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Abstract: To address the challenge of limited throughput with traditional toxicity testing, a newly
developed high-throughput transcriptomics (HTT) platform, together with a 5-day in vivo rat model,
offers an alternative approach to estimate chemical exposures and provide reasonable estimates of
toxicological endpoints. This study contains an HTT analysis of 18 environmental chemicals with
known liver toxicity. They were evaluated using male Sprague Dawley rats exposed to various
concentrations daily for five consecutive days via oral gavage, with data collected on the sixth day.
Here, we further explored the 5-day rat model to identify potential gene signatures that can differen-
tiate between toxic and non-toxic liver responses and provide us with a potential histopathological
endpoint of chemical exposure. We identified a distinct gene expression pattern that differentiated
non-hepatotoxic compounds from hepatotoxic compounds in a dose-dependent manner, and an
analysis of the significantly altered common genes indicated that toxic chemicals predominantly
upregulated most of the genes and several pathways in amino acid and lipid metabolism. Finally,
our liver injury module analysis revealed that several liver-toxic compounds showed similarities in
the key injury phenotypes of cellular inflammation and proliferation, indicating potential molecular
initiating processes that may lead to a specific end-stage liver disease.

Keywords: high-throughput transcriptomics; liver toxicity; gene expression; histopathology; dose
response

1. Introduction

Toxicogenomics, the application of transcriptomics, together with protein and metabolic
profiling, to study how cells respond to environmental and chemical exposures by mea-
suring changes in gene, protein, and metabolite expression profiles, has proven to be a
valuable tool for environmental risk assessment [1]. These technologies offer a wealth
of mechanistic insights and have transformed our knowledge of cellular and molecular
pathways to establish a link between exposure and adverse outcomes [2,3]. However,
low throughputs have precluded thorough evaluations of concentration responses and
chronological effects, which are essential to gain mechanistic insights and predictive ca-
pabilities [4]. Liver injuries due to toxicant exposures remain one of the leading causes of
failed therapeutics and continue to be a common cause of death in the United States [5,6].
Several transcriptomic studies have attempted to characterize liver injuries in response to
chemical exposures at the molecular level; however, the complexities of biological responses
in terms of dose responses and temporal progression have largely prevented the prediction
of toxic outcomes [7–10].

High-throughput transcriptomics (HTT) can provide biomarkers that predict specific
adverse outcomes and establish points of departure at which key molecular events occur
following exposures. For example, whole-genome transcriptomics can help link pertur-
bations, such as chemical exposures, with changes in biological processes that result in a
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specific toxic endpoint or disease phenotype. However, performing whole transcriptomics,
such as RNA sequencing, may not be cost-effective when the sample size is very large or
when testing a wide spectrum of compounds. To circumvent this problem, The National
Toxicology Program (NTP) has pioneered the development of a novel transcriptomic gene
set to infer the transcriptional profiles of genes without measuring every individual gene in
a transcriptome [11,12]. The program created a sentinel gene list named S1500+, combining
both gene co-expression-based information from large-scale transcriptomics studies and
genes nominated by scientists with expert knowledge in toxicology and other related fields.

The NTP used 5-day rat in vivo exposure studies and leveraged the newly developed
HTT platform as an alternative data stream for understanding a quantitative estimate of
chemical hazard as a bioactivity-based bridge between traditional apical endpoints and
HTT data generated from toxic exposures [13]. Using a set of 18 well-studied chemicals
with established toxicity data from chronic studies of rats and mice, they performed 5-day
in vivo chemical exposure studies with male rats and evaluated whether the transcriptional
benchmark dose (BMD) value for the liver and kidneys after 5 days of oral exposure in rats
could estimate the lowest histopathological BMD value that was observed in chronic or
sub-chronic toxicity studies. The study showed that for many of the chemicals, the lowest
transcriptional BMD estimated from HTT was within a factor of five of the values estimated
from the traditional apical endpoints, and this suggested that the 5-day rat in vivo model
provides reasonable estimates of BMD values for predicting traditional apical endpoints.

