
Citation: Bispo, D.S.C.; Correia, M.;

Carneiro, T.J.; Martins, A.S.; Reis,

A.A.N.; Carvalho, A.L.M.B.d.;

Marques, M.P.M.; Gil, A.M. Impact of

Conventional and Potential New

Metal-Based Drugs on Lipid

Metabolism in Osteosarcoma MG-63

Cells. Int. J. Mol. Sci. 2023, 24, 17556.

https://doi.org/10.3390/

ijms242417556

Academic Editors: Claudia Riccardi

and Marialuisa Piccolo

Received: 15 November 2023

Revised: 12 December 2023

Accepted: 14 December 2023

Published: 16 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Impact of Conventional and Potential New Metal-Based Drugs
on Lipid Metabolism in Osteosarcoma MG-63 Cells
Daniela S. C. Bispo 1,† , Marlene Correia 1,† , Tatiana J. Carneiro 1,2 , Ana S. Martins 1,2, Aliana A. N. Reis 1,
Ana L. M. Batista de Carvalho 2 , Maria P. M. Marques 2,3 and Ana M. Gil 1,*

1 Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro,
Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; d.bispo@ua.pt (D.S.C.B.);
marlene24@ua.pt (M.C.); tatiana.joao@ua.pt (T.J.C.); ascm@ua.pt (A.S.M.); aliananosolini@ua.pt (A.A.N.R.)

2 Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga,
300-535 Coimbra, Portugal; almbc@uc.pt (A.L.M.B.d.C.); pmc@ci.uc.pt (M.P.M.M.)

3 Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de
Freitas, 3000-456 Coimbra, Portugal

* Correspondence: agil@ua.pt; Tel.: +351-234370707
† These authors contributed equally to this work.

Abstract: This work investigated the mechanisms of action of conventional drugs, cisplatin and
oxaliplatin, and the potentially less deleterious drug Pd2Spermine (Spm) and its Pt(II) analog,
against osteosarcoma MG-63 cells, using nuclear-magnetic-resonance metabolomics of the cellular
lipidome. The Pt(II) chelates induced different responses, namely regarding polyunsaturated-fatty-
acids (increased upon cisplatin), suggesting that cisplatin-treated cells have higher membrane flu-
idity/permeability, thus facilitating cell entry and justifying higher cytotoxicity. Both conventional
drugs significantly increased triglyceride levels, while Pt2Spm maintained control levels; this may
reflect enhanced apoptotic behavior for conventional drugs, but not for Pt2Spm. Compared to
Pt2Spm, the more cytotoxic Pd2Spm (IC50 comparable to cisplatin) induced a distinct phospholipids
profile, possibly reflecting enhanced de novo biosynthesis to modulate membrane fluidity and drug-
accessibility to cells, similarly to cisplatin. However, Pd2Spm differed from cisplatin in that cells had
equivalent (low) levels of triglycerides as Pt2Spm, suggesting the absence/low extent of apoptosis.
Our results suggest that Pd2Spm acts on MG-63 cells mainly through adaptation of cell membrane
fluidity, whereas cisplatin seems to couple a similar effect with typical signs of apoptosis. These
results were discussed in articulation with reported polar metabolome adaptations, building on the
insight of these drugs’ mechanisms, and particularly of Pd2Spm as a possible cisplatin substitute.

Keywords: Pt(II) and Pd(II)-complexes; spermine; human osteosarcoma cells; NMR; metabolomics;
cellular lipophilic extracts

1. Introduction

Osteosarcoma (OS) is the most common type of primary malignant bone tumor. Al-
though OS can develop at any age, children, teenagers, and young adults (aged from 10 to
30 years) represent the most affected populations [1]. The introduction of chemotherapy
for OS treatment has led to a substantial improvement in the prognosis of patients with
localized OS (long-term survival rates have increased from less than 20% to 65–70%) [2].
The most effective regimen, designated as MAP, includes the combination of high-dose
methotrexate (MTX), doxorubicin (adriamycin, DOX), and cisplatin (cis-Pt(NH3)2Cl2, cDDP).
However, several side effects and rare toxicities have been identified for this chemothera-
peutic protocol [3–5], justifying the continuous need for new and more effective anticancer
drugs against this type of neoplasia. Since the serendipitous discovery of cDDP as an anti-
cancer agent [6] and its introduction to the clinic [7], this compound has been successfully
used in the treatment of several types of cancer (e.g., bone, brain, breast, head, lung and
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ovarian) [8,9]. However, cDDP has been associated with severe side effects, namely hepa-
toxicity, nephrotoxicity, neurotoxicity, and ototoxicity, as well as acquired resistance [10,11],
thus prompting the search for novel platinum-based anticancer drugs with distinct modes
of action and higher efficacy. As a consequence, carboplatin and oxaliplatin (OXA) have
been approved for clinical use as second-generation Pt(II)-based metal complexes [8,12],
even though they are still associated with some severe deleterious side effects [8,9,13].

Palladium-based compounds have attracted increasing interest as promising alterna-
tives to platinum drugs, due to the chemical similarity between Pd(II) and Pt(II) ions [14].
In addition, given the ability of linear polyaminic ligands to form stable complexes with
both metal ions, polynuclear Pt(II) and Pd(II) chelates with polyamines have been the
object of intense research in the last two decades [14–18]. Indeed, biogenic amines such as
spermine (H2N(CH2)3NH(CH2)4NH(CH2)3NH2, Spm) have been used as effective coor-
dinating ligands [14], able to bind to more than one metal center and form highly flexible
complexes, which allow the formation of long-range intra- and inter-strand crosslinks with
DNA. This seems to lead to DNA damage that is more severe and less repairable than for
the mononuclear conventional drugs (e.g., cDDP, carboplatin, or OXA) [14]. In particular,
the dinuclear Pt(II) and Pd(II) chelates, Pt2Cl4Spm and Pd2Cl4Spm (abbreviated to Pt2Spm
and Pd2Spm, respectively), have exhibited favorable in vitro antitumor activity toward
different cancer types, including OS [16–18], and Pd2Spm has been shown to be more
effective than its Pt(II) analog in some cases [18]. Regarding OS, Pd2Spm exhibited an IC50
of about 10-fold lower than Pt2Spm [17].

