or with other treatments.

Coumarins

Coumarins are found in plants, such as Rutaceae and Umbelliferae, and belong to the benzo-
α-pyrone family. These compounds have anti-inflammatory, antioxidant, and antitumor activ-
ities [366]. A coumarin–Cu complex [367,368] and a coumarin–Cu–thiosemicarbazone hybrid
have been effective antiproliferative agents in cell lines of different types of cancer [369], and
a coumarin–amide–Cu complex was shown to have greater antitumor capacity than CDDP
in a breast cancer cell line [370]. Two studies in OC cells have demonstrated the antitumor
effect of two natural derivatives of coumarin, 4-methylumbelliferone, and Osthole. These
compounds reduce cell proliferation by affecting the PI3K/Akt and MAPK pathways [371]
or induce several cell death mechanisms [372]. Osthole has also been tested in CC cells,
where it reduces cell viability, proliferation, migration, and invasion, along with inducing
apoptosis [373]. The combination of Osthole with CDDP reduced cell proliferation and en-
hanced apoptosis in CC cells to a greater extent than CDDP alone, notably downregulating
the PI3K/Akt pathway [374]. Other coumarin derivatives have similar effects on this pathway
in CC cells [375,376]. Imperatorin, a furanocoumarin derivative, was effective in an animal
model of EDT [377], significantly inhibiting the growth of ectopic endometrium, improving the
histopathological characteristics, and inhibiting the PI3K/Akt/NF-κB pathway. Auraptene,
a coumarin derivative found in citrus fruits, decreased the inflammation and elevated the
fertilization rate in isolated oocytes in a mouse model of PCOS [378]. The drug lowered ROS
levels and elevated intracellular GSH levels, indicating that auraptene could be a potential
candidate to improve oocyte maturation and fertilization capacity in patients with PCOS [378].
This has subsequently been confirmed in a mouse model of in vitro fertilization and early
embryo development [379].