In this study, we further explored the 5-day rat in vivo HTT model as a predictive tool
using the data from the 18 environmental chemicals studied by the NTP. Using the chronic
liver toxicity study outcomes observed for these chemicals [13], we divided them into
two categories: non-hepatotoxic and hepatotoxic chemicals. Furthermore, since the S1500+
dataset contains only ~2500 genes compared to the whole rat genome of 20,000 genes, we
extrapolated the gene expression changes from the S1500+ dataset to the whole transcrip-
tome to be able to include information from all genes. We then analyzed how alterations
in the extrapolated gene expression profiles obtained from the HTT platform can provide
useful molecular signatures or mechanistic insights for depicting the predefined toxicity
outcomes identified in the chronic studies. Specifically, along with the traditional statis-
tical methods to analyze the significant changes in genes and KEGG pathways, we used
our liver injury module approach, which predicts histopathological phenotypic outcomes
based on gene expression data. Our analysis of the changes in gene expression revealed a
distinct expression pattern at higher dose levels for the hepatotoxic chemicals compared
to the non-hepatotoxic chemicals. Furthermore, we identified a set of common genes that
changed significantly across the hepatotoxic chemicals at the highest concentration, and
their expression pattern suggested that most of these common genes were upregulated for
the hepatotoxic chemicals compared to the non-hepatotoxic chemicals, indicating potential
gene signatures that can be monitored to predict hepatotoxicity. Furthermore, our liver
injury module analysis predicted potential histopathological outcomes for each of the
chemicals studied and indicated that hepatotoxic chemicals showed molecular processes in
cellular inflammation and proliferation as the major histopathological changes that lead to
liver toxicity.

2. Results and Discussion
2.1. Gene Expression Patterns in Dose–Response Studies Predict Toxicity Outcomes

We used an HTT rat S1500+ dataset for 5-day exposure studies and extrapolated the
normalized logarithmic counts per million reads to the whole transcriptome to increase the
coverage of the altered gene signatures. Subsequently, we analyzed the extrapolated data
using the traditional statistical method of analysis of variance (ANOVA) and looked at the
results based on whether a chemical was classified as non-hepatotoxic (ACR (acrylamide);
BDCA (bromodichloroacetic acid); THU (α,β-thujone); GIN (ginseng); EE2 (ethinyl estra-
diol); TBBPA (tetrabromobisphenol A); and MTE (milk thistle extract)) or hepatotoxic (COU
(coumarin); DE71 (pentabromodiphenyl ether mixture); DEHP (di(2-ethylhexyl) phthalate);
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FEN (fenofibrate); FUR (furan); HCB (hexachlorobenzene); MET (methyl eugenol); PFOA
(perfluorooctanoic acid); PUL (pulegone); TCAB (tris(chloropropyl) phosphate); and TCCP
(3,3′,4,4′-tetrachloroazobenzene)). The one-way ANOVA results indicated that the majority
of the non-hepatotoxic compounds did not show any genes that changed significantly
(false discovery rate (FDR) < 0.1) compared to their controls (Supplementary Figure S1).
Specifically, the chemicals ACR and BDCA showed the lowest numbers of significantly
altered genes for any dose level, followed by THU and GIN. However, we did observe
some abnormalities in dose–response behavior, with some of the dose levels for these
chemicals showing large numbers of significantly altered genes in the middle dose range
but not at the high dose levels. We believe this discrepancy could be due to variations in the
guanine-cytosine content, sequencing depth, RNA-seq aligner, or normalization methods
used by the HTT platform [14,15].

Compared to the chemicals (ACR, BDCA, THU, and GIN) that showed only a few
significantly changing genes for any concentration, indicating their non-toxic behav-
ior, we identified several significantly changing genes for the chemicals EE2, TBBPA,
and MTE, although they were classified as non-hepatotoxic compounds. However, in
contrast, we observed typical dose-dependent behavior for the number of significantly
changed genes for all the hepatotoxic chemicals, i.e., a low number of significantly al-
tered genes at lower concentrations that gradually increased as the dose level increased
(Supplementary Figures S2 and S3), indicating major perturbations in liver metabolism,
which suggests their potential for liver toxicity. Based on the total number of significantly
altered genes, the results indicated that the S1500+ HTT platform captured dose–response
behavior typical of any hepatotoxic chemical, where the number of significantly altered
genes increased with dose, and it did not show any significant genes for some of the non-
hepatotoxic chemicals. Although we consider this dose-dependent increase in the number
of significantly altered genes for toxic chemicals as a surrogate to classify a chemical for
potential toxicity, the major gene perturbations observed for the other three non-hepatotoxic
chemicals indicate that the magnitude of gene perturbations alone may not be sufficient to
ascertain liver toxicity and that additional parameters are required to differentiate them.

