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Abstract: Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease
in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma
(HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD
is inextricably linked to the development of extrahepatic diseases. However, there is currently no
effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction
fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders.
Recent studies have reported that the development of MAFLD is inextricably associated with mito-
chondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial
stress caused by structural and functional disorders stimulates the occurrence and accumulation of
fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dys-
function and the liver–gut axis has also become a new point during the development of MAFLD. In
this review, we summarize the effects of several potential treatment strategies for MAFLD, including
antioxidants, reagents, and intestinal microorganisms and metabolites.

Keywords: MAFLD; fatty acid metabolism; oxidative stress; mitochondrial quality control; liver–gut
axis; mitochondrial antioxidant

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the accumulation of fatty degeneration
and lipo-toxicity due to intracellular lipid overload in the liver without alcohol, which
further leads to liver fibrosis and finally evolves into nonalcoholic steatohepatitis (NASH)
and liver cirrhosis [1–3]. In the past decade, NAFLD has become the main cause of hepato-
cellular carcinoma (HCC) in addition to chronic hepatitis B (CHB) and chronic hepatitis
C (CHC) and is a common chronic liver disease in Western countries [4,5]. According
to statistics, the global incidence of NAFLD has reached 25%, and it is associated with a
higher risk of disease under the influence of basic metabolic diseases such as obesity and
type 2 diabetes (T2DM) [6–8]. In 2020, the International Expert Group issued a statement
proposing to rename NAFLD to metabolic dysfunction fatty liver disease (MAFLD) and
rename NASH to metabolic dysfunction-associated steatohepatitis (MASH) [9,10]. This
means that its pathogenesis is closely related to metabolic disorders. However, there is
currently no effective treatment that can reverse or cure MAFLD or MASH in the clinic.
According to studies and reports, the pathogenesis of MAFLD is diverse and complex, and
there is no complete and systematic conclusion about the pathogenesis of MAFLD.

Oxidative stress and insulin resistance are recognized as hallmarks of MAFLD [11].
At the same time, metabolic syndrome, which includes conditions such as mitochondrial
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dysfunction and oxidative stress, inherent immune regulation disorder, and abnormal
regulation of autophagy, was found to be an important factor affecting the development of
MAFLD in clinical patients [2,11–20]. For example, An, P. et al. found that the copy number
of mitochondrial DNA (mt-DNA) was significantly increased in MAFLD patients [21].
Pirola, C.J. et al. and Einer, C. et al., through liver biopsy of MASH mice, revealed mor-
phological changes such as volume expansion of hepatocellular mitochondria, rounding
of cristae, enhanced fluidity of the mitochondrial membrane, and loss of typical dense
mitochondrial granules. In addition, they also found that the development of MAFLD was
regulated by the transcriptional activity and surface modification degree of mt-DNA [22,23].
In recent years, intestinal microorganisms have also received widespread attention [24].
Rao, Y. et al. found that intestinal microorganisms can cause lipid metabolism and elec-
tron transport chain damage by inhibiting the secretion of short-chain fatty acids (SCFAs),
thereby affecting the progression of MAFLD in rodents [25].

Mitochondria are the main sites of intracellular energy generation and oxidative
metabolism of carbohydrates and fatty acids in cells by affecting various physiological
mechanisms in MAFLD. Therefore, we have listed serval differences in mitochondrial
dysfunction in chronic liver diseases. This review focuses on the causes of mitochondrial
dysfunction in MAFLD and the mechanism by which mitochondrial dysfunction affects
the conversion of MAFLD to HCC. The main therapeutic strategies about mitochondrial
functions for MAFLD and other chronic liver diseases are summarized in Table 1.

Table 1. Mitochondrial functions in different chronic liver diseases.

Steatotic Liver Disease
(SLD)

[26–28]

Metabolic
Dysfunction-Associated
SLD (MASLD/MAFLD)

[29–34]

Excessive Alcohol and
Metabolic-Associated

SLD (MetALD)
[35–37]

Drug-Induced Liver
Injury (DILI)

[38–40]

Mitochondrial
structure

The electron transport
chain (ETC) is

disrupted; the activity
of mitochondrial

complex III
is decreased.

Mitochondrial membrane
permeability increases;

cristae disappear and giant
mitochondria appear;

and membrane
potential decreases.

Mitochondria swell;
mitochondrial

membranes rupture;
and membrane

potential disappears.

Mitochondrial outer
membrane is damaged;

mitochondrial
membrane

potential decreases.

Energy metabolism

ATP synthesis is
inhibited;

the TCA cycle
is disrupted.

ATP synthesis is reduced;
oxidative phosphorylation

and fatty acid oxidation
efficiency are reduced.

ATP synthesis is
downregulated.

ATP deficiency; ETC is
damaged; and succinic

acid is accumulated.

Mitochondrial
DNA

(mt-DNA)

mt-DNA content and
mitochondrial

density increases.

The fragmentation of mt-
DNA is increased; the

frequency of mitochondrial
mutations is increased.

The fragmentation of
mt-DNA is increased.

The copy number of
mitochondrial is

reduced and mt-DNA
is depleted.

Mitophagy Mitophagy is reduced.

Mitophagy is reduced;
mitochondrial quality
control homeostasis is

imbalanced; and
mitochondrial fission

is increased.

Excessive
mitochondrial

autophagy.

Mitochondrial selective
autophagy is reduced.

mt-ROS

mt-ROS is increased,
which is caused by

incomplete oxidation of
substrates such as

succinic acid.

The increase in mt-ROS
production is affected by
diet, lifestyle, genes, etc.

mt-ROS increases via
fat accumulation, etc. mt-ROS increases.
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2. Mitochondrial Structure and Function in MAFLD
2.1. Mitochondrial Membrane Structure

The double-membrane structure of mitochondria provides a place for a variety of
metabolic reactions. Porins distributed in the outer membrane are screening sites for
metabolic substrates in the cytoplasm, and ion channels or binding proteins distributed
in the inner membrane, including respiratory chain proteins, ATP synthases, and vitamin-
binding receptors, are highly involved in mitochondrial metabolism. Recently, it has been
found in clinical patients and mouse models of MAFLD that abnormal activation of a
special type of nonspecific ion channel in the mitochondrial membrane structure, the
mitochondrial permeability transition pore (MPTP), is associated with oxidative stress and
the development of MAFLD [32,41–43].

In the MAFLD mouse model, it was found that intracellular accumulation of free fatty
acids (FFAs) could directly stimulate MPTPs to maintain an open state, and mitochondrial
Ca2+ outflow stimulated related inner membrane proteins, such as adenine nucleotide
translocator or F1F0-ATPase, to aggregate, forming new MPTPs [32]. Moreover, this result
was also found in MAFLD patients whose MPTPs could also be activated by mt-ROS and
other oxidation byproducts [42,44].

Under mitochondrial stress conditions, MPTPs open in inner mitochondrial mem-
branes. Increased membrane permeability leads to Ca2+ escape from mitochondrial calcium
stores and electron transport chain (ETC) protons into the cytoplasm, resulting in typical
MAFLD symptoms such as defective ATP production and increased cytoplasmic concen-
tration of Ca2+ [45]. Moreover, significant mitochondrial swelling was found in MAFLD
mice, including loss of the mitochondrial outer membrane, disappearance of cristae, and
expansion of the mitochondrial matrix. These structural changes may also be caused by the
abnormal activation of MPTPs through the action of FFAs [32]. MPTPs are widely involved
in cell apoptosis and damage clearance mechanisms, which are related to an increase in
membrane permeability leading to the release of cytochrome C into the cytoplasm. In
addition, the activation of MPTP reduces the activity of mitochondrial inner membrane
proteins and inhibits respiratory chain function and ATP synthesis, thus causing mito-
chondrial oxidative stress. Reduced oxidation activity of ETC-related complexes I and III,
cytochrome C, and coenzyme Q on the inner mitochondrial membrane leads to electron
leakage, which then combines with oxygen molecules to form mt-ROS [46]. In MASH
fibroblasts, mt-ROS expression and mitochondrial membrane permeability were found to
be significantly increased and eventually escaped to other organelles [43].