Untargeted nuclear magnetic resonance (NMR) metabolomics has been applied to
evaluate the metabolic impact of cDDP on several cancer cell lines, namely lung [19–21],
brain [22–24], breast [25–28], ovarian [29] and OS [16,17,30,31]. Some of these studies
analyzed whole or lysed cells, while others have focused on cellular extracts [18,23,24,28,29]
and media [29]. As for OXA, to the best of the authors’ knowledge, it has been assessed by
NMR metabolomics of hydrophilic extracts of hepatocellular carcinoma [32] and OS [17]
cells. Regarding the new dinuclear Spm chelates, the effect of Pd2Spm has been investigated
in OS, through high-resolution magic angle spinning (HRMAS) NMR of lysed cells [16] and
NMR of hydrophilic extracts [18], having been shown to induce less significant metabolic
changes than cDDP, along with comparatively higher cytotoxicity [17]. Concerning the
metabolic impact of Pt2Spm, a single previous study by the authors has been reported on
hydrophilic extracts of a human OS cell line (MG-63) [18]. Although mass spectrometry
(MS) is more commonly employed in lipid profiling studies, NMR spectroscopy presents
itself as a valuable tool, as it enables the simultaneous observation of several lipid families
while also being non-destructive, rapid, and of high reproducibility [33]. In fact, an NMR-
based strategy has been previously applied to evaluate the metabolic impact of cDDP
on lipophilic extracts of brain [24] and ovarian [29] cancer cell lines. In the former, the
evaluation of several brain tumor cell lines with different sensitivities to cDDP treatment
showed increased levels of saturated and unsaturated lipids in cDDP-responsive cells,
possibly associated with lipid droplet accumulation resulting from cellular membrane
degradation or de novo lipid biosynthesis [24]. As for ovarian cancer cell lines exposed
to cDDP, an increase in cholesterol, triglycerides (TGs), and polyunsaturated fatty acids
(PUFAs) was reported [29], probably reflecting ongoing membrane degradation during
apoptotic processes. Moreover, 1H HRMAS NMR metabolomics of lysed MG-63 cells
have highlighted significant changes in the lipid metabolism upon exposure to either
cDDP [16,30,31] or Pd2Spm [16], suggesting that lipophilic extracts may provide further
information on lipidic metabolic response.

In this study, an untargeted NMR metabolomics strategy was followed for the first
time to the authors´ knowledge, in order to evaluate the impact of the dinuclear Pt(II) and
Pd(II) chelates Pt2Spm and Pd2Spm on the lipophilic metabolome of a human OS cell line
(MG-63), and compare it with the effect of conventional mononuclear Pt(II) drugs cDDP
and OXA (chemical structures found in Figure 1). This work builds upon a previous report
on the impact of these Pt- and Pd-chelates on the hydrophilic metabolome of the same OS



Int. J. Mol. Sci. 2023, 24, 17556 3 of 17

cells [18]. Our results should contribute to a better understanding of the mode of action of
these metal-based drugs and unveil potential metabolic markers of OS response to therapy.
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Figure 1. Chemical structures of the Pt(II)/Pd(II) chelates named (a) cisplatin (cDDP), (b) oxaliplatin
(OXA), and (c) Pt(II)/Pd(II) Spermine (Spm) (Pt2Spm/Pd2Spm). The 3D structures shown have been
calculated according to reference [34].

2. Results and Discussion
2.1. NMR Spectra of Lipidic Extracts of OS Cells Exposed to the Different Pt(II)/Pd(II) Drugs

Figure 2 (bottom trace, in black) shows the average 1H NMR spectrum of the lipophilic
extracts of control MG-63 cells at 0 h (CTR 0 h), where vertical expansions reveal particular
quantifiable resonances arising from: total cholesterol (TC, peak 1), unspecified methyls
from all fatty acids (FAs) (peak 2), methyls from FAs except ω-3 FAs (peak 3), free cholesterol
(FC) 19-CH3 (peak 4), esterified cholesterol (EC) 19-CH3 (peak 5), monounsaturated FAs
(MUFAs) (peak 6), ω-3 + ω-6 FAs (peak 7), overlapped contributions from FAs in TGs,
glycerophospholipids (GPLs) and EC (peak 8), overlapped contributions from free FAs
(FFAs) and FAs in 1-monoglycerides (1-MGs) (peak 9), unassigned resonance at δ 2.47 (peak
10), linoleic acid (LA) (peak 11), PUFAs (peak 12), phosphatidylethanolamine (PtdEtn)
(peak 13), sphingomyelins (SMs) (peak 14), phosphatidylcholine (PtdCho) (peak 15), 1-MGs
(peak 16), TGs (peak 17), unassigned resonance at δ 4.64 (peak 18), GPLs (peak 19), UFAs
(peak 20) and plasmalogens (Pls) (peak 21). The 1H NMR spectra of MG-63 lipid extracts are
dominated by resonances arising from FAs, PtdCho, and UFAs, and a full list of assigned
spin systems may be found in Table S1. This set of assignments is broadly consistent with
those based on previous 1H HRMAS NMR reports of lysed MG-63 cells [16,30,31] and of
extracts of MG-63 cells (grown in monolayer and as spheroids) [35–37].