To address whether the changes in gene fold-change values provide distinct expression
patterns between non-hepatotoxic and hepatotoxic chemicals, we applied a hierarchical
clustering analysis based on segregation by both genes and the dose levels of the chemicals.
Figure 1A shows a clustergram plot of gene expression fold-change values without any
significant cut-off values for all 18 chemicals with both row- and column-wise clustering.
Clustering all chemicals without using any significance criteria allowed us to check gene
expression changes across all chemicals to gain a quantitative understanding of the ex-
pression patterns between them and how they segregate with each other. For simplicity,
we indicate the chemical dose levels using sequential numbers rather than the original
concentration values in the plot (Table 1). We observed distinct gene expression patterns,
with the majority of the non-hepatotoxic chemicals except ACR and BDCA segregated
together for most of the dose levels, along with the low dose levels and some of the medium
dose levels of the hepatotoxic chemicals (light blue and green bars in Figure 1A). Similarly,
we observed that the hepatotoxic chemicals segregated together at the medium and highest
dose levels, indicating potential common gene signatures that may suggest an impending
liver injury. We observed a few exceptions with respect to the chemicals; for example,
TBBPA and TCPP clustered together and showed irregular gene expression patterns, but
the first chemical was classified as non-hepatotoxic, while the second was hepatotoxic.
This behavior suggests that there could be alternative mechanisms underlying the gene
expression patterns that indicate hepatotoxicity or that there is a specific small set of genes
that are expressed similarly across all hepatotoxic compounds that characterize toxicity.
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Figure 1. Cluster diagram and Pearson’s correlation coefficients of all genes across various doses and
chemical exposures. (A) Hierarchical clustering of logarithmic fold-change (FC) values of all genes
irrespective of their significance levels. Here, the columns represent the individual dose levels of
each non-hepatotoxic and hepatotoxic chemical (name in bold font). Red and green indicate genes
that are up- and downregulated, respectively. For clarity, concentrations of each chemical are shown
as sequential numbers, with actual concentration values listed in Table 1. (B) Pairwise Pearson’s
correlation coefficients of altered gene expression changes (independent of their significance levels)
across all the dose ranges for the non-hepatotoxic and hepatotoxic chemicals.
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Table 1. Summary of the chemicals used in the 5-day rat study and their dose levels and vehicle controls.

Chemical Gavage Vehicle Concentrations *

1 2 3 4 5 6 7 8 9

ACR Deionized water 0.078 0.156 0.3125 0.625 1.25 2.5 5 10
BDCA Deionized water 1.25 2.5 5 10 20 40 80 160
COU Corn oil 3.125 6.25 12.5 25 50 100 20 400
DEHP Corn oil 8 16 31.25 62.5 125 250 500 1000
DE71 Corn oil 0.38 0.75 1.5 3 15 50 100 200 500
EE2 Corn oil 0.02 0.067 0.2 0.6 1.8 5.4 16.2 48.6

FEN
0.5% aqueous
methylcellulose 8 16 31.25 62.5 125 250 500 1000

FUR Corn oil 0.125 0.25 0.5 1 2 4 8 16
GIN Deionized water 39.1 78.125 156.25 312.5 625 1250 2500 5000
HCB Corn oil 0.004 0.015 0.0625 0.25 1 4 16 64

MET
0.5% aqueous
methylcellulose 4.625 9.25 18.5 37 75 150 300 600

MTE Corn oil 39.1 78.125 156.25 312.5 625 937.5 1250 1750
PFOA 2% Tween 80 0.156 0.3125 0.625 1.25 2.5 5 10 20
PUL Corn oil 2.4 4.7 9.4 18.75 37.5 75 150 300
TBBPA Corn oil 4 8 16 125 250 500 1000 2000

