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Abstract: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized
by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide
range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1
in 44 children. Although ASD’s etiology is not yet elucidated, a growing body of evidence shows
that it stems from a complex interplay of genetic and environmental factors. In recent years, there
has been increased focus on the role of gut microbiota and their metabolites, as studies show that
ASD patients show a significant shift in their gut composition, characterized by an increase in specific
bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This
review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well
as possible implications of microbiota shift. Also, it highlights current studies aiming to compare
the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally,
it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are
evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.

Keywords: autism spectrum disorder; short-chain fatty acids; propionic acid; gut microbiota;
gut-brain axis; microbiome shift

1. Introduction

Autism spectrum disorder (ASD) is a complex neuro-developmental condition char-
acterized by deficits in communication and social interactions, repetitive and restrictive
behavior, and a wide range of comorbidities, especially those involving the gastrointestinal
(GI) tract [1–3]. ASD is often diagnosed in early childhood (as early as 2 years of age);
however, milder cases of autism may be diagnosed later in life [4,5]. In the Diagnostic and
Statistical Manual of Mental Disorders, the following are classified under ASD: autistic dis-
order, pervasive developmental disorder not otherwise specified (PDD-NOS), and Asperger
syndrome [6]. Reports published by the Centers for Disease Control and Prevention (CDC)
from the Autism and Developmental Disabilities Monitoring Network, which surveys the
prevalence of ASD among eight-year-old children, show that the prevalence of ASD tripled
in the last 20 years. In the year 2000, the prevalence was 1 in 150 children, whereas in the
report for the surveillance year of 2018 (published in 2021), the prevalence of ASD was 1
in 44 children [7]. This could also be considered a significant increase from the previous
surveillance year (2016), in which the prevalence was 1 in 54 children. The prevalence
of ASD is four times higher in males than in females [7]. The striking rise in prevalence,
alongside the paucity of available treatments, urges an intensification of research into
ASD’s etiology, treatment approaches, and possible means of prevention [3]. Additionally,
ASD brings significant economic and social burden on society and families with children
afflicted with ASD and significantly lowers their quality of life [8].
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Although some of the increase in prevalence can be attributed to changes in diagnostic
criteria and increased awareness of both parents and health, evidence also shows that envi-
ronmental factors also contribute to the increase [9,10]. For instance, the rise in prevalence
is significantly outpacing the changes in population genetics [11], alongside evidence from
monozygotic twins where the concordance is not 100% [12], suggesting that ASD arises
from an interplay of complex genetic and environmental factors. A significant amount
of evidence points to factors such as toxins, metabolic abnormality, oxidative stress, and
immune dysregulation during the gestational period [13,14]. There is increasing evidence
demonstrating a link between ASD and the GI tract, in which as much as 70% of ASD
patients exhibit GI symptoms including diarrhea, gastroesophageal reflux, abnormal epithe-
lial barrier permeability, immune dysregulation, and significant GI inflammation [13,15–17].
In addition to GI comorbidities, several studies show significant alteration of the micro-
biota composition versus age-matched control patients not exhibiting ASD symptoms, in
which the former are characterized by an increased abundance of short-chain fatty acid
(SCFA) producers [18–20]. Amid SCFAs, propionic acid (PPA) is of highest interest, as
there has been an increase in recent evidence showing its link to ASD development and
symptom severity.

As suggested by recent findings, a shift in microbiota and elevated levels of SCFAs, in
particular PPA, might be among the environmental factors contributing to the development
of ASD. This comprehensive review aims to provide a reader with a background on the
role of SCFAs in the human body, alongside the role of gut microbiota. It also provides
a summary of the current studies aiming to establish the difference in composition of
microbiota in ASD-afflicted patients versus age-matched neurotypical controls. Finally,
it provides an overview of recent rodent studies where PPA or direct microbiota transfer
from ASD patients cause ASD-like symptoms in rodents.

Publications relevant to this study were identified with the aid of PubMed using key
words that include autism (or ASD) + microbiota, dysbiosis, bacteria, short-chain fatty acid,
and propionic acid. Only studies within the last 20 years were included. Moreover, only
studies involving proper age-matched controls were considered. The ages of participants
in the review studies were 1 to 18 years old.

2. Short-Chain Fatty Acids
2.1. Classification and Sources

Short-chain fatty acids (SCFAs) are monocarboxylic acids with fewer than six carbon
atoms [21,22]. Amongst the SCFAs, the most prominent, constituting 95% of all SCFAs
present in the human intestine, are acetic acid (AA), propionic acid (PPA), and butyric
acid (BA) [23]. Their structures are comprised of a carboxylic acid moiety and a short
unbranched hydrocarbon chain containing two, three, or four carbons, respectively [24].
The total concentration of SCFAs in the human large intestine reaches 50–200 mM [25], with
a molar ratio of 60:20:20 for acetic, propionic, and butyric acids, respectively.