Visual inspection of the average normalized spectra of MG-63 cells under different
conditions (Figure 2) firstly reveals changes in controls, from 0 to 48 h (Figure 2, black
and grey traces), namely relative increases in TC (peak 1) and EC (peaks 4 and 8), FAs in
TGs/GPLs (peak 8) PtdEtn (peak 13), SMs (shoulder 14), PtdCho (peak 15), GPLs (peak 19),
UFAs (peaks 20) and Pls (peaks 21); and decrease in 1-MGs (peaks 16). These differences are
apparent visual changes that seem to accompany tumor cell proliferation alone, however,
they require validation through statistical analysis (as shown below). Other apparent profile
changes are noted across the spectra for MG-63 cells exposed to the different drugs for 48 h
(Figure 2, grey rectangles), including two still unassigned but prominent features numbered
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as 10 and 18. The relevance and meaning of visual spectral changes upon proliferation
(controls alone) and treatment with each Pt(II)/Pd(II) drug are discussed below.
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Figure 2. Average normalized 1H NMR spectra (500 MHz, CDCl3) of lipidic extracts from MG-63 cells
prior to exposure (controls, CTR, at 0 h, black trace), following growth during 48 h (CTR at 48 h, grey
trace), and upon exposure to 30 µM cisplatin (cDDP 48 h, purple trace), 100 µM oxaliplatin (OXA 48 h,
yellow trace), 240 µM Pt(II)-spermine chelate (Pt2Spm 48 h, pink trace) and 24 µM Pd(II)-spermine
chelate (Pd2Spm 48 h, turquoise trace); the drug doses used correspond to their IC50 values at 48 h.
Apparent peak variations in controls after 48 h are indicated by ↑ or ↓ corresponding to increases and
decreases, respectively, whereas the grey rectangles guide the eye to regions where profile changes
occur depending on the drug. Peak assignment and multiplicity (see abbreviations at the end of
caption): 1. TC (s, 18-CH3), 2. Uδ0.80 (br), 3. All FAs except ω-3 (t, CH3), 4. FC (s, 19-CH3), 5. EC (s,
19-CH3), 6. MUFAs (m, -CH2-CH2-CH=), 7. ω-3 + ω-6 FAs (m, -CH2-CH2-CH=), 8. FAs in TGs + GPL
+ EC (m, -CH2-CO), 9. FFAs + FAs in 1-MGs (t, -CH2-CO), 10. Uδ2.47 (d), 11. LA (t, =CH-CH2-CH=),
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12. PUFAs (m, =CH-CH2-CH=), 13. PtdEtn (br, N-CH2), 14. SMs (s, -N (CH3)3
+), 15. PtdCho (s,

-N(CH3)3
+), 16. 1-MGs (ddd, 1-CH2 glycerol), 17. TGs (dd, 1-CH2/3-CH2 glycerol), 18. Uδ4.64 (d); 19.

GPLs (m, 2-CH glycerol), 20. UFAs (m, -HC=CH-), 21. Pls (d, O-CH=CH). All numbered peaks (part of
lipid spin systems) were chosen for subsequent integration, and a full list of assignments can be seen
in Table S1. Abbreviations: 1-MGs, 1-monoacylglycerides; EC, esterified cholesterol; FAs, fatty acids;
FC, free cholesterol; FFAs, free fatty acids; GPLs, glycerophospholipids; MUFAs, monounsaturated
fatty acids; Pls, plasmalogens; PtdCho, phosphatidylcholine; PtdEtn, phosphatidylethanolamine;
PUFAs, polyunsaturated fatty acids; SMs, sphingomyelins; TC, total cholesterol; TGs, triglycerides;
UFAs, unsaturated fatty acids; Uδ (m): unassigned signal at chemical shift δ; *, excluded spectral
regions; s: singlet, br: broad, t: triplet, m: multiplet, d: doublet, dd: doublet of doublets, ddd: doublet
of doublets of doublets.

2.2. Multivariate and Univariate Statistical Analysis of NMR Data
2.2.1. Multivariate Models of Lipidic Extracts of MG-63 Cells after 48 h of Exposure Time to
Pt(II)/Pd(II) Drugs

Principal component analysis (PCA) and partial-least-squares discriminant analysis
(PLS-DA) scores scatter plots obtained with all the spectra (Figure 3a and b, respectively)
indicate that controls evolve from 0 to 48 h toward more positive PC1/LV1, whereas all
drug-exposed MG-63 cells are placed in negative PC1/LV1. This confirms that controls
alone express distinct changes in lipophilic profile with culture time, which should charac-
terize tumor cell proliferation under untreated conditions. Regarding drug-exposed groups,
their position in negative PC1/LV1 (Figure 3a,b) probably reflects the less proliferative
nature of treated cells. Therefore, sample position along PC1/LV1 seems to provide a
qualitative indication of relative MG-63 cell proliferation extension, with more positive
LV1 suggesting that higher proliferation rates seem to be associated with higher levels of
TC, FC, MUFAs, phospholipids (PtdCho, SMs, PtdEtn, GPLs, and Pls) and UFAs (positive
red peaks in Figure 3c), along with possible lower levels of TGs and 1-MGs, along with
several unassigned resonances (negative red peaks in loadings plot, Figure 3c). Although
no clear group separation is observed for the different drug-exposed groups in the full PCA
(Figure 3a), in the corresponding PLS-DA some separation is observed between cDDP-
and OXA-treated cells (Figure 3b, purple and yellow symbols, positive LV2) and both
Pt(II)/Pd(II)Spm complexes (Figure 3b, pink and turquoise symbols, negative LV2). It is
possible, therefore, that spermine complexes induce a partially similar lipid profile, due to
the presence of the common ligand. In this case, the corresponding PLS-DA loadings (LV2,
Figure 3d) do not show as many resonances with high variable importance to projection
(VIP) (suggesting fainter lipid changes between drug groups), but suggest that cells treated
with spermine-containing complexes (either Pt2Spm or Pd2Spm, positioned in negative LV2,
Figure 3b) may contain fewer TGs (positive red peaks in LV2 loadings, Figure 3d) and a ten-
dency for higher levels of cholesterol, GPLs, PtdCho and PtdEtn (negative orange/yellow
peaks in LV2 loadings, Figure 3d).