TCAB
Corn oil/acetone
(99:1) 0.1 0.3 1 3 10 30 100 200 400

TCPP
0.5% aqueous
methylcellulose 18.75 37.5 75 150 300 600 1000 2000

THU
0.5% aqueous
methylcellulose 1.5 3 6.25 12.5 25 50 100 200

ACR: acrylamide; BDCA: bromodichloroacetic acid; COU: coumarin; DEHP: di(2-ethylhexyl) phthalate; DE71:
pentabromodiphenyl ether mixture; EE2: ethinyl estradiol; FEN: fenofibrate; FUR: furan; GIN: ginseng; HCB:
hexachlorobenzene; MET: methyl eugenol; MTE: milk thistle extract; PFOA: perfluorooctanoic acid; PUL: pulegone;
TBBPA: tetrabromobisphenol A; TCAB: tetrachloroazobenzene; TCCP: tris(chloropropyl) phosphate; THU: α,β-
thujone. * Units: mg/kg for all the chemicals except EE2 (µg/kg).

To quantify the degree of correlation between these chemicals, we calculated the
pairwise Matthew’s correlation coefficient, as shown in Figure 1B. As expected, we observed
a good correlation for the intra-dose levels of the same chemical and a reduced correlation
between the chemicals. Specifically, we observed a significant correlation (>0.6) between
the highest doses of the toxic chemicals that were segregated together in the clustergram
analysis in Figure 1A. Furthermore, the gene fold-change values of the non-hepatotoxic
chemicals EE2 and TBBPA were well correlated with some of the toxic chemicals, indicating
that these chemicals may display potential toxic effects on liver metabolism at sufficiently
high concentrations.

2.2. Significantly Changed Common Genes Differentiate Non-Hepatotoxic Chemicals from
Hepatotoxic Chemicals

Although the hierarchical clustering analysis of the gene fold-change values for all
the chemicals provided a potential toxic signature, many of these fold-change values were
not statistically significant and, hence, may not be reliable predictors of hepatotoxicity.
Therefore, we identified the genes that changed significantly at the highest dose for all
the chemicals and conducted a pairwise comparison of the commonalities between them
(Figure 2A). As indicated above, the majority of the non-hepatotoxic chemicals did not
show any genes that changed significantly, except for EE2, TBBPA, and MTE. Similarly,
among the hepatotoxic chemicals, we did not see a large number of genes that significantly
changed for DEHP, TCAB, and TCCP when compared with other hepatotoxic chemicals
(shown in bold in Figure 2A). The total number of changed genes was similar when we
compared the highly changed hepatotoxic chemicals, and a pairwise mapping showed a
large number of common genes, except for COU. Therefore, we identified significantly
changed genes that were common to the highly toxic chemicals (Figure 2A, chemicals in
bold font) and captured their gene expression pattern across all 18 chemicals.
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Figure 2. Genes with significant alterations and cluster diagram of genes that are common across
highly toxic chemicals. (A) A summary of the total number of genes that changed significantly (false
discovery rate < 0.1) at the highest concentration of each chemical and the common genes for their
pairwise combinations. Here, the values in bold indicate the chemicals with the largest perturbations.
(B) Hierarchical clustering of logarithmic fold-change (FC) values of significantly altered genes that
are common for the highly toxic chemicals (indicated in bold font) and were monitored across all
18 chemicals. Red and green indicate genes that were up- and downregulated, respectively.

Figure 2B shows a clustergram analysis of 941 common genes that are clustered by
gene fold-change values across all 18 chemicals. We noted a distinct expression pattern for
the non-hepatotoxic chemicals compared with the hepatotoxic chemicals, except for TCPP.
The majority of the common genes were downregulated for the non-hepatotoxic chemicals,
whereas they were upregulated for the hepatotoxic chemicals.

We observed clear dose–response behavior for the highly toxic chemicals (indicated in
bold in Figure 2B), with downregulation at the low doses but upregulation as the concen-
trations increased. In contrast, for DEHP and TCCP, we observed a downregulation of the
majority of these genes for most of the dose levels, except at the highest dose. However,
the pairwise correlation coefficients for these chemicals showed a good correlation, and
they correlated with the toxic chemicals FEN and PFOA (Supplementary Figure S4). These
results suggest that the hepatotoxicity of TCCP may not be apparent until its highest dose
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and that it might cause toxicity through a slightly different mechanism compared to the
other hepatotoxic chemicals in this study. We performed an additional KEGG enrichment
analysis using these common genes at the highest concentration (Supplementary Table S1)
to ascertain in which pathways these common genes belong and how they are altered
between non-toxic and hepatotoxic chemicals. Our results indicated that several pathways
involved in carbohydrate, lipid, amino acid, cofactor, and vitamin metabolism were signifi-
cantly upregulated for the hepatotoxic chemicals (Supplementary Figure S5). Interestingly,
at the highest dose level, the pathways altered for TCPP were similar to the other hepato-
toxic chemicals, indicating its potential mechanism of toxicity. Taken together, our analysis
of the significantly changed genes across the highly toxic chemicals provided a common set
of genes and pathways that differentiates hepatotoxic chemicals with increased correlation
(~0.8) for some of the high doses, and these genes and pathways can be used as potential
gene signatures to assess hepatotoxicity with further validation.

