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Abstract: Forming pyridine salts to construct covalent organic cages is an effective strategy for
constructing covalent cage compounds. Covalent organic cages based on pyridine salt structures are
prone to form water-soluble supramolecular compounds. Herein, we designed and synthesized a
triangular prism-shaped hexagonal cage with a larger cavity and relatively flexible conformation.
The supramolecular cage structure was also applied to the encapsulation of pyrene and informa-
tion encryption.

Keywords: covalent organic cage; pyridine salts; water-soluble; cavity structure; encapsulation;
information encryption

1. Introduction

As an emergent discipline, supramolecular chemistry has been widely known and
extensively studied on account of its unique properties and potential applications in biolog-
ical imitation [1–8], gas encapsulation [9], organic photoreactions [10–12], catalysis [13,14],
molecular recognition [15–18], and so on. Many metal-organic supramolecular cages
have been constructed, such as octahedrons [19], tetrahedrons [20], spheres [21], square
prisms [22], triangular prisms [23], spirals [24], capsules [25], etc.

In addition, covalent organic cages with well-defined intrinsic porosity have attracted
increasing attention for the last decade [26–28]. Their internal cavity and external channels
have been applied for selective recognition and separation [29–31], catalysis [32,33], sens-
ing [34,35], and so on. Furthermore, compared with the metal-organic cage, the covalent
organic cage has better stability and acid and alkali resistance. At present, the construction
of water-soluble cage compounds remains challenging.

Forming pyridine salts to construct covalent organic cages is one of the effective
strategies for constructing covalent cage compounds [36–39]. This strategy can make the
covalent organic cage have different solubility by changing the discrete anions outside the
cavity. For example, the covalent organic cage with PF6

− anion is soluble in acetonitrile,
and the covalent organic cage with Cl− anion is soluble in water. Therefore, this strategy is
also effective for constructing water-soluble cage compounds. In this work, a water-soluble
covalent organic cage C that can interact with PAHs (polycyclic aromatic hydrocarbons)
was designed and synthesized. At the same time, the recycling of covalent organic cage C
was realized.

2. Results and Discussion

Covalent organic cage C was synthesized in six steps (Scheme 1). Commercially
available 1-indanone was selected as the starting substrate for the synthetic route. Com-
pound 2 was obtained by cyclotrimerization, substitution reactions, and bromination
reactions by reference to the methods in the literature [40]. Compound 4 was prepared from
compound 2 and compound 3 through a Suzuki coupling reaction under the catalysis of

Int. J. Mol. Sci. 2023, 24, 17541. https://doi.org/10.3390/ijms242417541 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242417541
https://doi.org/10.3390/ijms242417541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms242417541
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242417541?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 17541 2 of 8

tetra-triphenylphosphine palladium in a yield of 62%. Thereafter, an SN2 reaction between
an excess of p-xylylene dibromide (compound 5) and compound 4 in a MeCN/DMF mix-
ture under reflux for 2 days led to the formation of compound 6 after counterion exchange
in a yield of 67%. Finally, equimolar amounts of compound 6 and compound 4 in the
presence of 0.2 equiv. of tetrabutylammonium iodide (TBAI) as a catalyst were heated
under reflux in MeCN/MeOH/CDCl3 mixture solvent for 9 days, resulting in the isolation
of the crude chloride salt as a yellow solid after precipitating with tetrabutylammonium
chloride (TBACl). The crude chloride salt was washed with a mixture of methanol and
ether to give a covalent organic cage C in a 9.6% yield.
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Scheme 1. The synthesis of covalent organic cage C.

Covalent organic cage C was characterized by 1H NMR. The Ha and Hb of compound
6 are in different chemical environments, so Ha and Hb appear as two sets of signal peaks
with an integral area ratio of 1:1 (Figure S1). However, after the formation of the covalent
organic cage C, the Ha and Hb signal peaks in compound 6 transform into an Hc signal
peak with the same chemical environment, indicating the formation of a highly symmetric
structure (Figure 1a). In the ethyl group on compound 6, after forming covalent organic
cage C, the presence of the cavity causes part of the proton signals to move towards the
high field, and part of the proton signals are shielded, splitting into Hd, Hd’, and He, He’
(Figure 1b). The splitting of the signal fully proves the formation of the cavity structure
and the successful preparation of covalent organic cage C.