The above suggestions based solely on multivariate analysis need validation through
spectral inspection, peak integration, and univariate statistical analysis, as apparently high
VIP spectral changes in loadings may not necessarily reflect meaningful statistical relevance.
In any case, pairwise PCA (Figure S1a–d) clearly shows a distinction between each of the
drug groups compared to the controls (all at 48 h), with the two spermine-containing
complexes Pt2Spm and Pd2Spm exhibiting only partial separation (Figure S1e). In addition,
it is interesting to note that PCA of the spectra corresponding to cells exposed to each of
the three Pt(II) chelates, cDDP, OXA, and Pt2Spm (Figure S1f), indicates a clear separation
between OXA (yellow symbols) and Pt2Spm (pink symbols), whereas the two cDDP-
exposed samples are positioned between those groups. Hence, it is clear that the different
ligands in Pt(II) chelates induce distinct lipid profiles reflective of distinct mechanisms of
action toward MG-63 cells.
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Figure 3. Multivariate statistical analysis of 1H NMR spectra of lipid extracts of MG-63 cells (in
CDCl3) at 48 h of exposure time to cDDP (purple symbols, n = 2, 30 µM), OXA (yellow, n = 4, 100 µM),
Pt2Spm (pink, n = 4, 240 µM), and Pd2Spm (turquoise, n = 3, 24 µM), compared to the controls at
0 h (black, n = 3) and 48 h (grey, n = 6). (a) Principal component analysis (PCA) and (b) partial
least square-discriminant analysis (PLS-DA) scores scatter plots; (c) LV1 and (d) LV2 loadings plots
corresponding to the PLS-DA model shown in (b).
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2.2.2. Lipidic Changes in Untreated Proliferating MG-63 Cells (0–48 h Period)

Peak integration and univariate statistical analysis of lipid variations, expressed as
effect size (ES) (Figure 4 and Table 1) and normalized integrals (Figure 5), confirm that
tumor cell proliferation alone (controls at 0 and 48 h) is indeed accompanied by sig-
nificant increases in (i) TC (Figure 5a), (ii) UFAs (which comprise MUFAs and PUFAs,
which show increasing tendencies, Figure 5b–d), (iii) FAs incorporated in TGs and GPLs
(Figure 4a) and (iv) several phospholipids, namely GPLs, PtdCho and SMs, PtdEtn and
Pls (Figures 4a and 5e–h). All the changes above had indeed been visually observed in
the spectra (Figure 2) prior to statistical analysis. Control samples at 48 h show a qualita-
tive decrease in TGs, i.e., without statistical relevance (Figure 5i), but possibly suggesting
that higher cell proliferation at 48 h may occur partially at the expense of TG storage
lipids. In addition, the noted increase in phospholipids is an expected response to the need
for increased membrane synthesis, where increased UFAs and cholesterol (particularly
in its free form [38,39]) may also be required to determine/maintain membrane fluidity
properties, although cholesterol will certainly play many additional roles in proliferat-
ing cells [40]. Indeed, increased average FA unsaturation and polyunsaturation degrees
(Figures 4a and 5k,l) are consistent with some extension of increased membrane fluidity ac-
companying proliferation (despite the small tendency for average longer FA chain lengths,
which may not only relate to membrane FAs but also to mostly saturated FAs, which
integrate storage TGs).

Table 1. Statistically significant lipid variations (|ES| > 0.50, ES error < 80%, Wilcoxon rank-sum
p-value < 0.05) of MG-63 cells after 48 h exposure to cDDP, OXA, Pt2Spm, and Pd2Spm, compared
to the controls (untreated cells in the same 48 h period). Effect size (ES) values and corresponding
errors were calculated according to reference [41]. All differences presented were confirmed by visual
inspection of the spectra. Statistical significance is only indicated qualitatively (p-values < 0.05),
i.e., without specifying p-values, due to the low sample numbers in each group (particularly in
cDDP-treated cells for which n = 2, due to technical reasons).

Compound cDDP 48 h OXA 48 h Pt2Spm 48 h Pd2Spm 48 h

ES (Error (%)) p-Value ES (Error (%)) p-Value ES (Error (%)) p-Value ES (Error (%)) p-Value

TC −13.3 (50.4) <0.05 −11.5 (45.2) <0.05 −14.4 (44.7) <0.05 −9.3 (48.5) <0.05

UFAs −4.0 (63.5) <0.05 −4.7 (51.4) <0.05 −10.8 (45.4) <0.05 −7.6 (49.6) <0.05
MUFAs −5.1 (58.2) <0.05 −6.2 (48.3) <0.05 −7.7 (46.8) <0.05 −5.8 (52.0) <0.05
PUFAs - - - - −2.6 (65.7) <0.05 - -
FAs in TGs + GPLs −6.7 (54.5) <0.05 −6.6 (47.9) <0.05 −8.2 (46.5) <0.05 −3.7 (59.4) <0.05
FFAs + FAs in 1-MGs - - 2.9 (62.3) <0.05 - - - -

GPLs −27.3 (49.4) <0.05 −12 (45.1) <0.05 −29.1 (44.0) <0.05 −12.9 (47.4) <0.05
PtdCho + SMs −20.4 (49.6) <0.05 −6.6 (47.8) <0.05 −37.5 (44.0) <0.05 −9 (48.7) <0.05
PtdEtn −5.9 (55.9) <0.05 −6.6 (47.8) <0.05 −3.8 (55.2) <0.05 −2.2 (78.0) <0.05
Pls - - −2.9 (62.1) <0.05 - - −2.5 (72.2) <0.05

TGs 3.6 (66.1) <0.05 3.8 (55.2) <0.05 - - - -

Av. FA chain length - - −2.1 (74.7) <0.05 −3.1 (60.3) <0.05 −2.5 (72.5) <0.05
Av. FA unsat. index −6.8 (54.3) <0.05 −5.8 (48.9) <0.05 −20.7 (44.2) <0.05 −13.9 (47.3) <0.05
Av. FA polyunsat.
index - - −2.5 (67.5) <0.05 −7.4 (47.0) <0.05 −5 (53.8) <0.05