Most of the SCFAs present in the large intestine result from the fermentation of carbo-
hydrates by various species of bacteria (which will be discussed in subsequent chapters),
along with a smaller contribution from undigested peptides in the small intestine [26].
Starches are among the most prominent substrates for SCFA production. Although they
are usually digested in the small intestine by pancreatic amylase, some starches can remain
undigested or partially digested (collectively called resistant starch (RS)) and move into
the large intestine to be a substrate for bacterial fermentation [27]. Their resistivity to
digestion can be attributed to physical inaccessibility (as in partially milled grain and
legumin), being trapped in granules with high amylose content (amylose is much harder
to break down enzymatically than amylopectin), chemical modification (processed food),
and retrogradation (temperature fluctuation causing changes in starch properties) [28,29].
Other fermentable carbohydrates include dietary fibers, which are part of the plant cell
wall, and can be classified as either water soluble or water insoluble. The former are highly
fermentable and significantly contribute to the production of SCFAs; the latter, although
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fermentable to a much lower extent, increase the volume of fecal matter and lower the
time of colonic transit [30]. Examples of fermentable fibers include cellulose, hemicellulose,
and pectin [27]. Amino acids such as valine, leucine, and isoleucine could serve as a less
prominent substrate for SCFA production [31].

Although the majority of SCFAs present in the intestine are produced by resident
bacteria, SCFAs are present in food, either naturally occurring or added during food
processing, as PPA has antifungal properties [3]. During the production process, food with
naturally occurring SCFAs usually undergo fermentation by various types of bacteria; food
especially rich in PPA and/or BA include cheese and butter [32]. Baked goods (especially
those with a long shelf life), dried fruits, and other processed foods contain PPA and its
salts, which include potassium propionate, sodium propionate, and calcium propionate, as
food preservatives [33]. Although the microbiota are the main contributor to high levels of
SCFAs, diet can also play a role.

2.2. Metabolism and Distribution

The most prominent SCFAs in the human intestine (i.e., acetic acid, propionic acid,
and butyric acid) are found at around 50–200 mM concentration in the intestinal lumen.
However, based on a seminal study involving sudden-death victims, the concentration
of SCFAs is 1000-fold lower in the portal vein with values reaching ~375 µM, further
falling to ~140 µM in hepatic blood, and finally reaching ~79 µM in peripheral blood [26].
However, the evaluation of the concentration and utilization of SCFAs in the human body
is challenging, as only a few studies involving sudden-death victims were conducted [34].
Additionally, the concentration of SCFAs both in the intestine and circulation is highly
dependent on the individual’s diet (the uptake of SCFAs naturally present in food or added
as a preservative), intestinal microbiota (specific microorganism species and producers of a
high amount of SCFAs and their subtypes), and the individual’s metabolism [23,32,33].

Each of the major SCFAs have distinct distribution and are differentially processed in
the body. Butyric acid is mainly absorbed through monocarboxylate transporters utilized
by colonocytes as an energy source [35,36], while acetic and propionic acids are transported
to the liver via the portal vein. In the liver, a large portion of propionic acid is metabolized,
while the remaining portion travels through various tissues via blood circulation. SCFAs
can readily cross the blood–brain barrier (BBB) and exert an effect on the central nervous
system (CNS) [35,37]. Although the exact mechanism of SCFAs’ influence on the CNS
remains largely unknown, the growing number of animal studies demonstrate that SCFAs
can affect subject behavior and influence important neurological processes at the molecular
level [38].

In a seminal in vitro study, it was also shown that treatment of neural stem cells with
PPA significantly shifts their differentiation faith. While in the control, the neural stem
cells differentiated to an equal ratio of neurons and glia cells, in the PPA-treated cells, the
shift in differentiation resulted in 80% of cells being positive for glial markers and only
20% for neuronal markers [3]. Similarly, an increase in glial cells has been observed in
the post mortem brain of ASD patients [39]. This finding suggests that, during early fetal
development, PPA may perturb neural patterning and brain development. Additionally,
PPA-treated cells exhibit signs of neuroinflammation, as evidenced by an increase in pro-
inflammatory cytokine levels [3].

2.3. SCFA Levels in ASD

Several recent studies reported an increase in SCFAs in the stool of ASD subjects
versus age-matched neurotypical controls. For instance, He et al. reported this in a study
involving 40 ASD children with constipation (matched to 40 neurotypical controls). In
addition to the change in the microbiome, as summarized in table in the subsequent chapter,
they reported a significant increase in the concentration of PPA. Other SCFAs (AA and BA)
were elevated; however, they were not statistically significant [40]. Corretti et al. reported a
significant increase in PPA and BA, while De Angelis et al. reported a significant increase
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in PPA and AA [41,42]. Wang et al. also reported that AA, PPA, BA, and isobutyric acid
were elevated in ASD patients. Additionally, patients with propionic acidemia are often
diagnosed with ASD. In this condition, high levels of propionic acid are present in the
circulation, due to an inefficiency in propionyl-CoA carboxylase activity [43]. More research
is needed on the levels of PPA and other SCFAs in the ASD population, as most of the
studies mainly focused on the microbiome shift without consideration of SCFAs. However,
across microbiota studies, species that are consistently elevated are SCFA producers [42,44].