A variety of functional proteins are located in the inner mitochondrial membrane. For
example, abnormal activation of uncoupling proteins (UCPs) on the inner mitochondrial
membrane could significantly reduce the mitochondrial membrane potential and H2O2
release, which are significant for the promotion of fat oxidation metabolism [30]. It is
worth noting that decreased membrane potential led more free fatty acids to enter the
mitochondria by decreasing the activity of inner proteins in oxidative phosphorylation (OX-
PHOS) and β-oxidation, resulting in lipotoxic accumulation to promote the deterioration
of MAFLD toward MASH [47].

2.2. Mitochondrial DNA Mutation

In hepatocytes, more than 90% of mitochondrial proteins are encoded by nuclear DNA,
while mitochondrial DNA (mt-DNA) encodes the remaining mitochondrial proteins. The
expression of mt-DNA directly affects the efficiency of cellular oxidation. According to the
genome comparison of clinical patients, the liver mitochondrial circular gene (mt-DNA) of
MAFLD patients has a higher gene mutation rate and heterogeneity [31].

Mitochondrial cytochrome B, encoded by mt-DNA, is an essential component of
complex III of the electron transport chain, which is responsible for electron transport and
assisting in the formation of the proton gradient. In patients with MAFLD, it was found
that the mt-CYB gene was mutated abnormally. The abnormal mt-CYB gene leads to ETC
disorder by changing protein activity, stimulating the production and release of mt-ROS
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and carcinogenic metabolic byproducts (such as 2-hydroxyglutarate), and then aggravating
the degree of MAFLD [48]. Existing studies have shown that increased mutations in mt-
DNA and mt-DNA integrity may be associated with oxidative damage in vivo. ROS and
peroxyl free radicals oxidize guanosine to a DNA oxidation complex (8-OHdG) and lipid
peroxyl free radicals (4-HNE), respectively, to destroy the mt-DNA structure. Then, the
damaged mt-DNA reduces ETC activity, which downregulates the OXPHOS response and
participates in the pathogenesis of MASH [49].

In addition, the accumulation of mt-DNA gene mutations in patients with MAFLD
was found to directly regulate mitochondrial oxidation reactions, including those encoding
carrier proteins localized in the electron transport chain, peroxisome proliferator-activated
receptor-γ coactivation factor 1 (PGC-1) and cytochrome P450 in OXPHOS [50]. The
transcription of PGC-1 is involved in the mitochondrial antioxidant mechanism, and the
accumulation of cytochrome P450 2E1 (CYP2E1) mutations affects ETC reaction activity
and stimulates the accumulation of mt-ROS, resulting in an elevated trend in MAFLD [51].
In addition, it has also been shown that the induction of elevated CYP2E1 in MAFLD may
be an adaptive mechanism to inhibit lipid accumulation and that CYP2E1 metabolizes FFAs
in MAFLD through ω-hydroxylation. However, the hydroxylated fatty acids generated
during this process are converted into cytotoxic dicarboxylic acids, which contribute to the
exacerbation of MASH [52] (Figure 1).

2.3. Mitochondrial Quality Control

Mitochondria are highly dynamic organelles. The imbalance between mitochondrial
dynamics is key to determining the total mass of mitochondrial cells in the pathogenesis of
MAFLD or MASH models [53–59]. Abnormal expression of mitochondrial fusion proteins
or giant mitochondria has been found in various mouse models of nonalcoholic fatty liver
disease. Yamada, T. et al. found that excessive mitochondrial fusion or giant mitochondrial
structure exists in mouse hepatocytes by treating the MASH mouse model fed a high-fat
diet (MCD), although targeting Opa1 expression could effectively reduce the formation
of giant mitochondria and restore the reduced succinate dehydrogenase (SDH) activity
induced by MASH [60]. Du, J. et al. reported that mitochondria of hepatocytes in vivo were
significantly swollen and cristae disappeared in MASH mice induced with a high-fat-high-
carbohydrate-high-cholesterol diet (HFHCHCHFHCD). In the MASH model of AML-12
and HepG2 cells treated with palmitic acid (PA), the expression of mitochondrial fusion
protein 1 (Mfn1) was significantly downregulated [61]. In addition, the lack of Mfn2 leads
to a reduction in phosphatidyl serine (PS) transfer from the ER to mitochondria, thereby
inducing ER stress and lipid accumulation. Hernandez-Alvarez, M.I. et al. found that the
expression of Mfn2 significantly decreased in MAFLD patients, and in the MASH mouse
model, upregulating Mfn2 alleviated the MASH phenotype [62].

In the pathogenesis of MAFLD, the dysregulation of mitochondrial dynamics is mani-
fested by increased mitochondrial fission and decreased mitochondrial fusion. The occur-
rence of liver fibrosis or fat accumulation in hepatocytes and HSCs as very low-density
lipoprotein (VLDL) is an important symptom of MAFLD and is regulated by mitochondrial
quality control and mitophagy mechanisms. Our previous study demonstrated augmented
mitochondrial fission in a CCL4-induced mouse model of liver fibrosis. Increased mito-
chondrial fission by overexpressing Fis1 activated HSCs, and decreased mitochondrial
fission by Mdivi-1 treatment induced HSC apoptosis both in vivo and in vitro [63]. In a
mouse liver fibrosis model infected with cercariae of Schistosoma japonicum, Drp1 phos-
phorylation at Ser637 regulated mitochondrial fission, and decreases in Opa1 and Mfn1
inhibited mitochondrial fusion and resulted in vacuolated structures [64]. Takeichi, Y. et al.
found that mitochondrial fission protein Mff knockout mice were more prone to have
MASH phenotypes than normal diet groups when fed a high-fat diet (HFD) [65]. Moreover,
hepatocytes in Mff knockout mice had swollen balloons, and giant mitochondria increased;
the expression of mitochondrial peroxisome proliferator-activated receptor-α (PPAR-α) and
FAO-related protein (CPT1A) decreased significantly, and the catalyzed oxidative stress
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response accompanied by inflammatory cell infiltration caused upregulation of fibroblast
growth factor (FGF21), which promoted the formation of MASH phenotypes.
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Figure 1. Oxidative stress caused by mitochondrial structures and mt-DNA mutations in MAFLD.
Activation of the mitochondrial membrane permeability transition pore (MPTP) by factors such
as mitochondrial mutant genes and the accumulation of fatty acids promotes the outflow of Ca2+

from the mitochondrial calcium pool and then stimulates the activity of inner membrane proteins to
affect the ATP synthesis rate and form new transition pores. Mitochondrial gene mutation (mt-DNA)
also stimulates the activation of MPTP and uncoupling proteins (UCPs). In addition, the reduction
in the activity of inner membrane proteins leads to electron leakage in the ETC, which promotes
the generation of mt-ROS and ultimately aggravates the degree of mitochondrial oxidative stress
in MAFLD.

Generally, damaged mitochondria are separated from normal mitochondria by initiat-
ing fission [33]. However, mitochondrial fission is affected by stress, and fragmentation
accelerates mt-DNA fragmentation, thus stimulating the production of mt-ROS, causing
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oxidative stress and promoting the development of MAFLD. In addition, related studies
have confirmed that Drp1-mediated mitochondrial fission is accompanied by increased
levels of proinflammatory factors such as TGF-β, TNF-α, and IL-6 in MASH models. In
addition, abnormal mitochondrial fission also affects autophagy pathways [63,66]. In the
hepatocytes of HFD-fed Mff-KO mice, it was found that p62 and pyruvate dehydrogenase
in the mitochondria increased, which inhibited the clearance of damaged mitochondria [65].

2.4. Mitophagy

Mitophagy is beneficial for removing damaged mitochondria and oxidative toxic
byproducts (mt-ROS, dicarboxylic acid, etc.) and maintaining the normal physiological
activities of mitochondria in cells.

In recent years, it has been found that mitophagy dysfunction has a nonnegligible
regulatory impact on the development of MAFLD. Li, X. et al. found that the abundance
of PINK and Parkin in HFD-fed mice was significantly lower than that in the control
group, but the expression of P62 and LC3-I/II was significantly increased [67]. In addition,
the expression of PINK1 and Parkin was significantly reduced in CCL4-induced liver
fibrosis mice and Kupffer cell (KC)-transformed HSC cell models [68]. Dou, S.D. et al.
reported that the mitochondrial antioxidant ubiquinone (Mito Q) alleviated the decrease
in Parkin protein and restored the level of mitophagy during HSC activation [69]. In the
MAFLD mouse model and PA-induced AML-12 cells, the mitophagy pathway mediated
by PINK/Parkin/P62 was inhibited. Meanwhile, it was also reported that the decreased
activity of peroxisome-activated receptor-γ (NR1C3) inhibited the decomposition of H2O2,
induced mt-ROS-mediated cellular oxidative stress by inhibiting the PINK/Parkin pathway,
and had a negative impact on the clearance of damaged mitochondria [67].