4. Concluding Remarks

Gynecological diseases are characterized by high prevalence, morbidity, and mortality
and it is essential to investigate the pathogenesis and possible diagnostic and therapeutic
strategies for these disorders. Over the years, the importance of Cu in health and disease
has been increasingly recognized, and research on Cu has gained prominence, with ex-
tensive efforts to document and understand its complex roles and diverse mechanisms of
action. Although Cu is crucial for many physiological functions, it is also potentially toxic
at altered levels, and specific regulatory mechanisms normally prevent Cu dyshomeostasis.
Documenting these mechanisms and the alterations that can occur has revealed that Cu
has a critical role in the pathogenesis of several diseases, particularly cancer, where Cu is
involved in every step from tumorigenesis to metastasis. With time, different therapeutic
options based on Cu have emerged for a variety of disorders with promising results, both in
animal models and in clinical trials. Some strategies are based on reducing high levels of Cu
with chelators to slow the progression of specific gynecological diseases. Other drugs, such
as Cu ionophores, can force Cu into cells to take full advantage of its toxic role and induce
tumor cell death. Notably, these two categories of drugs mediate opposite actions: Cu chela-
tors inhibit cuproplasia, while Cu ionophores induce cuproptosis. Given the attractiveness
of altering Cu levels as a therapeutic strategy, the need to continue investigating these types
of drugs is evident, and this will also require further understanding of the pathogenesis
of each disorder and the potential role of Cu dyshomeostasis. Ongoing research is an
essential stage in the discovery of more effective treatments to target specific genes and
influence distinct signaling pathways. The development of new Cu-based compounds
holds great promise to revolutionize diagnostic and therapeutic strategies, especially for
those gynecologic diseases with high mortality.
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Akt Protein kinase B
ALDH Aldehyde dehydrogenase
ALXN1840 Bis-choline tetrathiomolybdate
ARID1A AT-rich interactive domain-containing protein 1A
Arp Actin-related proteins
ATOX1 Antioxidant chaperone 1
ATP Adenosine triphosphate
ATP7A Copper-transporting ATPase alpha
ATP7B Copper-transporting ATPase beta
BRAF Serine/threonine-protein kinase B-raf
CA-9 Carbonic anhydrase 9
Cas9 CRISPR-associated protein 9
CC Cervical cancer
CCDC Coiled-coil domain containing protein
CCO Cytochrome C oxidase
CCS Copper chaperone for superoxide dismutase
CD31 Cluster of differentiation 31
CDDP Cisplatin
CIN Cervical intraepithelial neoplasia
CMRGs Copper-metabolism related genes
COMMD Copper metabolism MURR1 domain-containing protein
COX11 CCO copper chaperone 11
COX17 CCO copper chaperone 17
COX19 CCO assembly factor 19
Cp Ceruloplasmin
CRISPR Clustered regularly interspaced short palindromic repeats
CTR1 Copper transporter 1
CTR2 Copper transporter 2
Cu Copper
Cu IUDs Copper intrauterine devices
CuS NPs Copper sulfide nanoparticles
CXCR C-X-C motif chemokine receptor
DβH Dopamine-β-hydroxylase
DCYTB Duodenal cytochrome B
DHA Docosahexaenoic acid
DMT1 Divalent metal transporter 1
DSF Disulfiram
EC Endometrial cancer
ECM Extracellular matrix
EDT Endometriosis
EGFR Epidermal growth factor receptor
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EMT Epithelial-mesenchymal transition
EOC Epithelial ovarian cancer
ERK Extracellular signal-regulated kinase
FDX1 Ferredoxin-1
FGF Fibroblast growth factor
GSH Glutathione
2HC Dihydrochloride
4HC Tetrahydrochloride
HIF-1α Hypoxia-inducible factor 1-alpha
HO-1 Heme oxygenase 1
HOMA-IR Homeostatic model assessment for insulin resistance
HPV Human papillomavirus
HREs Hypoxia response elements
ICAM Intercellular adhesion molecule
IKKs Inhibitory kappa B kinases
IL Interleukin
IMS Mitochondrial intermembrane space
IR Insulin resistance
JNK c-Jun N-terminal kinase
LC3 Microtubule-associated protein light chain 3
LDH Lactate dehydrogenase
LOX Lysyl oxidase
LOXL LOX-like proteins
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein-1
MEK Mitogen-activated protein kinase kinase
MEMO1 Mediator of cell motility 1
MMP Matrix metalloproteinase
MT Metallothionein
MTF1 Metal-regulatory transcription factor 1
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor kappa B
NO Nitric oxide
NPs Nanoparticles
Nrf2 Nuclear factor erythroid 2-related factor 2
NSAID Non-steroidal anti-inflammatory drug
OC Ovarian cancer
p53 Tumor protein p53
PARP Poly (ADP-ribose) polymerase
PBT2 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline
PCOS Polycystic ovary syndrome
PDGF Platelet-derived growth factor
PI3K Phosphoinositide 3-kinase
PLD Pegylated liposomal doxorubicin
PPAR Peroxisome proliferator-activated receptor
PPC Primary peritoneal cancer
RAF Rapidly accelerated fibrosarcoma
ROS Reactive oxygen species
SCO1 Synthesis of cytochrome C oxidase 1
SDF-1 Stromal cell-derived factor 1
SOD Superoxide dismutase
STAT Signal transducer and activator of transcription
STEAP Six-transmembrane epithelial antigen of the prostate
TC Fallopian tube cancer
TCA Tricarboxylic acid
TGF-β Transforming growth factor beta
TGN Trans-Golgi network
TM Ammonium tetrathiomolybdate
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TMD Transmembrane domain
TNF Tumor necrosis factor
TNFR TNF receptor
TRAMP Transgenic adenocarcinoma of the mouse prostate
ULK Unc-51 like autophagy activating kinase
VCAM Vascular cell adhesion protein
VEGF Vascular endothelial growth factor
VEGFR VEGF receptor
WASH Wiskott–Aldrich syndrome protein and SCAR homolog
XIAP X-linked inhibitor of apoptosis protein
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