Uδ0.80 (br) - - 2.4 (68.0) <0.05 3.7 (55.5) <0.05 3 (65.0) <0.05
Uδ2.47 (d) 4.9 (58.9) <0.05 2.7 (64.1) <0.05 - - 3.4 (61.3) <0.05
Uδ4.64 (d) - - 3.2 (59.2) <0.05 4.3 (52.9) <0.05 3.8 (58.9) <0.05
Uδ7.76 (s) - - 1.9 (79.9) <0.05 3.3 (58.3) <0.05 2.6 (71.1) <0.05
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Figure 4. Heatmap showing statistically relevant variations found in different MG-63 lipid families
(cholesterol, fatty acids (FAs), phospholipids and triglycerides), as well as in average FA chain
length, unsaturation index, and polyunsaturation index, and some still unassigned resonances, Uδ

(multiplicity/characteristics), under the following conditions: (a) before and after 48 h of proliferation
and no drug treatment (CTR 0 h and CTR 48 h, respectively), and (b) upon treatment with cDDP,
OXA, Pt2Spm or Pd2Spm for 48 h, compared to CTR 48 h. The color scale varies from minimum (dark
blue) to maximum (dark red) effect size (ES) values [41]. *: Wilcoxon Rank-sum test p-value < 0.05,
shown only in cases where spectral confirmation was observed. Abbreviations as defined in the
caption of Figure 2.

2.2.3. Lipidic Changes in MG-63 Cells Treated with Pt(II) Complexes cDDP, OXA and
Pt2Spm (Same Metal, Distinct Ligands)

The impact of the three Pt(II) chelates on total cholesterol is similar, all agents inducing
a marked decrease, in relation to control cells at the same time point (48 h) (Figure 5a).
Unfortunately, no definite changes could be detected in either FC or EC due to the overlap
and specific relative intensities of the corresponding resonances (EC appearing as a shoulder
of the FC peak, which hindered reliable integration). It is interesting, however, to note
the comparable TC decreases for all Pt(II) drugs, which indicates that, whatever roles are
played by cholesterol (membrane fluidity and other bioactive roles), TC is independent of
the ligand in Pt(II) chelates, regarding their use in treated MG-63 cells.
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Figure 5. Lipidic levels of MG-63 cells before (CTR 0 h) and after 48 h of proliferation (CTR 48 h) or
exposure to cDDP (purple), OXA (yellow), Pt2Spm (pink), and Pd2Spm (turquoise). Normalized inte-
grals of lipids are shown, including (a) total cholesterol, (b–d) fatty acids (FAs), (e–h) phospholipids
and (i) triglycerides. Average (j) FA chain length, (k) unsaturation index, and (l) polyunsatura-
tion index were calculated according to [42]. Abbreviations as defined in the caption of Figure 2.
Symbols above branched lines refer to comparisons between groups: *, Wilcoxon rank-sum test
p-value < 0.05 (shown when also confirmed by visual inspection); #, relevant variations determined
based on spectral confirmation, applicable when comparing cDDP (n = 2) with other small-sized
groups (n ≤ 4).
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In terms of unsaturated FAs, a similar behavior is seen for total unsaturated FAs (or
UFAs) and MUFAs, with all Pt(II) drugs decreasing the levels of these species, compared to
the controls at 48 h, although such decreases are less marked for cDDP than for OXA and
Pt2Spm, which reach comparable levels (Figure 5b,c). This generalized decrease in UFAs
and MUFAs in treated cells may reflect the expected corresponding lower proliferation
rates. A distinct effect is noted for PUFAs, the levels of which are left unchanged by cDDP
exposure, whereas Pt2Spm and OXA (the latter displaying high variability) decrease them
markedly, apparently to comparable extents (Figure 5d). This is reflected in the average
FA unsaturation and polyunsaturation degrees (Figure 5k,l), the former following the
same trend as UFAs and MUFAs, whereas the latter is not changed by cDDP (compared
to the controls at 48 h) but decreases for both OXA and Pt2Spm. We hypothesize that
unsaturated FAs will mainly integrate cell membranes and determine their fluidity and
that the lesser cDDP-induced decrease in MUFAs and persistently high levels of PUFAs
suggest that the cell membranes of cDDP-exposed cells exhibit higher fluidity, compared to
OXA- or Pt2Spm-treated cells. The latter cells are, thus, expected to be characterized by
more rigid, perhaps more resistant, cell membranes. We postulate that the possibly more
fluid membranes upon cDDP treatment may be related to the drug´s lower IC50 (30 µM),
compared to OXA (100 µM) and Pt2Spm (240 µM) [17], possibly increasing membrane
permeability to the drug.

Membrane metabolism is, naturally, expected to be reflected on the phospholipids
profile. It is interesting to note that all quantifiable phospholipid resonances (GPLs,
PtdCho + SMs, PtdEtn and Pls, Figure 5e–h) show lower values for all Pt(II) agents, com-
pared to the controls at 48 h, with OXA treatment apparently inducing the lowest values
(although with high variability) compared to both cDDP and Pt2Spm. In the polar extracts
of the same cells [18], increases in free choline and glycerophosphocholine (GPC) were
associated with cDDP, OXA, and Pt2Spm action on MG-63 cells, with phosphocholine (PC)
exhibiting a drug-dependent behavior (not changing with OXA and only increasing for
Pt2Spm at 72 h). This was then interpreted as evidence of membrane degradation (although
PC seemed to exhibit a slightly specific behavior), which is consistent with the general
phospholipids decrease reported here.