3. Microbiota
3.1. Overview

The human body is colonized by a myriad of microorganisms (with estimates ranging
from 3.8 × 1016 to 1 × 1014) [45,46], which inhabit the skin as well as the mucosal cavities.
The number of genes encompassed in the microbial community vastly outnumbers the hu-
man genome. Although throughout the years, the role of the microbiome in human health
and disease was not sufficiently applicated, in the past few decades, with the advent of
modern gene sequencing and advanced bio information tools alongside growing evidence
of an altered microbiome in a multitude of diseases, the human microbiome became a center
of intensive investigation [35]. The GI tract is the most densely populated, with trillions
of bacteria, fungi, and viruses collectively called microbiota and accounting for approxi-
mately 1 kg of human gut weight [38,47]. Bacteria phyla that are mostly found in human
feces include Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (collectively
comprising up to 90% of the total bacteria found), with the addition of Verrucomicrobia
and Fusobacteria, which are found at a lower abundance. Based on the presence of some
microbes in the placenta, amniotic fluid, and meconium, it is believed that microbial col-
onization of the GI tract begins in the prenatal period [48] and continues during birth,
breastfeeding, skin contact, and the introduction of various foods. Additionally, the mode
of child delivery influences the population of bacteria that initially colonizes a newborn’s
GI tract. Children born vaginally are initially colonized by their mother’s fecal and vaginal
bacteria, while those born via cesarean delivery are initially colonized by bacteria found
on the skin and in the hospital environment [49]. For instance, 75% of the fecal microbiota
of vaginally born children is related to the fecal microbiota of their mothers; however,
children born via c-section only exhibit 41% similarity [50]. Another factor contributing to
microbial composition is gestational age, where premature infants lack specific bacteria
genera typically found in full-term infants [51]. The human microbiome and its host usually
interact in a mutually beneficial manner; the host provides a stable environment and food
source for the microorganisms, while they help process indigestible food, synthesize impor-
tant nutrients and vitamins, influence the immune system, and minimize the growth of
harmful organisms though niche competition [35,52,53]. In addition to providing processed
nutrients, microorganisms produce a variety of compounds that can influence the host
organism in the GI tract and beyond.

3.2. Microbiota Shift in Children with ASD

Numerous recent studies have shown alteration in the microbiota of children diag-
nosed with ASD versus age-matched neurotypical controls [54,55]. The table below (Table 1)
summarizes the most important findings and provides information on the cohort of patients
included in the study method of sample acquisition (stool versus biopsy) and methods used
to classify their microbiomes. The exact characteristic profile of the ASD patient population
cannot be determined, and there are some data showing contradicting results. This may
explain the complexity and challenges that scientists face when pursuing ASD research.
For example, this can possibly be attributed to a diverse patient population that varies in
geographical location, diet, age, lifestyle, and antibiotic usage [54,55]. Additionally, the
differences can be attributed to a small cohort size, sample acquisition method, sequencing
technique, and software utilized [41,56]. Several studies point to Bacteroidetes and Firmi-
cutes as phyla of importance, where their ratio is altered, with an increase in the former
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and decrease in the latter in the stool of the ASD population [41,44]. Of importance is the
fact that the majority of the species in the Bacteroidetes phylum produce PPA [54,57]. Other
studies showed that there was a significant increase in Bacteroides, Desulfovibrio, and Clostrid-
ium at the genus level in stool, all of which are PPA producers [41,42,44,58], and an elevated
presence of Bacteroides is strongly corelated with an increase in PPA in patient stool sam-
ples [55]. The species most elevated in the Bacteroides genus include B. uniformis, B. vulgatus,
and P. distasonis [41]. In addition to PPA, Desulfovibrio also produces Lipopolysaccharides
(LPS) and hydrogen sulfide, which can have toxic effects [59]. Increases in both Clostridia
and Desulfovibrio were found to be correlated with the use of antibiotics, and due to com-
mon comorbidities, ASD patients are prescribed antibiotics more often than the general
population [60]. In the case of Clostridia, as it is a sporulating microbe, the population
that was depleted after a course of antibiotics can be quickly replenished from spores [61].
Although Desulfovibrio does not produce spores, it is resistant to common antibiotics (such
as cephalosporins) prescribed for ear infections that have a large prevalence in the ASD
patient population [62]. Additionally, in a study where ASD patients were treated with
antibiotics with high activity against Clostridium, their symptoms were significantly im-
proved; however, the symptom improvement regressed after the conclusion of antibiotic
treatment. It was hypothesized that the regression was caused by the reemergence of
Clostridia from spores [63]. Additionally, an increase in PPA-producing Faecalibacterium
prausnitzii was observed [41], alongside the Sutterella, Lactobacillus, Roseburia, Enterobacter,
and Akkermansia genera [20,64]

The phyla Actinobacteria and Firmicutes were found to be significantly decreased in
the stool of ASD groups based on several studies [41,44]; at the genus level, this includes
Actinomyces, Corynebacterium, Bifidobacterium, Ruminococcus, Streptococcus, Dialister, Fusobac-
terium Lachnospira, and Turicibacter [20,44,65]. Bifidobacterium was consistently found by
many studies to be at a lower abundance in ASD patients [20,44,65]. Bifidobacterium was
found by several studies to have autoinflammatory effects, as well as the ability to regulate
microbial composition [44,56,64–68].