In addition, in mt-ROS-overloaded mitochondria, cytochrome c is released into the
cytoplasm due to decreased ETC activity, causing apoptosis and aggravating oxidative
stress. Overexpression of TIM4 upregulated mitochondrial AKT1 in KCs [68]. In addition,
AKT1 could activate PTEN-induced putative kinase 3 (PINK3) to aggravate the mt-ROS-
mediated BAD family (BCL2, etc.), which could bind to damaged mitochondria and induce
mitophagy. Zhou, T. et al. showed that upregulation of Mst1 in primary mouse hepatocytes
treated with PA could activate the expression of phosphorylated AMPK and eliminate the
accumulation of damaged mitochondria caused by decreased Parkin-related mitophagy
protein activity [70]. AMPK could target and inhibit the mTOR complex and activate
phosphorylated ULK1, thereby eliminating the inhibitory effect of mTOR on ULK1 activa-
tion, realizing the recruitment of P62 and migrating to mitochondria, and participating in
mitophagy [71–73].

Excessive mitophagy causes the release of mitochondrial damage-associated molecules (mt-
DAMPs). Mt-DAMPs can be released from damaged mitochondria to the cytoplasm, thereby
causing systemic inflammatory response syndrome to promote liver fibrosis [21,63,74,75]. In the
liver, mt-DAMPs are mainly damaged by linking with TLR9 and formyl peptide receptor
1 to activate polymorphonuclear cells to promote MASH inflammation and activate HSCs,
causing fibrotic scars [32,42]. However, the inhibition of mitophagy also leads to the
accumulation of mt-ROS, which leads to hepatocyte necrosis and the massive release of
mt-DAMPs [67]. In addition, the release of inflammatory factors and inflammasomes
(NLPR3) accompanying the apoptosis of hepatocytes stimulates immune cell infiltration
and HSC activation and promotes the progression of MASH [15]. NLPR3 is a multiprotein
immune complex that is activated by pathogen-associated and danger-associated molecular
patterns (PAMPs and DAMPs), such as lipopolysaccharide (LPS) and cholesterol (CHO) [76]
(Figure 2).
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” represents downregulated expression.
With the stimulation of massive fat accumulation, Mfn1/2, Fis1, or Opa1 has regulatory
significance for the formation of giant mitochondria. Changes such as swelling structure
and vacuolization of the giant mitochondria result in the accumulation of ROS in mitochon-
dria and HSC activation. The increased expression of phosphorylated Drp-1 and abnormal
expression of Mff protein promote mitochondrial fission. A reduction in Mff inhibits the
combination of PPAR-α and PGC-1, thereby reducing the synthesis and accumulation of
SOD and mt-ROS. Mt-ROS can increase α-SMA, COLLAL-1, TGF-β, TNF-α, and IL-6 to
aggravate inflammation and fibrosis. The combination of Parkin and PINK1 promotes the
ubiquitination of mitochondrial membrane proteins, and then P62-LC-3 can target and
recognize ubiquitinated membrane proteins to initiate autophagy, while downregulation
of NR1C3 inhibits the Parkin/PINK1 pathway in MAFLD. At the same time, in HSCs,
the increase in related immune proteins, such as TIM4, induces AKT-1 and PIK3 and the
release of mt-ROS. Then, mt-ROS stimulate the BAD family and promote the release of Cyt
C, causing mitochondrial oxidative stress and autophagy. PIK3 activates Parkin/PINK1. In
addition, pathways such as AMPK can compensate for the abnormal mitophagy caused
by the inactivation of Parkin/PINK1. AMPK controls HSC activation and mitophagy
by activating phosphorylated ULK1, PPAR, and Drp-1. Upregulation of Mst1 expres-
sion can activate AMPK in MAFLD. The abbreviations in Figure 2 are defined as follows:
Mfn1/2 (Mitofusion 1/2); Fis1 (Fission 1); Opa1 (optic atrophy 1); Drp-1 (dynamin-related
protein 1); Mff (mitochondrial fission factor); PGC-1 (peroxisome proliferator-activated
receptor gamma coactivator 1); PPAR-α/γ (peroxisome proliferator-activated receptor
alpha/gamma); α-SMA (alpha-smooth muscle actin); NR1C3 (nuclear receptor subfamily
1 group C member 3); TIM4 (T-cell immunoglobulin and mucin domain-containing 4);
PIK3 (phosphatidylinositol 3-kinase); AKT1 (AKT serine/threonine kinase 1); BAD (BCL2-
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associated agonist of cell death); Cyt C (cytochrome c); Mst (mammalian sterile 20-like
kinase); AMPK (AMP-activated protein kinase); FAO (fatty acid oxidation); and ULK1
(unc-51 like autophagy activating kinase).

2.5. Oxidative Phosphorylation

Oxidative phosphorylation, as an important source of ATP in organisms, is the main
metabolic mode of nutrient metabolism. Most of the electrons migrate down through the
ETC to cytochrome c oxidase and then combine with protons and O2− to form water, but
there are still electrons leaking from the ETC that directly react with oxygen to form mt-ROS,
such as superoxide anion (O2−), H2O2, etc. In recent years, mitochondrial dysfunction
and abnormal production of mitochondrial ROS have been widely detected in MAFLD
and MASH [77–82]. In MAFLD, activation of MPTPs and mt-DNA mutations could
reduce the activity of complexes on the ETC, which is the main reason for electron leakage.
Mitochondrial gene mutations, quality control, and mitophagy disorders are also important
reasons for mt-ROS generation.

To maintain the balance of the mitochondrial oxidation reaction, mitochondria have
antioxidation enzymes and antioxidant molecules (glutathione, VE, etc.) to eliminate mt-
ROS accumulation by capturing and removing free radicals and harmful substances to
repair oxidative damage [83]. Recently, it has been found that the nuclear factor-κB (NF-κB)
pathway has bidirectional effects in different stages of the oxidative stress response in the
pathogenesis of MAFLD [84]. In the early stage of oxidative stress, NF-κB inhibits the con-
tinuous accumulation of superoxide and accelerates the clearance of damaged hepatocytes
by activating the activity of manganese superoxide dismutase (MnSOD) and the Nf-κB/JNK
pathway [85]. The antioxidant mechanism of mitochondria is limited to dealing with a
large number of oxidation products in the inflammatory environment because it was found
that inhibitors of NF-κB kinase (IκB kinase, IKK) could be activated by phosphorylation
of proinflammatory signaling molecules such as lipopolysaccharide (LPS), tumor necrosis
factor (TNF), and interleukin-1 (IL-1) to inhibit the NF-κB pathway [12,86,87], accelerating
the release of proinflammatory factors such as TNF-α and IL-1β, positively regulating
the accumulation of mt-ROS, and eventually causing the deterioration of chronic inflam-
mation [88–90]. JNK is a member of the mitogen-activated protein (MAP) kinases that
participate in regulating mitophagy. In addition, the antioxidant factor PPAR coactivator-1
(PGC-1) transcription factor also has a positive effect on the recovery of mitochondrial
oxidative stress [91]. In MAFLD mouse models, upregulated PGC-1α/fibroblast growth
factor 21 (FGF-21) expression could restore the copy number of mt-DNA and OXPHOS
activity [92]. However, in the pathogenesis of MAFLD and MASH, it was found that PGC
1α deficiency could directly downregulate superoxide dismutase (SOD), which reduced
the activity of molecules such as catalase and glutathione peroxidase and further led to an
imbalance of the antioxidant system [93].