In addition to hydrogen NMR spectroscopy, electrospray mass spectrometry (ESI-
MS) is also a powerful means of characterizing covalent organic cages. Figure 2 shows
that the ESI-MS of covalent organic cage C revealed four sets of peaks with continuous
charge states (3+, 4+, 5+, and 6+), which were attributed to the successful departure of
Cl− counterions. The experimental isotope patterns for the four peaks were consistent
with the theoretical isotope patterns, indicating that the covalent organic cage C has been
constructed successfully. At the same time, the strongest peaks have been successfully
attributed, and their experimental isotopic patterns are also consistent with the theoretical
isotopic patterns (Figure S4). Covalent organic cage C was also characterized by high-
resolution mass spectrometry (HRMS). In the HRMS of covalent organic cage C, peaks
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with m/z values of 2005.8201 ([M+H]+) were observed (Figure S5) and were shown to be
consistent with the calculated values.
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Several efforts to obtain complete data for the x-ray analysis of single crystals of
covalent organic cage C were unsuccessful, so a simulated molecular model of covalent
organic cage C was constructed using Materials Studio 2020 software (Figure 3a,b). The
simulated molecular model analysis revealed that the structure of the covalent organic
cage C is exactly consistent with the expected triangular prismatic architecture, where the
truxene units and phenylene unit centers construct the faces and the pillar. Half of the
ethyl chain of the benzene ring pointed into the cavity, while the rest pointed outwards.
The window in the hollow cavity of the triangular prism structure is 7.5 Å wide and 18.9 Å
long, as measured by the Materials Studio software (Figure 3c).
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Covalent organic cage C, with a pyridine salt structure, exhibits good fluorescence
emission (Figure S7). It has been experimentally found that the covalent organic cage C
can interact with polycyclic aromatic hydrocarbons via π-π interactions, where pyrene
can gradually quench their fluorescence. As shown in Figure 4a, the fluorescence of the
covalent organic cage C continuously quenches with the continuous addition of pyrene,
and its fluorescence intensity shows a gradual decrease.
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Figure 4. (a) Fluorescence trend of covalent organic cage C with the addition of pyrene. (b) The plot of
fluorescence intensity of npyrene and nc at 490 nm for different equivalence ratios. (c = 1.0 × 10−6 M,
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After the interaction of the covalent organic cage C with pyrene, its recovery and
recycling were realized. As shown in Figure 5, the covalent organic cage C showed a bright
yellow fluorescence in methanol solution, to which pyrene was added, and its fluorescence
was gradually quenched. Subsequently, ether and deionized water were added to this
mixed system, and the covalent organic cage C and pyrene were present in different liquid
phases due to their different solubilities (covalent organic cage dissolved in water, pyrene
dissolved in ether). Thus, recycling of the covalent organic cage C was achieved.

Due to the fact that covalent organic cage C can gradually quench its fluorescence
when interacting with pyrene, we further explored their applications in fluorescent inks and
information encryption using this optical property. As shown in Figure 6, the cartoon image
drawn on the filter paper by the methanol solution containing C exhibits blue fluorescence,
attributed to the covalent organic cage C having a pyridine salt structure. Interestingly,
when the methanol solution containing pyrene continues to paint other parts of the cartoon
image except for the mouth and arm with the methanol solution containing pyrene, we
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obtain a purple fluorescent image, which may be due to the interaction of covalent organic
cage C with polycyclic aromatic hydrocarbons through Π-Π interactions in which pyrene
can gradually quench its fluorescence. It is important to mention that when a cartoon image
is drawn on paper with fluorescent ink (methanol solution containing C), only the outline
of the pattern can be seen under natural light conditions, but under the irradiation of a
365 nm UV lamp, a blue cartoon image can be clearly seen, and then the fluorescent color
changes accordingly under the action of the pyrene solution, so it can be used to display
different information according to the color of the fluorescent ink and then used to display
different information.
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3. Materials and Methods
3.1. Materials

All reagents were purchased from Sigma-Aldrich, Fisher, Across, and Alfa Aesar and
were used without further purification. All solvents were dried according to standard
procedures, and all of them were degassed under Ar for 30 min before use. All air-sensitive
reactions were carried out under an inert Ar atmosphere.