In samples obtained from duodenal biopsies, Burkholderia, Oscillospira, Actinomyces,
Neisseria, Peptostreptococcus, and Ralstonia are significantly elevated, while Neisseria, Devosia,
Prevotella, Bacteroides, and Streptococcus are decreased in the ASD group vs. control [69].
Finally, in samples that originated from ileal and cecal biopsies, the order Clostridiale
and families Lachnospiraceae, Ruminococcaceae, Alcaligenaceae, and Methylobacteriaceae are
significantly elevated [70,71].

A study by Li et al., where the microbiota of both children afflicted with ASD and their
mothers were examined and compared to neurotypical controls, determined that Proteobac-
teria, Alphaproteobacteria, Moraxellaceae, and Acinetobacter were elevated in mothers with
children afflicted with ASD. Also, it was determined that there was a clear correlation of
bacteria present in mothers and their offspring, possibly due to vertical transfer. However,
ASD children exhibited unique bacterial composition with an increase in Alcaligenaceae,
Enterobacteriaceae, and Clostridium [72]. In a study by He et al. involving 40 ASD subjects
with constipation (a common comorbidity in ASD), there was an increase in Ruminococ-
caceae_UCG_002, Erysipelotrichaceae_UCG_003, Phascolarctobacterium, Megamonas, Rumini-
clostridium_5, Parabacteroides, Prevotella_2, Fusobacterium, and Prevotella 9 and a decrease
in Anaerostipes, Lactobacillus, Ruminococcus_gnavus_group, Lachnosp raceae_NK4A136_group,
Ralstonia, Eubacterium_eligens_ group, and Ruminococcus 1. Figure 1 summarizes the recent
findings, stating which bacteria were most commonly elevated or had diminished levels in
the ASD group across studies.
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Table 1. An overview of prominent studies aiming to elucidate the shift in gut microbiota in ASD patients. The author, year of publication, shift in specific
microbiome (decrease or increase), and other prominent findings are included.

Author Year

Study Design Change in ASD vs. Control Other Findings

Number of
Participants

Age
(Years) Sample Source Assessment Type

Increase Decrease

P: Phylum O: Order F: Family G: Genus S: Species

Coretti et al.,
2018 [41]

ASD: 11
CON: 14 2–4 Stool V3–V4 16S rRNA

Illumina Miseq System

P: Bacteroidetes,
Parabacteroidetes
G: Bacteroides, Faecalibacterium
Oscillospira, Ruminococcus

P: Actinobacteria
G: Actinomyces,
Corynebacterium, Bifidobacterium

Increased BA and PPA
in ASD

Finegold et al.,
2010 [44]

ASD: 33
CON: 15
(including 7 siblings
of ASD and 8
nonrelated subjects)

2–14 Stool bTEFAP
FLX sequencer

P: Bacteroidetes, Proteobacteria
G: Desulfovibrio, Turicibacter
Bacteroides Parabacteroides
S: Desulfovibrio piger, Desulfovibrio
Desulfovibrio intestinalis,
Bacteroides vulgatus

P: Firmicutes Actinobacteria
G: Weissella, Costridium,
Actinomyces, Corynebacterium,
Bifidobacterium, Ruminococcus
Streptococcus, Dialister
S: Dialister invisus, Bifidobacterium
longum, Clostridium leptum

Very high level of
Bacteroides in severe
cases of ASD

Parracho et al.,
2005 [58]

ASD: 58
CON: 22 (12 siblings
of ASD and 10 not
related)

ASD:
3–16
CON:
2–13

Stool FISH 16S rRNA
oligonucleotide probes S: Clostridium histolyticum

A high portion of the
ASD group had GI
issues

Strati et al.,
2017 [20]

ASD: 40
CON: 40 4–17 Stool V3–V5 16S rRNA. GS

FLX + system
G: Collinsella, Corynebacterium,
Dorea, Lactobacillus

G: Alistipes, Bilophila, Dialister,
Parabacteroides, and Veillonella

ASD altered microbiota,
constipation is an
important factor

De Angelis
et al.,
2013 [42]

ASD: 10
CON: 10
siblings

4–10 Stool bTEFAP 454 FLX
Sequencer

P: Bacteroidetes, G: Bacteroides
Clostridium Roseburia Enterobacter
Akkermansia

P: Fusobacteria, Verrucomicrobia
G: Eubacterium, Fusobacterium,
Lachnospira, Turicibacter,
Bifidobacterium

Increase in PPA and AA

Wang et al.,
2020 [65]

ASD: 26
CON: 24 3–9 Stool

V1-V2 16S rRNA
Illumina HiSeq
sequencer

F: Rikenellaceae, G: Ruminococcus,
Victivallales Oscillospira,
Odoribacter, Cetobacterium,

P: Actinobacteria
O: Bifidobacteriales, F:
Bifidobacteriaceae Veillonellaceae, G:
Bifidobacterium,
S: B. adolescentis, B. longum

Decrease in PPA in ASD
Odoribacter: common
SCFA producer

Li et al.,
2019 [55]

ASD: 59 children and
their mothers
CON: 30 children and
their mothers

Children:
2–10
Mothers: 26–42

Stool
V1-V2 16S rRNA
Illumina HiSeq
sequencer

Children- G: Enhydrobacter,
Chryseobacterium, Streptococcus,
Acinetobacter, Clostridium
S: Acinetobacter rhizosphaerae,
Acinetobacter johnsonii
Mothers-F: Moraxellaceae
Enterobacteriaceae G: Acinetobacter

Children-S: Prevotella
melaninogenica
Mothers- G: Faecalibacterium

Assessment of
mother–child gut
microbiome profile.
There is a clear
correlation; however, a
unique bacteria profile
is still present in ASD
children.