The excessive accumulation of mt-ROS damages mt-DNA and combines with FFAs to
participate in lipid peroxidation reactions. Moreover, mt-ROS in hepatocytes can mediate
the release of TNF [16]. TNF leads to MPTP activation, ETC uncoupling, and proton
pumping. In MASH mouse models and clinical cases, it was found that the byproducts
formed from insufficient oxidation of overloaded FFAs, such as dicarboxylic acid, could
bind with uncoupling proteins on the mitochondrial membrane, prompting protons to
directly enter the matrix through uncoupling protein channels without interacting with
ATP synthase, ultimately leading to a decreased ATP synthesis rate and insufficient energy
production [94]. It has been found that OXPHOS driven by fatty acid β-oxidation in M2
macrophages is converted to the glycolytic pathway in the activated HSC state of mouse
models of MAFLD [95]. The depletion of ATP and the increase in glycolysis activity both
maintain the energy demand of cells. However, excessive glycolysis would also lead to an
increase in intracellular pyruvate content and TNF or LPS, which has a partial negative
effect on the lipid metabolism process of mitochondria and HSC activation.
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2.6. Fatty Acid Oxidation (FAO)

Fatty acid oxidation is one of the main oxidation reactions that inhibits lipid accumu-
lation in hepatocytes and provides ATP. Free fatty acids (FFAs) are substrates of various
lipotoxic products, such as ceramides and diglycerides, in vivo, which induce metabolic
stress and cell death [12,96]. FFAs initially decompose fatty acyl-CoA through the mitochon-
drial outer membrane porin and inner membrane transport protein and then participate in
the tricarboxylic acid cycle reaction (TCA) to release electrons and form final products such
as water to complete the consumption of liver lipids [97–99]. FFAs undergo esterification
to form triglycerides that protect hepatocytes from lipo-toxicity at the same time.

The accumulation of lipo-toxicity induced by steatosis and excessive accumulation
of FFAs are the hallmark symptoms of the development of MAFLD. Fatty acids can be
catabolized in microsomes, peroxisomes, and mitochondria. In recent years, it has been
found in clinical patients and animal models of MASH that the expression changes in the
PPAR involved in mitochondrial fatty acid β-oxidation and regulated by mt-ROS are signif-
icantly correlated with the occurrence of MASH. Sven Francque. et al. found that in MASH
patients, the expression of PPARα was significantly downregulated, and in MASH mice
fed a diet lacking methionine choline (MCDD), a decrease in PPARα led to an aggravated
degree of hepatitis [100]. Chen, Y. et al. found that PGC-1 was a coactivator of PPARα, and
its expression was reduced with the inhibition of PPARα [101,102]. In addition, the fatty
acid β-oxidation-related proteins CPT1, CPT2, ACOX1, and ACOX2 were also affected and
downregulated by the downregulation of PPARα, resulting in the accumulation of lipids in
cells and aggravation of the degree of hepatitis. The reduction in CPT1, CPT2, ACOX1, or
ACOX2 directly inhibits the permeability of the mitochondrial membrane, preventing FFAs
from entering the mitochondria for consumption and metabolism [103]. In the pathogenesis
of MASH, studies have found that a lack of receptor-interacting protein kinase 3 (RIPK3)
leads to the upregulation of peroxisome proliferator-activated receptor-γ (PPAR-γ) and
fibroblast growth factor 21 (FGF-21) to realize the reverse recovery of MASH [47].

The other two proteins of the PPAR family, PPAR-β and PPAR-δ, are also widely
expressed in hepatocytes, KCs and HSCs. In the different mouse models of MAFLD,
activation of PPAR-α/β/δ induces catalase (CAT), promotes the conversion of FFAs to
triglycerides to alleviate lipid toxicity, inhibits the generation of mt-ROS and the secretion
of IL-1 and TNF in the lipid peroxidation reaction caused by excessive fat accumulation in
mitochondria, and finally reduces the occurrence of liver fibrosis and MASH [104–106].

In addition, NADH and FADH2 produced by mitochondrial β-oxidation participate
in ETC activities by transferring electrons. However, affected by limiting factors such as
the ATP synthesis rate, electron transfer in the ETC is prone to leakage, which leads to
the accumulation of mt-ROS. mt-ROS inhibit the β-oxidation of hepatic FFAs by reducing
the de-palmitoylation activity of the mitochondrial outer membrane protein FAT/CD36,
resulting in the accumulation of FFAs in the cytoplasm [107].

MAFLD is a polygenic disease, and the influence of gene regulation on fat oxidation
metabolism is also an important factor that promotes FAO process imbalance in the devel-
opment of MAFLD. For example, the nonsynonymous mutation of SOD2-C47T can reduce
the activity of MnSOD and inhibit the clearance of peroxidation byproducts produced
in the process of OXPHOS [108]; the mutation of UCP3-55T leads to abnormal lipolysis,
causing fat accumulation and inducing inflammation [109]; GCL downregulates GCL, the
rate-limiting enzyme for glutathione (GSH) synthesis, and inhibits the clearance of cellular
peroxidation, resulting in the accumulation of ROS [110].

In MAFLD, it was found that in addition to the dysfunction of mitochondrial metabolism
in the process of fat accumulation, organelles such as the endoplasmic reticulum (ER) also
mediate the exchange of metabolites through polymeric protein complex structures such as
mitochondria-associated endoplasmic reticulum membrane protein (MAM) [29,111–113].
When the homeostasis of the ER is imbalanced or there is a lack of energy, the ER is induced
by activating the unfolded protein response (UPR), resulting in reduced GSH. The distribu-
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tion of imbalance between GSH and oxidized glutathione (GSSH) causes mitochondrial
stress and realizes the negative regulation of mt-ROS [21].

In brief, fatty acid β-oxidation serves as another bioenergetic pathway that occurs
in mitochondria in addition to oxidative phosphorylation. Abnormalities in β-oxidation
could cause the accumulation of intracellular FFAs, aggravate lipo-toxicity, and eventually
induce inflammation and steatosis. In MASH patients, the accumulation of mt-ROS plays
a negative role in the mitochondrial oxidation reaction and abnormal FAO, finally aggra-
vating the accumulation of lipid substances and the formation of toxic byproducts [114]
(Figure 3).
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” represents downregulated expression. Carbohydrates in hepatocytes are initially metabolized
into pyruvate, and then pyruvate forms free fatty acids (FFAs) through DNL. Finally, FFAs form
triglycerides and VLDL in MAFLD. Upon stimulation such as the introduction of high sugar and
fat, the activation of MPTP and decrease in PPARα leads to the abnormal structure of CPT1C and
CPT2C, which transport FFAs on the mitochondrial membrane. FFAs flow into the mitochondrial
matrix, causing lipotoxic accumulation and further affecting BAT consumption, which leads to
obesity. FFAs in the matrix are decomposed into acyl-CoA via β-oxidation and then participate
in oxidative phosphorylation. In MAFLD, PPARα can reduce the activity of β-oxidase and inhibit
the decomposition of FFAs, while increasing the activity of PPAR-γ can promote the expression
of FGF-21 and restore the oxidation of FFAs through the AMPK-mTOR pathway to inhibit the
development of fibrosis. Moreover, mitochondrial oxidation imbalance causes the accumulation of
mt-ROS, TNF, and LPS, aggravating the development of inflammation. At the same time, TNF can
activate phosphorylated IKK to inhibit the NK-κB antioxidant response, including promoting the
continuous accumulation of superoxide by reducing MnSOD activity and the Nf-κB/JNK reaction. In
addition, Nrf2 mediates oxidation reaction efficiency and participates in fat metabolism. Nrf2 forms a
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ternary complex with Keap1 and PGAM5 to directly respond to mt-ROS and stimulates nuclear Nrf2
to be accelerated and transported into mitochondria. Nrf2 can eliminate excess mt-ROS accumulation
and restore β-oxidation by enhancing the expression of Trx, GSR, Srx1, Prx3, and GPx. However,
Nrf2 also participates in regulating the occurrence of mitophagy and aggravating ROS accumula-
tion by reducing the expression of TXNIP and increasing the combination of Trx and ASK1.The
abbreviations in Figure 3 are defined as follows: DNL (de novo lipogenesis); VLDL (very-low-
density lipoprotein); MPTP (mitochondrial permeability transition pore); CPT1C (carnitine palmitoyl
transferase 1C); CPT2C (carnitine palmitoyl transferase 2C); MCAD (medium-chain acyl-CoA de-
hydrogenase); LCAD (long-chain acyl-CoA dehydrogenase); VLCAD (very-long-chain acyl-CoA
dehydrogenase); AMPT/MTOR (adenosine monophosphate-activated protein kinase/mammalian
target of rapamycin); BAT (brown adipose tissue); NK-κB (nuclear factor kappa-light-chain-enhancer
of activated B cells); LPS (lipopolysaccharide); IKK (IκB kinase); MnSOD (manganese superoxide
dismutase); ETC (electron transport chain); TCA (tricarboxylic acid cycle): NADH/FADH2 (nicoti-
namide adenine dinucleotide (reduced form)/flavin adenine dinucleotide (reduced form)); Nrf2
(nuclear factor erythroid 2-related factor 2); PGAM5 (phosphoglycerate mutase family member
5); Prx3 (peroxiredoxin 3); TXNIP (thioredoxin-interacting protein); and ASK1 (apoptosis signal-
regulating kinase).