2.3. Alterations of Pathways in Organismal, Environmental, and Metabolism Processes Are
Potential Indicators of Toxicity

To understand the effect of dose at the pathway level, we performed a KEGG path-
way enrichment analysis to understand the biological significance of changes in gene
expression across all dose levels. We used the aggregated fold-change (AFC) method
implemented in the web tool ToxPanel [16] to calculate z-score values that indicate whether
a particular KEGG-annotated pathway was up- or downregulated. We provide a complete
summary of the enriched pathways for all non-hepatotoxic and hepatotoxic chemicals in
Supplementary Tables S2 and S3, respectively. For the KEGG-defined organismal processes,
such as the endocrine system and immune system, for non-hepatotoxic chemicals, we
observed that the majority of these pathways were downregulated for GIN, EE2, and
TBBPA, whereas they were upregulated for MTE and THU (Supplementary Table S2). A
similar comparison for the hepatotoxic chemicals indicated that many of these immune-
and endocrine-related pathways were downregulated across all the chemicals except TCAB
(Supplementary Table S3). In particular, the peroxisome proliferator-activated receptor
(PPAR) signaling pathway was significantly upregulated across all the hepatotoxic chemi-
cals compared to the non-hepatotoxic chemicals. Because PPAR signaling pathways are
involved in the regulation of glucose and energy homeostasis and play a major role in
lipid-accumulation-related processes, the disruption of this pathway for the hepatotoxic
chemicals indicated that it may be one of the mechanisms that leads to liver toxicity [17].
Similarly, when we monitored KEGG environmental processes, such as signal transduction,
signaling molecules, and their interaction, we observed that the majority of signal trans-
duction pathways were downregulated for GIN and TBBPA, but they were upregulated
for MTE (Supplementary Table S2) and did not change significantly for the other non-
hepatotoxic chemicals. In contrast, the majority of these signal transduction pathways were
downregulated for hepatotoxic chemicals at high doses, indicating that they are potential
toxic mechanisms that lead to liver injury for these chemicals (Supplementary Table S3).
The downregulation for chemicals classified as non-hepatotoxic, such as GIN and TBBPA,
indicated potential hepatotoxicity for these chemicals, and the upregulation observed for
MTE indicated its potential hepatoprotective role.

The liver plays a major role in various metabolism-related processes, such as lipid,
amino acid, carbohydrate, vitamin, and xenobiotic metabolism [18]. The majority of the
non-hepatotoxic chemicals showed either no changes for most of the dose levels in the
amino acid-related processes or upregulation for some of the high doses for ACR and
BDCA (Figure 3). In contrast, we noted downregulation for the non-hepatotoxic chemi-
cals GIN, EE2, and TBBPA. In particular, these chemicals downregulated valine, leucine,
and isoleucine degradation [19]; cysteine and methionine [20]; as well as glycine, serine,
and threonine metabolic pathways across several dose levels. Cysteine and glycine are
precursors to glutathione synthesis, which plays a major role in chemical-induced oxida-
tive stress, and the downregulation of these pathways, together with the downregulation
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of the glutathione pathway, indicated the non-hepatotoxic behavior observed for these
chemicals. In contrast, we observed a significant upregulation of the valine, leucine, and
isoleucine degradation pathways across multiple doses of hepatotoxic chemicals (Figure 3
and Supplementary Table S3). Similarly, as reported in a previous study [21], we observed
an upregulation of glycine- and cysteine-related pathways across several doses, although
it was not consistent across all the hepatotoxic chemicals and dose levels. However, we
observed a significant upregulation of the glutathione pathway across multiple dose levels
of the hepatotoxic chemicals, indicating oxidative-stress-related mechanisms that lead
to liver toxicity [22]. Our results for other pathways in amino acid metabolism, such as
the lysine degradation and beta-alanine-, tryptophan-, and histidine-metabolism-related
processes that were all upregulated for hepatotoxic chemicals compared to non-hepatotoxic
chemicals, indicated potential molecular pathways to monitor for liver toxicity, in addition
to the glutathione as well as valine, leucine, and isoleucine pathways [10].
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Figure 3. Cluster diagrams of alterations in the KEGG pathways related to amino acid metabolism.
Hierarchical clustering of individual subpathways in amino acid metabolism for both non-hepatotoxic
chemicals and hepatotoxic chemicals. Red and green indicate pathways that are up- and downregu-
lated, respectively.