In relation to storage lipids, as viewed by TGs, it is interesting to note the marked
increases in cDDP- and OXA-treated cells, in relation to the controls (Figure 5i), whereas
TG levels upon Pt2Spm treatment remain much lower and comparable to those in controls.
Increases in MG-63 cell lipids with cDDP treatment, as viewed by direct pellet analysis
through high-resolution magic angle spinning (HRMAS) NMR, have been reported be-
fore [16,30,31] and mostly interpreted as increased cytosolic lipid droplets (although also
suggested to have possible contributions from TG microdomains embedded in the plasma
membrane) [43]. Lipid increase has also been seen in tumor cells and in radiation-exposed
MG-63 cells [35] and is generally suggested to reflect cell apoptosis mechanisms. Hence,
while an increase in FA content (here viewed in the form of TGs) with treatment time is
expected for MG-63 cells upon cDDP, it is interesting that it occurs to high extents in both
cDDP- and OXA-treated cells, whereas it is not observed in Pt2Spm-treated cells. It is
indeed possible that the extension of apoptosis is lower in the latter situation, in agreement
with the highest IC50 (240 µM) seen for Pt2Spm, within all Pt(II) chelates. Although apopto-
sis could not be quantified for the samples studied here, we hypothesize that higher degrees
of apoptosis may explain the high TG values for cDDP and OXA, reflecting comparable
apoptotic behavior despite the differences in IC50 values (30 and 100 µM, respectively).
Interestingly, the change to a dinuclear Pt(II) chelate with spermine does not impact on TG
levels, probably as a result of less/no apoptosis. HRMAS studies of cell pellets have also
reported an increase in the overall FA average unsaturation degree and chain length for
cDDP-treated MG-63 cells [30], also interpreted as evidence of apoptosis. Such changes
oppose those observed in the cell extracts studied here (tendencies for a lower FA average
chain length and unsaturation degree for drug-treated cells, compared to the controls),
an observation that may be explained by the fact that HRMAS NMR records the signals
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from the more mobile lipids (and predictably not their total amount), whereas the NMR of
liquid extracts is expected to account for all lipids present in the sample. This may be seen
as one of the advantages of the extract analysis compared to the HRMAS direct analysis
(depending on the aim of the study, naturally), adding to the fact that the NMR of extracts
enables higher resolution to be achieved and, hence, better differentiation between distinct
lipid families. It is interesting that the previously reported metabolomic analysis of the
polar extracts of these cells suggested higher tricarboxylic acid (TCA) activity (and a less
active Warburg effect) for both cDDP and OXA-treated cells, compared to Pt2Spm [18].
It is possible that this switch for a more energetically favorable phenotype, based on an
enhanced oxidative phosphorylation (OXPHOS) profile, may be feeding enhanced de novo
lipid biosynthesis, here expressed by higher TG levels.

2.2.4. Lipidic Changes in MG-63 Cells Treated with Pt2Spm and Pd2Spm (Same Ligand,
Distinct Metal Centers)

Generally, Pd2Spm (with an IC50 value of 24 µM, comparable to that of cDDP, 30 µM)
induces a significantly more different lipid profile in MG-63 cells than its Pt(II) analog.
The impact of Pd2Spm, compared to Pt2Spm, is characterized by generally higher levels,
namely of TC, UFAs, MUFAs, PUFAs (tendency only), GPLs, PtdCho + SMs, PtdEtn, as well
as average unsaturation and polyunsaturation degrees (mostly reflecting the higher levels
of MUFAs (Figure 5a–g,k,l)). In fact, all the above-mentioned lipid species and ratios are
decreased, compared to the controls at 48 h, in Pd2Spm-treated cells, but not as much as seen
for Pt2Spm (and OXA). This behavior generally approaches Pd2Spm-induced levels of TC,
several unsaturated FAs, and phospholipids, to those characterizing cDDP-treated cells. We
hypothesize that the relative increases in TC and, particularly, in unsaturated FAs (including
unsaturation and polyunsaturation degrees), indicate that Pd2Spm-treated cells exhibit
higher membrane fluidity, compared to Pt2Spm and OXA, and similarly to cDDP, thus
probably justifying the higher and similar cytotoxicity of both Pd2Spm and cDDP (in terms
of drug facilitated access to the intracellular environment). In addition, the similar tendency
for the most abundant phospholipids (higher than Pt2Spm and OXA, and approaching
or similar to cDDP) initially suggests similar degrees of membrane degradation for both
Pd2Spm and cDDP. However, PC levels in polar extracts [18] were significantly higher in
Pd2Spm-treated cells (ES 19 and 7 at 48 and 72 h, respectively) than in Pt2Spm-treated
cells (only change noted at 72 h, with ES 2), with values tending (but still lower) to those
characterizing cDDP-treated cells (ES 7 and 3, at 48 and 72 h). We suggest, therefore, that
the marked PC increases upon Pd2Spm treatment may express a preferential use of PC as a
precursor for sustained phospholipid biosynthesis in surviving MG-63 cells, particularly
upon exposure to Pd2Spm (as supported by the relatively higher GPL, PtdCho + SM and
PtdEtn levels observed for both Pd2Spm and cDDP). Phospholipid metabolism seems,
therefore, to reflect a fine equilibrium between degradation and biosynthesis, possibly
resulting in the inclusion of more unsaturated FAs, thus leading to more fluid membranes
and more drug-accessible cells.

Notably, Pd2Spm- and Pt2Spm-treated MG-63 cells show equivalent low levels of
TGs, markedly lower than those characterizing the effects of cDDP and OXA (Figure 5h,i).
Both Pt2Spm and Pd2Spm-treated cells exhibited lower TCA cycle activity, compared to
cDDP [18], supporting the idea that enhanced OXPHOS may energetically support en-
hanced TG synthesis. Above, these lipids were suggested to relate to the degree/occurrence
of cell apoptosis and, hence, the unchanged TG levels (compared to the controls at 48 h)
characterizing cells treated with both spermine chelates seem to indicate the absence of
apoptosis in both cases. Indeed, no apoptosis was detected in a previous HRMAS NMR
study of Pd2Spm treatment of MG-63 cell pellets, contrary to the high apoptotic behavior
of cDDP-treated cells [16] and this is in agreement with the observations reported here, for
MG-63 cell lipidic extracts.