Kushak et al.,
2017 [69]

ASD: 21
CON: 19
Both ASD and CON
with GI symptoms

ASD: 14.43 ± 1.07
CON: 16.05 ± 1.25

Duodenum,
endoscopic
biopsy

16S rRNA
454 FLX Sequencer

G: Burkholderia, Oscillospira,
Actinomyces, Neisseria,
Peptostreptococcus, Ralstonia,

G: Neisseria, Devosia, Prevotella,
Bacteroides, Streptococcus

Differences in bacteria
associated with
disaccharidase activity
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Table 1. Cont.

Author Year

Study Design Change in ASD vs. Control Other Findings

Number of
Participants

Age
(Years) Sample Source Assessment Type

Increase Decrease

P: Phylum O: Order F: Family G: Genus S: Species

Williams et al.,
2011 [71]

ASD: 15
CON: 7 Both ASD and
CON children had GI
issues

3–6
Biopsy of ileal
and cecal
tissues

V2 16S rRNA 454 FLX
Sequencer

O: Clostridiale
F: Lachnospiraceae, Ruminococcaceae,
Alcaligenaceae, Methylobacteriaceae

P: Bacteroidetes

Deficits in gene
expression involved in
carbohydrate digestion
and transport

Williams et al.,
2012 [70] ASD: 15 CON: 7 3–5 Biopsy of ilium

and cecum
V2 16S rRNA GS FLX
sequencer

High level of species from
Sutterella genus

Sutterella 16S rRNA in
ASD group and absent
in control

Adams et al.,
2011 [66] ASD: 58 CON: 39 ASD: 6.91 ± 3.4

CON: 7.7 ± 4.4 Stool
The Vitek®2
identification cards and
Vitek 2 system

G: Lactobacillus, Bacillus spp. G: Bifidobacterium, Enterococcus
Species: Enterobacter cloacae

Decrease in SCFAs
(lower SCFAs due to
higher absortion/lower
intake of fibers)

Tomova et al.,
2015 [73]

ASD: 10 CON: 10
Siblings of ASD: 9

ASD: 2–9
CON:2–11
Sib.: 5–17

Stool RT-PCR Clostridia cluster l, Desulfovibrio P: Bacteroidetes

Fecal TNFα increased in
stool. Correlation
between the amount of
Desulfovibrio present
and autism severity

Wang et al., [74]
ASD: 23
ASD siblings: 22
CON (unrelated): 9

ASD: 10.2 ± 0.75
CON: 9.5±
1.25
Sib.: 12 ± 1

Stool RT-PCR S: Clostridium difficile S: Akkermansia muciniphila,
Bifidobacterium spp.

Lower abundance of
Akkermansia muciniphila
is suggestive of changes
in the mucosal barrier

David et al.,
2021 [56]

ASD: 60
CON: 57 (siblings) 2–11 Stool 16S rRNA V4 Illumina

MiSeq
G: Bacteroides, Ruminococcus,
Anaerococcus

F: Lachnospiraceae G: Desulfovibrio,
Bifidobacterium

Unique crowdsourcing
recruitment of subjects.

Kang et al.,
2013 [75]

ASD: 20
CON: 20 2–16 Stool V2/V3 16S bTEFAP

FLX Sequencer
G: Akkermansia present at very
high level

P: Proteobacteria, Verrucomicrobi,
G: Veillonellaceae,
Prevotella, Coprococcus

Less diverse gut
microbial composition
in ASD

Finegold et al.,
2017 [18]

ASD: 33
CON: 13 2–9 Stool Anerobic bacteria

culture. ABI 3130 Increase in Clostridium
Increase in C. perfringens
beta2-toxin gene in ASD
vs. control

Song et al., 2004
[76]

ASD: 15
CON: 8 Not specified Stool TaqMan RT-PCR 16S

rRNA

Increases in Clostridium
46-fold: C. bolteae
9.0-fold: cluster I
3.5-fold: cluster XI

Study focused on
Clostridium

Zhang et al.,
2018
[77]

ASD: 35
CON: 6

ASD: 4.9 ± 1.5
CON: 4.6 ± 1.1 Stool 16S rRNA (V3–V4)

Illumina HiSeq
P: Bacteroidetes
G: Sutterella, Odoribacter,
Butyricimona

P: Firmicutes
Genus: Veillonella, Streptococcus

ASD group was
characterized by
increase in constipation

Son et al., 2015
[78]

ASD: 59
CON: 44
(siblings of ASD)

ASD:4–18
CON:7–14 Stool

V1V2 and V1V3 of 16S
rRNA
Illumina HiSeq

No difference found No difference found
ASD group was
characterized by
increase in constipation
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Table 1. Cont.