3.2. Measurements

Column chromatography was conducted using SiO2 (VWR, 40–60 µm, 60 Å), and the
separated products were visualized by UV light. NMR spectra data were recorded on a
600 MHz Bruker NMR spectrometer in CD3OD and CD3CN with TMS as the reference.
The UV-vis spectra were recorded on a dual-beam UV-Vis spectrophotometer (TU-1901).
Emission spectra in the liquid state were recorded on a Horiba-FluoroMax-4 spectrofluo-
rometer, and a 1 cm quartz cuvette was employed as the vessel for the recording of the
fluorescence emission spectrum. ESI-MS was recorded with a Waters Synapt G2-Si mass
spectrometer. High-resolution electrospray ionization mass spectrometry (HR-ESI MS)
experiments were performed with a Water Q-Tof Micro MS/MS high-resolution mass
spectrometer in ESI mode.
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3.3. Materials Synthesis

Compound 6 was synthesized according to the literature method [36].

3.3.1. Preparation of Compound 6

Compound 4 (300 mg, 0.4 mmol) and compound 5 (1.6 g, 6.06 mmol) were dissolved
in a 1:1 mixture of DMF/MeCN (32 mL) and refluxed under Ar atmosphere. After 48 h, the
reaction mixture was cooled down to room temperature and poured into Et2O (159 mL).
The yellow precipitate was collected by filtration and washed with CH2Cl2 (95 mL). Sub-
sequently, the yellow solid was dissolved in DMF (32 mL), followed by the addition of
NH4PF6 (0.5 g) and H2O (317 mL). The resulting precipitate was filtered, washed with
H2O (2 × 30 mL), and dried under vacuum to afford pure compound 6 (yield: 62%). m.p.:
219–220 ◦C. 1H NMR (600 MHz, CD3CN) δ 8.81 (d, J = 6.5 Hz, 2H), 8.68 (d, J = 8.7 Hz,
1H), 8.47 (d, J = 7.0 Hz, 2H), 8.18 (s, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.69–7.34 (m, 4H), 5.76 (s,
2H), 4.65 (s, 2H), 3.14–3.10 (m, 2H), 2.46–2.43 (m, 2H), 0.25 (t, J = 7.3 Hz, 6H). 13C NMR
(151 MHz, CD3CN) δ 156.1, 154.0, 147.1, 144.0, 143.6, 139.8, 138.1, 133.2, 132.1, 129.9, 129.1,
128.9, 128.8, 128.8, 128.7, 128.3, 127.3, 126.8, 125.5, 124.9, 122.0, 62.8, 57.4, 32.3, 28.8, 7.6.

3.3.2. Preparation of Covalent Organic Cage C

A solution of compound 6 (104.9 mg, 0.14 mmol), compound 4 (203.1 mg, 0.14 mmol),
and TBAI (10.4 mg, 0.027 mmol) in dry MeCN (101 mL), MeOH (47 mL), and CHCl3
(24 mL) mixture solvent was heated under reflux at 90 ◦C for 9 days. After cooling to
room temperature, an excess of TBACl was added to quench the reaction, and the yellow
product was collected by filtration (yield: 9.6%). 1H NMR (600 MHz, CD3OD_SPE) δ 9.07
(d, J = 6.4 Hz, 2H), 8.47 (d, J = 6.7 Hz, 2H), 8.42 (d, J = 8.3 Hz, 1H), 8.10 (s, 1H), 8.02 (d,
J = 8.5 Hz, 1H), 7.77 (s, 2H), 5.83 (s, 2H), 2.93–2.90 (m, 1H), 2.83–2.77 (m, 1H), 2.34–2.30 (m,
1H), 2.08–2.05 (m, 1H), 0.27 (t, J = 7.3 Hz, 3H), -0.61 (t, J = 7.2 Hz, 3H).

4. Conclusions

In summary, a water-soluble covalent organic cage C with six Cl− was resoundingly
constructed, followed by detailed 1H NMR, ESI-MS, and HRMS spectrometry characteri-
zation. Due to its unique pyridine salt structure, the covalent organic cage C can exhibit
better fluorescence emission. It can also interact with pyrene in π-π interactions, resulting
in a gradual quench of fluorescence. Covalent organic cage C can be used in information
encryption systems and has broad application prospects in green catalysis and biomedicine
due to its unique cavity structure and good water solubility.
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