We, therefore, suggest that the mechanism of action of Pd2Spm on MG-63 cells, as
viewed by the lipidome adaptations, does not involve a high extent of apoptosis as cDDP
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does, but rather an adaptation of cell membrane composition and fluidity (strongly sup-
ported by high levels of PC), to facilitate the entrance of Pd2Spm into the cells. Once in
an intracellular environment of seemingly non-apoptotic MG-63 cells (or, at least, less
apoptotic than with cDDP), Pd2Spm has been reported to give rise to significantly distinct
amino acids and nucleotides responses (lower TCA and OXPHOS activation, and lesser
reversal of the Warburg effect [18]), which previously suggested a different mechanism of
action to the highly apoptotic induction of cDDP. The present results add that the Pd2Spm
action seems indeed to be accompanied by less/absence apoptosis as well as an active role
of PC in membrane biosynthesis/repair processes, possibly resulting in higher membrane
fluidity and, thus, easier drug entrance into the cells.

3. Materials and Methods
3.1. Chemicals and Solutions

Cisplatin (cis-diamminedichloro platinum(II), cDDP > 99.9%), minimum essential medium
(MEM), non-essential amino acids (NEAA), oxaliplatin (OXA), penicillin/streptomycin 100×
solution, phosphate-buffered saline (PBS), potassium tetrachloroplatinate(II) (K2PtCl4, >99.9%),
potassium tetrachloropalladate(II) (K2PdCl4, >99.9%), sodium pyruvate (100 mM), spermine
(N,N′-bis(3-aminopropyl)-1,4- diaminobutane, free base, Spm), Trypan blue (0.4% w/v), trypsin-
EDTA (1×), as well as solvents, inorganic salts, and acids (analytical grade) were purchased
from Sigma-Aldrich Chemical S.A. (Sintra, Portugal). Fetal bovine serum (FBS) was obtained
from Gibco-Life Technologies (Grand Island, NY, USA). Pt2Spm and Pd2Spm were synthesized
according to published procedures [44] optimized by the authors [45]. Briefly, 2 mmol of
K2PdCl4 or K2PtCl4 were dissolved in a small amount of water, and 1 mmol of Spm (aqueous
solution) was added dropwise, under stirring. After 24 h, the resulting powder was filtered
and washed with acetone. For drug administration, initial stock solutions of cDDP (960 µM),
OXA (1 mM), Pt2Spm (2.4 mM), and Pd2Spm (960 µM) were prepared in: PBS, for cDDP and
OXA; and PBS with DMSO 20% (v/v), for Pt2Spm and Pd2Spm. All solutions were filtered
(0.20 µm syringe filters) and stored at −20 ◦C.

3.2. Cell Culture

The human osteosarcoma MG-63 cell line was obtained from ECACC (European
Collection of Authenticated Cell Cultures, UK). Cells were grown as monolayers under a
humidified atmosphere with 5% CO2 at 37 ◦C, in MEM culture medium, supplemented
with 10% (v/v) heat-inactivated FBS, 1% (v/v) sodium pyruvate, 1% (v/v) NEAA and
antibiotics (penicillin/streptomycin 10×).

3.3. Sample Preparation

MG-63 cell cultures were established in 100 mm diameter Petri dishes at a density of
3.0 × 104 cells/cm2 in order to provide a sufficiently high cell density for NMR analysis,
upon well pooling when necessary. After waiting 24 h for cells to adhere, the experiment
was started (t = 0 h) by adding the IC50 concentration of each drug (previously deter-
mined [17]): 30 µM cDDP, 100 µM OXA, 240 µM Pt2Spm and 24 µM Pd2Spm. According
to the population doubling time for MG-63 cells (24 h), the 48 h time-point after drug
addition was chosen for sample collection and compared with 0 h. Cells were harvested by
trypsinization, washed twice with PBS, centrifuged (at 300× g, 5 min), and counted by the
Trypan blue exclusion assay. These cell pellets were then snap-frozen in liquid nitrogen and
stored at −80 ◦C until cell extraction for NMR analysis. Two independent experiments with
triplicates for each condition (time-point and drug) were set up; however, some samples
had to be discarded due to technical reasons and final group sizes were as follows: controls
0 h n = 3, controls 48 h n = 6, cDDP 48 h n = 2, OXA 48 h n = 4, Pt2Spm 48 h n = 4 and
Pd2Spm 48 h n = 3.
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3.4. Cell Extraction

Intracellular lipidic metabolites were extracted using a dual-phase extraction, with
methanol/chloroform/water, as described elsewhere [46,47]. Briefly, 650 µL of cold
methanol 80% was added to cell pellets, quickly vortexed (5 min), transferred into micro-
centrifuge tubes containing 0.5 mm glass beads, to aid cell breakage, and vortexed for 5 min.
Cold chloroform (260 µL) was added, and samples were vortexed, followed by the addition
of cold chloroform (260 µL) and Milli-Q water (220 µL), and vortexed again. Samples were
then left to rest in ice for 10 min, followed by centrifugation (2000× g, 15 min), and the
lower (lipidic) phase was transferred into new vials, dried under nitrogen, and stored at
−80 ◦C until NMR analysis.

3.5. NMR Spectroscopy

The NMR spectra of lipophilic extracts were carried out after reconstitution of the
dry extracts in 600 µL of deuterated chloroform (99.8% deuterium) with 0.03% tetram-
ethylsilane (TMS) for chemical shift referencing. After vortexing, 550 µL of each sample
was transferred into 5 mm NMR tubes. NMR spectra were acquired on a Bruker Avance
DRX-500 spectrometer operating at 500.13 MHz for 1H observation, at 298 K, using a 5 mm
probe. Standard 1D 1H NMR spectra were recorded using the “zg” pulse sequence (Bruker
library), with a 7002.801 Hz spectral width, 32 k data points, a 2 s recycle delay (d1), a
2.34 s acquisition time (hence giving a total of 4.34 s of relaxation delay) and 512 transients.
Prior to Fourier transformation, free-induction decays were zero-filled to 65 k points and
multiplied by a 0.3 Hz exponential function. 1D 1H NMR spectra were manually phased,
baseline-corrected, and chemical shift referenced to the TMS signal (δ 0.00). 2D 1H/1H
total correlation (TOCSY), 1H/13C heteronuclear single quantum correlation (HSQC), and
J-resolved (J-res) spectra were acquired for selected samples to aid spectral assignment,
although, due to their lower resolution (compared to polar samples), peak assignment
relied more on comparison with existing literature [48–51], spectral databases, such as the
Bruker BIOREFCODE database and the human metabolome database (HMDB) [52], and
spiking experiments (namely to verify the presence of phosphatidylcholine (PtdCho), phos-
phatidylethanolamine (PtdEtn), lysophosphatidylcholine (LysoPtdCho), sphingomyelins
(SMs), mono-, di- and triglycerides (MGs, DGs, TGs), free and esterified cholesterol (Chol.,
EChol.), oleic acid (OA), arachidonic acid (AHA) and docosahexaenoic acid (DHA)).