Author Year

Study Design Change in ASD vs. Control Other Findings

Number of
Participants

Age
(Years) Sample Source Assessment Type

Increase Decrease

P: Phylum O: Order F: Family G: Genus S: Species

Wang et al.,
2013 [79]

ASD: 23
CON: 31 Not specified Stool RT-PCR G: Sutterella

S: Ruminococcus torques Focused on Sutterella

Jendraszak
et al., 2021 [67]

ASD: 33 CON: 16
Allergies: 24

ASD: 4–6
CON: 3–9
ALG: 4–9

Stool Microbial culture and
RT-PCR G: Klebsiella, Bifidobacterium

Probiotic use helps
stabilize microbial
composition

He et al., 2023
[40]

ASD: 40
CON: 40

ASD: 5.3 ± 1.34
CON: 5.83 ± 1.28 Stool V3-V4 of the 16S rRNA

Illumina HiSeq 2500

Ruminococcaceae_UCG_002,
Erysipelotrichaceae_UCG_003,
Phascolarctobacterium, Megamonas,
Ruminiclostridium_5,
Parabacteroides, Prevotella_2,
Fusobacterium, Prevotella 9

Anaerostipes, Lactobacillus,
Ruminococcus_gnavus_group,
Lachnospiraceae_NK4A136_group,
Ralstonia, Eubacterium_eligens_
group, and Ruminococcus_1

Children enrolled in
this study suffered from
constipation.
Significant increase in
SCFAs in the ASD
group
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3.3. Gut–Brain Axis

The gut–brain axis, often referred to as GBA, is a form of complex bidirectional com-
munication between the central nervous system and the gastro-intestinal tract [65,80]. A
focus on the gut microbiota and their metabolites in GBA has recently occurred. The modu-
lation can be either direct (anatomical) via the vagus nerve (10th cranial nerve) and enteric
nervous system or indirect with the involvement of metabolic, immune, and endocrine
signaling pathways [35,81,82]. In past decades, research showed that the microbiota are
among the key players that can influence virtually all aspects of the GBA [38,83]. One of the
first sets of studies showing the involvement of microbiota in the GNS involved germ-free
animals, in which their brains were altered in comparison to the non-germ-free control;
additionally, other studies show that the administration of specific strains of microbes can
alter animal behavior [83–85].

In the neurologic pathway, the vagus nerve and enteric nervous system can be directly
affected by molecules produced by microbiota acting as neurotransmitters such as GABA,
histamine, norepinephrine, acetylcholine, serotonin, dopamine, and melatonin [38,81,86–88].
On the other hand, the autonomic nervous system can modulate the activity of enteric
neurons, smooth muscle cells, epithelial cells, and immune cells, which is responsible
for the modulation of gut motility and permeability, mucus production, secretion of bile,
intestinal osmolality, and fluid control [80,89].

In the metabolic pathway, the microbiome synthesizes many metabolites that can
enter the systemic circulation, act on distant parts of the body, and modulate the behavior
of many tissue and cell types including the brain [82]. For instance, SCFAs are utilized
by colonic cells as an energy source, can be metabolized in the liver, or can cross the
blood–brain barrier (BBB) and exert its effect on neurons and glial cells [35,41,90]. The exact
pathways in which SCFAs exert their effects on the brain remain largely unknown. However,
evidence shows that the direct effect of SCFAs on the brain is mainly exerted through two
mechanisms: (1) through activation of GPR41 (free fatty acid receptor 3, which is expressed
in the brain and BBB at high levels) and (2) through histone deacetylase (HDAC) inhibition
in a dose-dependent manner [35,91–94]. The GPR41 receptor is activated by AA, BA, and
PPA; however, the most potent activator of GPR41 is PPA [30,95]. The binding of SCFAs
to GPR41 evokes a complex biological response [96]. GPR41 can be coupled to Gαi/o
and evoke downstream effects including a decrease in cyclic adenosine monophosphate
(cAMP), an increase in intracellular calcium concentration, and ERK1/2 activation [97]. In
an in vitro experiment, it was also shown that differentiation of neural stem cells in media
with a high concentration of PPA leads to overexpression of GPR41 in astrocytes, a decrease
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in PTEN, and an increase in Akt phosphorylation [3,98]. Histone modification is a form
of epigenetic regulation that plays a large role in the nervous system’s development and
homeostasis, and one of the most important modifications is acetylation. The acetylation
of histones is a dynamic state regulated by two types of enzymes: acetyltransferases and
HDACs [96]. PPA and BA are able to inhibit callas I and II and some of the III HDACs.

Finally, in the immune pathway, microbiota and their products modulate immune
cells—either those residing in the vicinity of the GI tract or via systemic circulation of
metabolites [83]. The effect of microbial metabolites, in particular of SCFAs, is exerted on
both the adaptive and innate immune system, where they affect differentiation, migration,
and the overall population of various cell types including T cells, macrophages, and innate
lymphoid cells [99]. SCFAs downregulate the production of nuclear factor-κB (NF-κB)
and tumor necrosis factor α (TNF-α) in lymphocytes and monocytes [100]. SCFAs also
modulate the release of anti-inflammatory cytokines (mainly Il-10) [101]. SCFAs, via the
modulation of GPR41, are important in the maturation and homeostasis of microglia.
However, the anti-inflammatory effect of SCFAs is concentration- and tissue-specific [99].
Figure 2 summarizes the pathways in the GBA affected by microbial metabolites.
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3.4. In Vivo Effect of SCFAs in Adult ASD-Animal Model