2.7. Gut Microbiota in the Liver–Gut Axis Influence Mitochondrial Function

The gut–liver axis is a term used to describe the interactions between the liver and
resident gut microbiota in the gastrointestinal tract. Recent evidence has shown that there
is a related relationship between intestinal microbiota disturbance and mitochondrial
dysfunction during the development of MAFLD [115,116]. Patients with MAFLD caused
by malnutrition have increased permeability of the intestinal epithelial barrier, changes in
the proportion of intestinal microbial species, and bacterial translocation in the intestine,
leading to abnormal liver inflammation and oxidative reactions, ultimately aggravating
the development of MAFLD [24,117]. In the MAFLD mouse model, bacterial translocation,
such as that of Helicobacter pylori, and intestinal flora metabolites (endogenous ethanol, etc.)
promote the activation of neutrophils, HSCs, and Kupffer cells to produce ROS and secrete
peroxidase, chemokines, proinflammatory factors, and corticosterone, thereby exacerbating
hepatic steatosis and inflammation [118,119].

The gut microbiota affects the host’s synthesis of antioxidants such as glutathione.
Mardinoglu, A. et al. found that the antioxidant glutathione was deficient in patients with
T2D, thereby causing the accumulation of mt-ROS to aggravate oxidative stress in the
liver [120]. Neish, A.S. et al. found that commensal Lactobacillus could enhance NOX
family enzyme activity to promote the production of nonmitochondrial ROS, ultimately
affecting the process of systemic metabolic reactions [121]. Juarez-Fernandez, M. et al.
found that methylation-controlled J protein (MCJ) knockout MASH mice fed a high-fat diet
had a milder degree of liver damage than WT mice. Then, through intestinal flora trans-
plantation (FMT) into germ-free (GF) mice, they found that the proportion and formation
of microorganisms and short-chain fatty acids (SCFAs) in the gut–liver axis in GF mice
were improved, increasing the capacity of fatty acid oxidation in GF mice [122].

In addition, a damaged intestinal barrier is an important prerequisite for the transfer
of potentially harmful bacteria and their effector molecules (PAMPs) to the liver. For
example, endotoxin is a kind of LPS and a component of commensal Gram-negative
bacteria. MASH patients had higher liver endotoxin levels than patients with simple
steatosis [123]. Studies have found that endotoxin can mediate the NF-κB or JNK pathway
to regulate cellular oxidative reactions [124]. Endotoxin can also aggravate steatosis by
activating TLR and NOD-like receptors (NLRs) to produce inflammatory factors and
chemokines to inhibit the decomposition of FFAs [125]. Other studies have found that
excessive fructose could increase the risk of causing MAFLD, and MASH mice fed excessive
fructose had an increased incidence of endotoxemia [126,127]. In fructose-treated CYP2E1-
null mice, endotoxemia, inflammatory cell infiltration, and ROS production were less
significantly increased than those in wild-type mice [127]. In addition, HepG2 cells treated
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with LPS could significantly downregulate the activities of catalase and SOD, aggravating
the state of oxidative stress [128]. Above all, the relationship between oxidative stress and
endotoxin regulation in MAFLD is complex. On the one hand, oxidative stress can increase
intestinal permeability, leading to more endotoxin transfer into the blood and liver, and
finally exacerbating liver inflammation and fibrosis. On the other hand, endotoxin can
induce oxidative stress in the liver, further damaging hepatocytes by activating the NLRP3
inflammasome and releasing proinflammatory factors such as IL-1β [129].

Moreover, gut microbiota metabolites can also regulate mitochondrial structure. For
instance, Zhao, T. et al. found that butyrate, an intestinal flora metabolite, can signifi-
cantly alleviate mt-ROS copies caused by a high-sugar diet in db/db mice, reduce their
number and content, and effectively restore mitochondrial membrane potential and ATP
synthesis capacity [130]. Previous studies have shown that Bacteroidetes and Firmicutes
promote an increase in the level of SCFAs, which are used by mitochondria to synthesize
ATP [117]. Butyrate can also reverse the decrease in the activity of fatty acid β-oxidation
rate-limiting enzymes such as CPT1A and acetyl-CoA carboxylase α (ACACα) to improve
fatty acid metabolism and thereby reduce the degree of hepatocellular hypertrophy and
steatosis [130].

3. Treatment Approaches for Mitochondrial Dysfunction-Related Oxidative Stress
in MAFLD

In recent years, the prevalence of MAFLD has been increasing year by year according
to the proportion of regions. Through the statistics of the current clinical research on
MAFLD, it was found that there is medicine that can target metabolic processes in different
ways to alleviate MAFLD.

3.1. Antioxidant Trace Elements

By comparing the serum of MAFLD and MASH patients with that of normal people,
it was found that the expression of vitamins in the serum showed a significant downward
trend [113,131]. According to a number of experimental models, injecting vitamins can
significantly improve the occurrence of inflammation, liver fibrosis, and the worsening
trend of MAFLD. The vitamin family is an important class of antioxidant molecules in the
body that regulate oxidative stress and fat accumulation by catalyzing enzymatic reactions.

3.1.1. Vitamin C

Vitamin C (VC) is a common water-soluble molecule, and we often supplement the VC
content in the body in the form of an aqueous solution daily. According to its antioxidant
properties, VC plays an important role in scavenging oxygen free radicals. The basic
mechanism by which VC alleviates the degree of oxidative stress is through reducing the
generation of mt-ROS and increasing the levels of antioxidant enzymes such as superoxide
dismutase and GSH peroxidase, thereby improving the activity of the ETC [83]. At the
same time, VC inhibits fat accumulation by activating PPARα in MAFLD. High-dose
VC stimulates the downregulation of adiponectin, which has inhibitory effects on lipid
accumulation, IR, and inflammation in the liver [132].

Clinical investigations have shown that the lack of VC in the body (VC deficiency)
successively causes liver fibrosis and MAFLD aggravation, especially in obese patients or
overweight patients (BMI > 24) [133]. In the mouse model of a high-fat diet, appropriately
supplementing a large amount of VC (beyond what is necessary for the body) would
effectively alleviate the fat accumulation and MAFLD caused by high sugar and fat. At the
same time, different concentrations of VC were used to treat MAFLD, and it was found
that supplementation with low concentrations had positive significance in preventing liver
inflammatory diseases in normal mice [132,134]. In addition, it was confirmed in a guinea
pig model that VC deficiency has no significant effect on the development of MAFLD under
a low-fat diet, but if a high amount of VC was combined with a low-fat diet, it obviously
promoted the development of liver inflammatory disease reversal in healthy liver [135].



Int. J. Mol. Sci. 2023, 24, 17514 13 of 27

Even though in different animal models the intake of microbial C has different significance
for the occurrence of MAFLD, the conclusion of the comprehensive experiment found
that VC is indeed a good target for clinical intervention of liver inflammatory diseases.
However, its specific function in the human body and therapeutic drug doses still need
further investigation.

3.1.2. Vitamin E

Vitamin (VE) is an important antioxidant inhibitor against the conversion of simple
steatosis to MASH caused by excessive oxidative stress. Similar to the role of VC, the
detoxification function of VE is mainly through capturing and providing electrons for free
hydroxyl radicals and H2O2 and then combining with antioxidant enzymes to detoxify
them into water and oxygen [136]. VE also has potential effects on the development of
inflammation. VE downregulates the expression of trans growth factor-β (TGF-β) through
mt-ROS [136], resulting in reduced forms of nitric oxide synthase and NADPH oxidase by
reducing the frequency of oxidative stress to affect the development of liver fibrosis [137].
In addition, it was found in hepatitis mice that feeding with an MCD diet can restore
glutathione and significantly reduce the expression levels of oxidative stress markers,
HSC activation, and fibrosis under VE injection [138,139]. VE can also activate PPARα
transcription, promote the action of the adiponectin promoter, and enhance IR, thereby
alleviating the development of MAFLD [140].