3.6. Data Processing and Statistics

The full resolution 1D 1H NMR spectra were converted into matrices (AMIX-viewer
3.9.14, Bruker BioSpin, Rheinstetten, Germany), after exclusion of the chloroform and
corresponding satellites region (δ 6.90–7.65), and water region (δ 1.43–1.79). Spectra were
aligned using recursive segment-wise peak alignment (MATLAB 8.3.0, The MathWorks,
Inc., Natick, MA, USA), to minimize chemical shift variations [53], and normalized to total
spectral area, to account for differences in cell numbers. After unit variance (UV) scaling
(SIMCA-P 11.5; Umetrics, Umeå, Sweden) [54], multivariate analysis was carried out using
PCA, an unsupervised method used to detect intrinsic clusters and outliers within the
data set, and PLS-DA, a supervised method used to maximize class discrimination. PLS-
DA models were considered statistically robust for predictive power (Q2) values ≥ 0.50.
For selected models, PLS-DA loadings were retrieved and colored by VIP for analysis.
Lipid changes suggested by loadings analysis were validated by integration, as follows.
A representative peak of each spin system was integrated (AMIX 3.9.5, Bruker BioSpin,
Rheinstetten, Germany), normalized to total spectral area, and variations assessed by
univariate analysis (Wilcoxon rank-sum test) [55] (Python 3.9, Python Software Foundation,
Fredericksburg, VA, USA). Statistical significant metabolite alterations (p-values < 0.05,
absolute value of effect size (ES) > 0.5, and ES error < 80% [41]) were expressed in heatmaps
colored as a function of ES.
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4. Conclusions

This NMR metabolomics study reports distinct lipophilic responses of MG-63 cells
when treated with several Pt(II)/Pd(II) chelates, including conventional drugs, cDDP and
OXA, and potential spermine drugs, Pt2Spm and Pd2Spm. Although not as often used as
MS methods to characterize lipids, NMR measures the response of several lipid families
simultaneously, namely cholesterol, FAs, and related characteristics (average chain length
and unsaturation/polyunsaturation degrees), several phospholipids, and TGs. Prolifera-
tion alone (control conditions) was seen to require higher contents of phospholipids, as
membrane building blocks, while a slight FA unsaturation enhancement suggested a small
increase in membrane fluidity. Regarding cell exposure, it became clear that the three
Pt(II) chelates induced distinct lipidome responses, namely, the levels of PUFAs were kept
high by cDDP, while they decreased with OXA or Pt2Spm. Supposing that PUFAs will
mainly integrate membrane phospholipids, it is possible that cell membranes become more
fluid upon cDDP treatment, increasing cell permeability and hence contributing to higher
drug cytotoxicity (IC50 of 30 µM for cDDP, compared to 100 µM and 240 µM, for OXA and
Pt2Spm, respectively). Concomitantly, all quantifiable phospholipids (GPLs, PtdCho + SMs,
PtdEtn, and Pls) were decreased compared to the controls, suggesting membrane degrada-
tion, in agreement with previously reported high contents of polar degradation products
(mainly choline and GPC). Remarkably, cDDP and OXA significantly increased TG levels,
while Pt2Spm left them unchanged relative to the controls. We hypothesize that this reflects
enhanced apoptotic behavior induced by cDDP and OXA, but not by the dinuclear Pt2Spm
chelate. Given this hypothesis, a limitation of this work is that apoptosis quantification
could not be carried out, thus remaining the subject of ongoing work. We further sug-
gest that a previously discussed switch from lactate synthesis toward aerobic oxidative
phosphorylation in MG-63 cells exposed to cDDP or OXA may serve as energy support for
enhanced TG biosynthesis.

Comparison of both spermine chelates is most interesting, as the Pd(II) agent has
revealed promising cytotoxicity properties in several earlier reports. The lipidome behaved
quite distinctly as a result of Pt replacement by Pd, namely exhibiting phospholipid levels
approaching those in cDDP-treated cells (i.e., higher than in OXA- or Pt2Spm-exposed
cells). We propose that, for cDDP and Pd2Spm, phospholipid metabolism reflects a different
point of degradation/biosynthesis equilibrium, with a higher contribution of de novo
biosynthesis (possibly supported by PC as a preferential precursor, based on reported polar
metabolome adaptations), to incorporate more unsaturated FAs (also seen increased in
Pd2Spm-exposed cells, compared to OXA and Pt2Spm). This would lead to more fluid
membranes and more drug-accessible cells. Notably, Pd2Spm- and Pt2Spm-treated MG-63
cells show equivalent (low) levels of TGs, which suggests the absence (or low extent) of
apoptosis in the corresponding treated cells. Hence, our results suggest that the mechanism
of action of Pd2Spm on MG-63 cells does not seem to involve apoptosis, as cDDP, but
rather an adaptation of cell membrane composition and fluidity to facilitate the entrance
of Pd2Spm into the cells (such an effect is also suggested for cDDP but in tandem with
apoptosis induction). This is proposed as a possible mechanism through which Pd2Spm
exerts its high cytotoxicity toward MG-63 cells (comparably to cDDP), thus supporting the
promise of the Pd(II) chelate as a possible Pt(II) substitute in clinical therapy.
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