Several well-designed studies aimed to establish the effects of microbiota from ASD
patients or microbial products directly (especially PPA and LPS) on rodents. Table 2 contains
a summary of recent prominent studies. Sharon et al. used germ-free mice (GF) that were
grafted with microbiota obtained from either ASD patients or typically developing (TD)
control subjects [102]. In the group to which microbiota from ASD patients were grafted,
there was a significant shift in behavior resembling that found in ASD, suggesting that
the microbiota alone are sufficient to produce ASD-like symptoms in a rat model. Those
hallmark behaviors included a significant decrease in locomotion (evidenced by an open
field test) and communication (evidenced by a vocalization test), alongside an increase
in repetitive behaviors (evidenced by a marble burring test) [102,103]. Interestingly, the
symptoms were more prominent in the male rats than the female rats used in the study,
which resembles the gender disparity seen in the ASD population, with a significantly
higher ratio of males being affected [104]. The grafted microbiome in the ASD group had
an increased population of bacteria in the following taxa: Bacteriodetes, b-Proteobacteria,
Lactobacillales, Clostridiaceae, and Enterobacteriaceae—which matches other published
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findings [20,41,44,64]. It was also found that the metabolic profile was altered between
both groups, and genes relevant to brain function were alternatively spliced.

In two studies conducted by MacFabe et al., adult mice were injected with the microbial
metabolite PPA [105,106]. In the treated rodents, there was an alteration in behavior
characterized by lesser sociability, increased focus on particular objects, and an increase
in respective behavior. At the molecular level, PPA-treated mice were characterized by an
increase in oxidative stress, microglia, and astrocyte activation (an increase in GFAP).

In two additional studies, high doses of PPA were delivered orally (in one of the studies,
this was in conjunction with ampicillin treatment and, in another, with clindamycin). An
increase in catalase and lipid peroxidation was observed in the first study, while potassium
and glutathione levels were decreased in the brain, suggesting that oral ammonization
of a high dosage of PPA has a neurotic effect [107]. In the second study, there was a shift
in the microbiota, an increase in the Clostridium species, and an increase in Na+/Mg2+
and glutamate/GABA ratios (in the brain) in PPA- and clindamycin-treated golden Syrian
hamsters vs. the control [108].

In a study published by Lobzhanidze et al., a single and relatively low dose of buffered
PPA (175 mg/kg) delivered via intraperitoneal injection significantly altered the behavior
of young Wistar rats versus the vehicle-treated control. Treated animals spent significantly
less time with unfamiliar rats, signifying decreased interest in social stimuli. Histological
evaluation of the amygdala neurons and glia cells show a significant increase in glia cells
in the PPA-treated rats with evidence of swollen or proliferating astrocytes and activated
microglia. Additionally, a slight decrease in neurons in the amygdala was detected [109].

Finally, prenatal and postnatal injection of PPA and LPS into Long–Evans rats altered
their behavior and induced delays in eye opening (a physical milestone in mice). In the open
field test, mice exposed to PPA prenatally exhibited more anxiety, signified by a decreased
amount of time spent in the center of the open field. PPA delivered pre- and postnatally (in
the same animals) increased repetitive behavior, suggesting that PPA exposure prenatally
(in utero) and postnatally can evoke ASD-like behaviors in a rodent model [110].

This compelling body of evidence indeed shows that SCFAs and microbiota from
ASD patients can evoke ASD-like symptoms. Several clinical trials involving fecal transfer
showed improvements in ASD symptoms [111].

Table 2. An overview of prominent studies aiming to elucidate the effect of PPA in adult ASD-animal
models. The study design (animal type, sample size, and type of treatment) is described, alongside
the most important outcomes.

Author
Year

Study Design
Outcomes

Animal Sample Size Treatment

Sharon et al.,
2019 [102]

Mice: Germ-free
C57BL/6J weanlings
(3–4 weeks of age)

16 donor fecal
samples
9 animals colonized
by bacteria from each
donor sample

GF mice grafted with gut
microbiota from ASD and
TD control subjects

Microbiota from ASD altered the
behavior of mice: increased repetitive
behavior, decreased locomotion, and
decreased communication. It also
induced alternative splicing of genes in
the mice brain in ASD vs. TD control.
Differences in the metabolome profile.

MacFabe et al.,
2007 [105]

Adult male
Long–Evans rats
(~75 days old)

Total of 74 rats across
groups
Group sizes
6–9 animals

Infusion with PPA. Low:
4.0 µL of a 0.052 M
solution; high: PPA (4.0 µL
of a 0.26 M solution.
Controls: PBS or propanol

PPA treatment: increase in oxidative
stress markers. Altered behavior
(repetitive dystonic behaviors,
hyperactivity, and turning behavior).
Increased reactive astrogliosis (GFAP
immunoreactivity) and activated
microglia (CD68 immunoreactivity).