Due to the active physiological functions of VE, it is also recognized as an effective
targeted therapy drug in clinical treatment. In data collected through broad-spectrum
surveys of the population, it was found that VE tended to show more obvious light fibrosis
symptoms than control groups [141]. In addition, the results showed that in children with
nonalcoholic liver disease, compared with the injection of a placebo, hydroxytyrosol and
vitamin E significantly improved the degree of steatosis and weakened the occurrence of
systemic inflammation by promoting the systemic circulation of the anti-inflammatory
factor interleukin-10 [13]. In conclusion, VE is widely used in combination with other
biological drugs to regulate the level of hepatic oxidative stress and FAO, but its specific
appropriate doses for the clinical treatment of MAFLD and MASH still need to be further
determined and explored for clinical applications.

3.1.3. Vitamin D

Vitamin D (VD) is a multifunctional hormone that not only stabilizes calcium home-
ostasis and regulates bone mineralization but also plays an important role in the regulation
of immunity and inflammation. VD deficiency has been associated with the development
of metabolic syndrome-associated diseases such as T2DM and MAFLD [142]. In a study of
FFA decomposition in MAFLD models, VD acted on outer membrane lipoprotein through
the PPARα/CPT1A pathway to catalyze the mitochondrial β-oxidation process in hepa-
tocytes and inhibited the denaturation of lipoproteins and reduced the development of
MAFLD [143].

VD also controls the endoplasmic reticulum–mitochondrial stress-oxidative response
by promoting the nuclear translocation of the antioxidant molecule nuclear factor erythroid
2-associated factor 2 (NFE2L2), reducing Toll-like receptor expression [144,145]. In addition,
a study showed that VD mediated the activation of hepatocyte nuclear factor 4α (HNF4α)
through specific receptors to improve hepatic insulin resistance and reduce the possibility
of hepatic steatosis [143] At present, the effect of VD on the clinical treatment of chronic
inflammatory liver diseases is still unstable, and the impacts of the intake of different
concentrations of VD on health are worthy of further research.

3.1.4. Vitamin A

Vitamin A (VA) is a necessary regulatory factor for many physiological processes, such
as visual perception, cell proliferation and differentiation, immune response, and metabolic
regulation. Retinoic acid (retinol), a metabolite of vitamin A, plays an important role in the
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function of VA. Retinoic acid receptor (RAR) and retinoid receptor (RXR) jointly control the
activation of retinoic acid transcription factors. The RAR and RXR receptors, which are the
unique structure of vitamin A, can also affect the process of fat oxidation by acting on the
PPARα pathway [146].

Nonactivated HSCs in the liver are the main storage location of VA in the body, which
also reveals that VA deficiency is inextricably linked to the occurrence of liver fibrosis [147].
According to the data collected in existing clinical research from MAFLD patients, VA
metabolism disorder is not only manifested in the downregulation of overall expression in
serum but also shows an imbalance in the ratio of retinal lipids and retinol, as well as a
change in intracellular retinoid storage locations, such as retinol transferred from HSCs
to hepatocytes [103]. However, summarizing recent research, it has been found that the
treatment of chronic liver inflammatory diseases by directly increasing vitamin A intake is
not stable for the treatment of MAFLD. This may be related to the individual differences in
patients and related molecular mechanisms, such as retinoid lipid overload accumulation in
hepatocytes, which also provides a new direction for further exploration of VA to improve
HSC activation and FFA accumulation in MAFLD.

3.1.5. Vitamin B

In the past decade, several vitamin B subfamilies have been studied in MAFLD
conditions in existing clinical studies.

Vitamin B3 (Niacin) is the precursor molecule of the coenzymes nicotinamide adenine
dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADPH), which
regulate various physiological responses [133,148]. In a rat model and a high-fat HepG2
model, increasing niacin restored the loss of mitochondrial redox potential, ROS accu-
mulation, lipid digestion in the liver, and NADPH enzyme activity reduction in chronic
inflammation [149,150].

Vitamin B9 (folic acid) and vitamin B12 (cyanocobalamin) are both related to the
occurrence of MAFLD-related comorbidities such as obesity and T2DM. Folate acid protects
the liver by restoring activation of adenosine monophosphate-activated protein kinase
(AMPK). Vitamin B12 is the co-factor of methylmalonyl-CoA mutant enzymes that affect
DNA synthesis repair and mitochondrial metabolic homeostasis, which are involved in the
pathogenesis of MAFLD [151]. However, according to current clinical case data, there are
not enough complete and sufficient results to explain whether the injection of the vitamin
B family regulates the occurrence of MAFLD [152,153].

3.1.6. Coenzyme Q

Coenzyme Q (CoQ) is a self-synthesized fat-soluble bioactive quinone, similar to
vitamin E. CoQ is located on the inner membrane of mitochondria and is widely distributed
in various tissue cells. The function of CoQ is mainly through participating in mitochondrial
ETM, improving electron transport efficiency, and maintaining redox homeostasis by
utilizing the structural transformation between the three redox forms of ubiquinone, semi-
ubiquinone, and ubiquinol, and directly acting on free radicals and oxides to restore cell
viability [154].

Clinical data have shown that CoQ10 supplements can alleviate the oxidation level of
type I, II, and III complexes in the respiratory chain, regulating OXPHOS and inhibiting
mitochondrial dysfunction induced by MAFLD [155]. Alhusaini, A.M. et al. found that
liposome-encapsulated coenzyme Q could significantly reduce liver damage and fibrosis
caused by propionic acid by inhibiting cytochrome C and mitochondrial fragmentation
and simultaneously increasing the expression of Bcl-2 [156]. Tiefenbach, J. et al. proposed
that coenzyme Q and its analog Idebenone can act as PPARα/γ agonists and downregu-
late triglyceride and cholesterol levels, finally reducing the development of steatosis and
MAFLD [157]. Sumbalova, Z. et al. used hydrogen-rich water (HRW) to treat MAFLD
clinical patients and mouse models and found that HRW has the potential to help MAFLD
patients restore normal coenzyme Q expression levels and mitochondrial oxidation func-
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tion, ultimately realizing the potential of MAFLD treatment [158]. In mouse MAFLD
models, very-low-density lipoprotein (VLDL) was overproduced in a high-fat diet. CoQ10
was shown to guide VLDL to accumulate and transform into a larger volume so that it
is more easily recognized and degraded by enzymes to control the occurrence of lipid
peroxidation and oxidative stress [159]. Notably, a large volume of VLDL also causes other
vascular diseases, such as arteriosclerosis and other side effects. Hence, it is important
to solve the main question about the by-effect in the process of treating MAFLD for CoQ
through clinical treatment or animal models.

3.2. Nrf2-Antioxidant Supplement

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a high-affinity electron-competent
transcription factor involved in antioxidant effects. Nrf2 can inhibit excessive oxidative
reactions such as endoplasmic reticulum stress by regulating downstream antioxidative
stress genes such as heme oxygenase-1 (HO-1) and superoxide dismutase (SOD). Due to its
outstanding antioxidant capacity, there are currently a variety of Nrf2 supplements used in
the disease research of MAFLD and MASH [87].

3.2.1. Aucubin

Aucubin (AU) is a natural compound that can be extracted from plants and has anti-
inflammatory effects. AU relieves lipid accumulation by promoting the expression of Nrf2
and PPAR in mice and 3T3-L1 cells (a type of macrophage) and inhibits the release of
proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, in turn reducing oxidative
stress and the inflammatory response by enhancing the oxidative stress and AMPK/AKT
phosphorylation associated with hyperlipidemia [160]. AU could counteract the hepatic
fibrosis caused by CCL4 and α-amanitin, showing therapeutic significance for the treatment
of MAFLD.