Meeking et al.,
2020 [112]

Adult male
Long–Evans

Total of 35 rats across
groups

7 days, twice a day, 4 h
apart, infusion of buffered
PPA (low dose 0.052 M or
high dose 0.26 M, pH 7.5,
4 µL/infusion) control:
phosphate buffered saline
(PBS, 0.1 M)

PPA-treated rats exhibited more
locomotive activity, stereotypic behavior,
and nose pokes versus control, which are
associated with a rat model of ASD. The
symptoms were dose-dependent and
increased with consecutive treatments.
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Table 2. Cont.

Author
Year

Study Design
Outcomes

Animal Sample Size Treatment

De Theije et al.,
2014 [113]

BALB/C mice from
Charles River
laboratories

8 pups in treatment
group and 11 in
control

Dams treated at
gestational day 11 with
600 mg/kg of valproic
acid (VPA). Pups weaned
at P21. Behavioral
experiments performed at
P28, after which they were
sacrificed. VPA treatment
during gestation is well
established in the animal
model of ASD.

An increase in cecal levels of BA in in
utero VPA-treated pups vs. control.
A decrease in Bacteroidales (order) and
increase in Clostridiales (order) in VPA vs.
control.
Increased neutrophil infiltration in the
intestine.

MacFabe et al.,
2011 [106]

Adolescent
(41 ± 4 days)
Long–Evans male

20 and 17 animals in
PPA and control
groups, respectively

Intracerebroventricular
injection of 4 µl of 0.26 M
buffered PPA prior to each
test session

PPA vs. control group characterized by
activation of microglia and astrocytes,
lesser sociability, and a focus on
particular objects in a group of objects.

El-Ansary et al.,
2015 [107]

Male Western albino
rats

6 animals in each
group

PPA: 250 mg/kg body
weight/day (orally)
Ampicillin: 50 mg/kg for
three weeks

Treatment with PPA and ampicillin led to
an increase in catalase activity and lipid
peroxidation, while glutathione and
potassium levels were decreased in
comparison to the control group.

El-Ansary et al.,
2018 [108]

Young male golden
Syrian hamsters

10 animals in each
group

PPA: 250 mg per kg of
body weight (BW)
(oroigastric)
Clindamycin: 30 mg single
dose

An increase in Candida albicans and
Clostridia in PPA and clindamycin groups.
An increase in Na+/Mg2+ and
glutamate/GABA ratios.

Lobzhanidze et al.,
2019 [109]

Adolescent male
Wistar rats (P30–35)

15 animals in each
group

Single injection of buffered
PPA with a dose of
175 mg/kg

In the PPA vs. control groups, the
number of neurons was decreased, while
the number of glial cells was increased in
the amygdala. Also, both microglia and
astrocytes were activated, and neurons
exhibited signs of apoptosis.
The behavioral changes include
decreased sociability (a decrease in the
amount of time and number of
encounters with unfamiliar rats).

Foley et al.,
2014 [110]

Long–Evans rats,
offspring treated in
utero and postnatal

8 to 11 animals in each
group

Prenatal administration of
PPA (500 mg/kg,) and
LPS (50 µg/kg). Postnatal
PPA administered at PPA
(500 mg/kg)

Treatments (both prenatal and postnatal)
altered the behavior of rodents to
autism-like behavior. PPA-treated rats
spend less time in the center of the open
field and exhibited increased anxiety.
Treatment induced delays in eye
opening.

4. Conclusions

In recent years, there has been staggered growth in the appreciation of the role of
microbiota in many neurological conditions [114,115], and in some cases, the administration
of specific microbiota may have therapeutic effects [116]. In the case of ASD, it has been
repeatedly shown that a shift in the microbiota is present versus the ND control, with
an evident increase in bacteria that produce PPA, such as Bacteroides, Desulfovibrio, and
Clostridium. Rodent models of ASD showed that the grafting of the microbiome from
ASD patients to GF mice can alter their behavior. Furthermore, the models showed that
direct administration of PPA can evoke ASD-like symptoms in rodents, as well as inflict
molecular changes in the brain that are associated with ASD. Those findings contribute
strong evidence that microbiota shift and the resulting changes in SCFAs, particularly PPA,
may contribute to the development of ASD, while the avoidance of PPA and regulation of
the microbiome shift may contribute to lowering the risk of ASD development or to the
improvement of ASD symptoms.

Some of the limitations of this review stem from the heterogenicity in both ASD
and the sources from which the samples were obtained. ASD has a very wide range
of symptoms, comorbidities, and factors contributing to its development (both genetic
and environmental); thus, it is often challenging to isolate a uniform set of microbes
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contributing to ASD development. Additionally, the sample sizes tend to be small, and
many confounding factors such as diet or lifestyle additionally contribute to heterogenicity.

Testing of the gut microbiota for signs of dysbiosis in patients diagnosed with ASD,
prescribing probiotics, or fecal transplants may potentially lead to the improvement of ASD
symptoms.

Overall, as we have shown in this comprehensive literature review, there is a large body
of data that clearly associates SCFAs, especially PPA, with alterations in neurodevelopment
and social behavior in animals consistent with those seen in humans with ASD. Our
research team is pursuing a unique study that is focused on investigating the effect of PPA
on pregnant mice and their offspring. This ongoing study should provide critical data
toward understanding possible alterations in fetal neurodevelopment during pregnancy
and the development of ASD in newborns.
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