3.2.2. Melatonin

Melatonin is a small molecule indole amine substance that is mainly related to the
regulation of biological rhythm in animals. Melatonin has antioxidant properties and
counteracts the negative effects of active oxygen in the body. Joshi, A. et al. found that
melatonin-mediated HepG2 cells reduce oleic acid uptake and increase mitochondrial mem-
brane potential. In high-fat-diet-fed mice treated with melatonin, Nrf2/HO-1 activity was
restored, and the expression of Nrf2-Keap1 in hepatocellular mitochondria was increased,
reducing intracellular oxidative stress levels and alleviating MAFLD [161].

Research on drugs targeting the Nrf2/OH-1/Keap1 pathway, intracellular oxidation
reactions, and lipid degradation processes has become a new hot topic. In addition to
AU and melatonin, a variety of natural compounds have been used in the prevention
of MAFLD/MASH and have obvious treatment effects. For example, inhibition of the
upregulation of p62 transcription regulated by ROS/P38/Nrf2 alleviated the oxidative
stress damage of macrophages caused by LPS [58,162]. Naringin downregulates the ex-
pression of the targeted proteins ChREBP, SREBP-1c, nSREBP-1c, ACC, and FAS to inhibit
the accumulation of fatty acids and regulate Nrf2-HO-1/Nf-κB to reduce the impact of
inflammation on the development of MAFLD [163].

3.3. MicroRNA

MicroRNA (miRNA), as an important bioactive factor target, has been widely found
and studied in specific epigenetic mechanisms. In recent years, abnormal expression of
miRNAs has been found in metabolic disorders such as MAFLD and MASH [164–166].
For example, it was found that miRNA-21/20B was upregulated in the inflammatory
environment in the HFD-fed mouse model. Mt-ROS and nitric oxide (NO) generated from
activated HSCs could target miRNA-21 to form more pro-fibrotic proteins, such as type
I collagen (Col1α1) and α-SMA [136]. MiRNA20B in MAFLD mediates PPAR-α activity
to reduce the occurrence of abnormal FFA oxidation and mitochondrial dysfunction [167].



Int. J. Mol. Sci. 2023, 24, 17514 16 of 27

In addition, circRNA-002581 inhibits the expression of miRNA-122, which promotes fat
oxidation and the activation and phosphorylation of mTOR to aggravate the development
of inflammation [168].

Other studies confirmed that miRNA-34a and miRNA-223 inhibited the Sirtuin 1/AMPK/
PPARα pathway through vesicle enrichment [169,170]. MiRNAs play a therapeutic role
in the process of chronic inflammation and oxidative stress. As a result, miRNAs have
become new treatments to eliminate the development of MAFLD and MASH.

3.4. Targeted Microbiota Therapies Targeting the Liver–Gut Axis
3.4.1. Gut Akkermansia muciniphila

In recent years, beneficial microorganisms such as Akkermansia muciniphila have been
considered promising research hotspots in combating MAFLD. Morrison, M.C. et al. used
heated Myxiniphila to treat HFD-induced obese mice and found that it could significantly
decrease intestinal permeability and adipocyte hypertrophy [171]. Rao, Y. et al. treated
MAFLD mice with oral administration of Proteobacillus Myxophila and found that mt-DNA
copy number and oxidative metabolism markers such as PGC-1α and CPT-1β increased
in the hepatocytes of the treatment group. In addition, the expression of mitochondrial
complexes I–V was significantly upregulated. In addition, Myxophila stimulated L-aspartic
acid, thereby activating AMPK activity and sustaining lipid oxidation reactions, effectively
inhibiting liver lipid accumulation [25]. At this stage, various research data show that
whether it is through direct oral administration or through dietary or drug intervention in
the MAFLD mouse model, the abundance of Myxophila in the body shows great therapeutic
potential for the alleviation of MAFLD. However, clinical efficacy verification in other
animals is still lacking, and the reduction in therapeutic efficacy after inactivation needs
further investigation [172,173].

3.4.2. Bile Acids (BAs) and Short-Chain Fatty Acids (SCFAs)

Intestinal metabolites such as bile acids (BAs) and short-chain fatty acids (SCFAs) are
important molecules involved in the enterohepatic circulation and metabolism of the body,
affecting the development of MAFLD. BAs regulate lipid metabolism, gluconeogenesis, and
ATP synthesis processes by activating Farnesoid X receptor (FXR), the G protein-coupled
receptor superfamily (TGR5), and other receptors that are highly expressed in the liver
and intestines [174]. The FXR-TGR5 dual agonist INT-767-treated Western diet (WD)-fed
mice could reduce fatty acid synthesis and alleviate AMPK, SIRT1/SIRT3 phosphorylation,
and mitochondrial complex IV activity, decreasing trends caused by WD [175]. However,
excessive activation of FXR can lead to an increase in total cholesterol and low-density
lipoprotein cholesterol levels in MASH patients; therefore, the safe dosage of FXR agonists
still needs further prediction and evaluation.

Short-chain fatty acids (SCFAs) are a class of saturated and fatty acids produced by
intestinal flora through fermentation of soluble dietary fiber, including acetate, propionate,
and butyrate. Zhao, T. et al. found that butyrate supplementation could inhibit the activity
of NADH oxidase in the ETC of MAFLD patients, increase the concentration of potassium
ions in the mitochondria, maintain the mitochondrial membrane potential, and delay the
development of MAFLD [130,176]. Acetate and propionate mainly maintain the intestinal
barrier and reduce the release of inflammatory factors such as IL-6 [177].

3.5. Other Molecular Drugs

Several experimental targets are being explored in clinical practice to delay the sus-
tained development of MASH, including FXR agonists, FGF21, glucagon-like peptide-1
(GLP-1), PPAR agonists, etc. GLP-1 is an incretin hormone that regulates blood sugar
and weight homeostasis. Clinical diabetic patients with low expression of GLP-1 receptor
(GLP-1R) are known to have mt-ROS accumulation, superoxide formation, and membrane
potential loss [178]. The GLP-1 analogs liraglutide and semaglutide have been proven to
delay the development of MASH. Semaglutide can reduce the occurrence of mitochondrial
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dysfunction by enhancing autophagy and resisting oxidative stress in neurodegenerative
diseases [179]. During the treatment of MASH patients, semaglutide can also bind with
GLP-1R to effectively improve glucose–lipid metabolism and reduce oxidative stress in
hepatocytes [180]. Liraglutide increases the levels of mitochondria-related structural pro-
teins, such as Drp1, OPA1, and UCP2, enhances mitochondrial structural remodeling, and
restores the expression of autophagy-related proteins, such as Beclin 1, LC 3, and Sirtuin
1, to inhibit the development of MAFLD [181]. The combined use of multiple drugs has
shown a stronger effect on the control of MAFLD than single drugs. For example, the
combined use of FXR agonist (Cilofexor), ACC inhibitor (Firsocostat), and semaglutide
in MASH patients was compared with semaglutide alone, and the combined use of the
drugs improved the two indicators of transaminase and fat content more significantly [182]
(Table 2).

Table 2. The main therapeutic strategies for mitochondrial function in MAFLD/MASH.

Name Pathway Treatment Model Effect for MAFLD

Antioxidant trace elements

Vitamin C
(VC)

mt-ROS↓, adiponectin↓;
PPARα↑, antioxidant

enzymes↑

High-dose intake Mouse
(High-fat diet) Reduce lipid

accumulation, IR, and
inflammationHigh-dose intake

+ low-fat diet Guinea pig

Vitamin E
(VE)

Mt-ROS↓, iNOS↓, NADPH
oxidase↓; PPARα↑

Oral administration of
hydroxytyrosol and VE MAFLD children Reduce HSC activation

and fibrosis

Vitamin D
(VD)

mTOR↓, Sirtuin↓;
PPARα/CPT1A↑, HNF4α↑,

NFE2L2↑

Gavage dose of VD Wistar rats
Reduce liver steatosis,

serum lipid
accumulation

VD HepG2 cell by OA Inhibit lipid and TG
accumulation in cell

Vitamin A
(VA)

PPARα↑, FGF21↑,
CPT1A↑, UCP2↑ —— —— VA deficiency in

MAFLD patients

Vitamin B
(VB)

ROS↓; restore lipid
digestion, the activity of
NADPH enzyme, and
mitochondrial redox

potential

0.5% niacin in the diet Rat
(High-fat diet)

Reduce chronic
inflammation and
hepatic steatosis

Coenzyme Q

L-CoQ10
Restore OXPHOS and

mitophagy; increase the
activity of cytochrome C

Oral administration
L-CoQ10

Rat
(orally intoxicated with
PRA-induced MASH)

Reduce liver damage
and fibrosis

Idebenone PPARα/γ↑; triglyceride↓,
cholesterol↓

Oral administration
Idebenone

Mouse model of type 2
diabetes

Reduce hepatic
steatosis

Hydrogen-rich
water

Restore normal coenzyme
Q expression levels Oral administration MAFLDH

patients/mouse models
Potential therapy to

alleviate MAFLD

Nrf2 antioxidant supplement

Aucubin
Nrf2↑, PPAR↑,

p-AMPK/AKT↑; TNF-α↓,
IL-1β↓, IL-6↓

Intraperitoneal
injection of aucubin

Mouse
(Tyloxapol-induced

MAFLD)

Reduce lipid
accumulation, oxidate

stress, and
inflammation

Melatonin
Mt-ROS↓; restore the

activity of Nrf2/HO-1 and
mitochondrial redox

potential

Intraperitoneal
injection of melatonin

Mouse
(High-fat diet)

Reduce oxidate stress
and damage to

hepatocytes
—— HepG2 by OA



Int. J. Mol. Sci. 2023, 24, 17514 18 of 27

Table 2. Cont.

Name Pathway Treatment Model Effect for MAFLD

Scoparone Mt-ROS/P38/Nrf2↓, P62↓ —— Macrophages by LPS Alleviate oxidative
stress damage

MicroRNA

miRNA21/20B —— ——
Mouse

(CCL4-induced
MAFLD)

Upregulate in MASH
mice

miRNA-223

Vesicle enrichment to
inhibit Sirtuin 1 and AMPK
activation; mt-ROS↓; Nrf2↑,

HO-1↑, SOD1/2↑

miR-223 expressed by
elevated EA

HepG2 cells
(High glucose-induced

MAFLD)

Reduce oxidative stress
and insulin resistance

Microbiota and intestinal metabolites

Akkermansia
muciniphila

Restore mt-DNA, PGC-1α,
CPT-1β, and activate

AMPK activity

Oral administration of
Akkermansia muciniphila

Mouse
(HFD diet)

Reduce liver lipid
accumulation

Bile acids

Activate Farnesoid X
receptor (FXR), G

protein-coupled receptor
superfamily (TGR5), and
ATP synthesis processes

Intraperitoneal
injection of INT-767

Mouse
(HFD diet)

Reduce fatty acid
synthesis, AMPK,

SIRT1/SIRT3
phosphorylation, and

the decreasing trend of
mitochondrial function

SCFAs Maintain the mitochondrial
membrane potential

Butyrate
supplementation MAFLD patients Delay the development

of MAFLD

Other molecular drugs and strategies

Semaglutide

Bind with GLP-1R to
decrease the accumulation

of mt-ROS, superoxide
formation, and membrane

potential loss

——

MASH
patients Improve IR and

glucose–lipid
metabolism, and

reduce oxidative stressSH-SY5Y cell

Liraglutide Drp1↑, OPA1↑, UCP2↑,
Beclin1↑, LC3↑

Subcutaneous injection
of liraglutide

Mouse
(HFD diet)

Inhibit the
development of

MAFLD

“↑” represents upregulated expression; “↓” represents downregulated expression; “——” represents unknown.
The abbreviations in Table 2 are defined as follows: L-CoQ10(Liposomal-coenzyme Q10); SCFAs (short-chain
fatty acids); PPARα (proliferator-activated receptor-alpha); FGF21 (fibroblast growth factor 21); CPT1(Carnitine
Palmitoyl Transferase I); UCP2(Uncoupling Protein 2); NFE2L2 (Nuclear Factor Erythroid 2-associated Factor
2); HNF4α (Hepatocyte Nuclear Factor 4α); HFD-diet (high-fat diet); EA (ellagic acid); INT-767(FXR-TGR5
dual agonist).

4. Summary

At present, MAFLD has become a global health and safety issue by affecting a quarter
of the population in the world and has no approved drug therapy. Furthermore, in recent
years, studies have shown that MAFLD is inextricably linked to the development of
extrahepatic diseases. Tarantino, G. et al. used the triglyceride/glucose (TyG) index and
triglyceride/high-density lipoprotein (HDL) to detect the occurrence of MAFLD and IR,
respectively, in bladder cancer patients and found that both TyG and HDL significantly
increased [183]. Liang, Y. et al. used 6873 Chinese middle-aged and elderly people as clinical
research subjects and found that patients with MAFLD had a significant increase in the risk
of cardiovascular diseases by inducing abnormal elevation of arterial hyperlipidemia and
causing myocardial damage [184,185]. At the same time, liver fibrosis inhibits the filtering
function of glomeruli to injure kidney functions [186]. In addition, for MAFLD patients
of different sexes, the risk of colon cancer in men and breast cancer in women was also
significantly increased. Mantovani et al. conducted a systematic summary of the association
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between MAFLD and extrahepatic cancers through follow-up observation statistics of
clinical patients and found that MAFLD increased the risk of extrahepatic cancer, including
increasing the risk of developing gastrointestinal cancers, such as esophageal, gastric,
pancreatic, and colorectal cancers, by nearly 1.5- to 2-fold [186–188]. In addition, MAFLD
can also significantly increase the probability of breast cancer, thyroid disease, etc. [189].
However, it is worth noting that the probability of extrahepatic cancers increased by
MAFLD is affected by a variety of confounding factors, including age, sex, smoking, obesity,
and other potential factors, so these related mechanisms need to be further researched.

As important organs for energy formation and metabolism in cells, mitochondria
mainly metabolize carbohydrates and fatty acids through oxidative phosphorylation and
β-oxidation, respectively, in hepatocytes. However, when the mitochondrial structure is
damaged, the genome expression is abnormal, or the quality control is disordered, which
leads to the collapse of ETC, the reduction in ATP synthesis, and the massive accumulation
of mt-ROS and intermediate metabolites of fatty acid decomposition such as dicarboxylic
acid. This review mainly focuses on the causes and impacts of mitochondrial dysfunction
on the pathogenesis of MAFLD. In addition, there are potential therapeutic effects of natural
antioxidant compounds and molecular medicine to treat MAFLD.

In addition, Fu, A. et al. used tail vein injection of healthy mitochondria into MAFLD
mice to compensate for the mitochondrial physiological activity of missing functions. This
approach effectively reduced serum aminotransferase activity and blood lipid content
and significantly restored ATP synthesis, cytochrome oxidase activity, and mitochondrial
antioxidant formation [163]. At present, there is still a lack of other animal models or
clinical cases to further determine the therapeutic effect of mitochondrial reinfusion, while
it is undeniable that it will be a new potential strategy for the treatment of MAFLD.

The pathogenesis of MAFLD or MASH is highly heterogeneous and influenced by
different triggers at different ages. For example, simple steatosis induced by genetics,
malnutrition, or changes in the environment eventually leads to MAFLD, which is the main
cause of illness in children and adolescents. In adults, there are many causes, including
non-excessive alcohol, genetics, diabetes, etc. These causes can also trigger mitochondrial
dysfunction. In addition, the manifestations of mitochondrial dysfunction vary among
different disease types. Comprehensive clinical data analysis revealed that the number
of mitochondria in the liver of patients with MASH is reduced, and the structure is more
obviously damaged than that in normal people, which in turn aggravates the process of
liver cell necrosis and fibrosis.

Clinical data and research provide evidence to support that mitochondrial dysfunction
influences the development of MAFLD by changing oxidation reactions and antioxidant
mechanisms. We have provided a simple table to summarize these main therapeutic
strategies for mitochondrial function in MAFLD or MASH in this review. However, mi-
tochondrial dysfunction in MAFLD has yet to be completely elucidated. Therefore, there
is virtual significance to further determine different types of antioxidant molecules in the
occurrence of MAFLD. It is equally important to determine whether the use of the above
antioxidants would cause side effects and impact the treatment effect at different stages of
MAFLD or MASH. Risk assessment and prediction in clinical treatments for MAFLD and
MASH patients through transplantation of beneficial intestinal flora and mitochondrial
reinfusion also require further verification.
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