The liver also plays a key role in lipid metabolism and is involved in fatty acid synthe-
sis; lipid circulation through lipoprotein synthesis; and lipid storage, including triglyceride
synthesis and the formation of lipid droplets [23]. Disruptions in lipid metabolism and
degradation-related pathways, such as beta oxidation and fatty acid synthesis, lead to
lipid accumulation and are the hallmark of non-alcoholic fatty liver disease [24]. Our
pathway enrichment analysis indicated that some of the major lipid-related pathways, such
as the synthesis and degradation of ketone bodies, fatty acid degradation, and arachidonic
acid metabolism pathways, were significantly downregulated for GIN, EE2, and TBBPA,
whereas they were upregulated for the other non-hepatotoxic chemicals (Figure 4). We
found a similar upregulation behavior for the hepatotoxic chemicals for these three lipid-
related pathways, indicating that these pathways may not be large contributors to the
hepatotoxic behavior (Figure 4). However, when we examined the biosynthesis of un-
saturated fatty acids, fatty acid elongation, and alpha-linolenic acid metabolism, these
pathways were either unchanged or downregulated for the non-hepatotoxic chemicals but
were significantly upregulated for the hepatotoxic chemicals, indicating they play a major
role in lipid-related disruptions that cause liver toxicity. However, these changes were
not entirely consistent across all of the hepatotoxic chemicals, indicating the potential for
alternative mechanisms (Figure 4 and Supplementary Tables S2 and S3).
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Figure 4. Cluster diagrams of alterations in the KEGG pathways related to lipid metabolism. Hierarchi-
cal clustering of individual subpathways in lipid metabolism for both non-hepatotoxic and hepatotoxic
chemicals. Red and green indicate pathways that are up- and downregulated, respectively.

2.4. Toxicant-Induced Changes in Gene Expression Predict Liver Histopathological Phenotypes

Using our previously developed liver injury modules, we tested the predictive capa-
bility of the altered gene expression changes for estimating potential liver histopathological
outcomes [25]. We used the logarithmic fold-change values of all the genes for each chem-
ical compared to their corresponding control groups (no significant cut-off values were
used) and calculated the liver injury module z-score values based on the absolute AFC
method (see Materials and Methods) [16]. We then calculated the activation of the injury
modules for each dose and considered the modules with the largest z-score values with
aggregated p-values less than 0.05 as the most probable histopathological phenotypes for
each chemical. We provide a summary of all the calculated z-score values for each chemical
and each dose in Supplementary Table S4.

Figure 5A shows an exemplar summary of the dose–response behavior of injury mod-
ule activation scores for the chemical FEN. To facilitate easy interpretation of the individual
histopathological endpoints, we grouped the injury phenotypes into three overarching
cellular processes: inflammation, proliferation, and degeneration. We considered an injury
module with an activation score greater than 2 (indicated by the dashed line in Figure 5A)
and a p-value less than 0.05 as a significantly altered histopathological outcome for a
given dose level. For example, in Figure 5A, the top plot shows the activation scores
for histopathological endpoints in the inflammation phenotype, and FEN consistently
activated single-cell necrosis as the potential injury endpoint. However, we found an
exponential increase in the granular degeneration endpoint (middle plot in Figure 5A) with
an increasing dose level, indicating that FEN predominantly activated the injury process
of degeneration as a major histopathological outcome. We expected this result because
FEN was part of the large set of chemicals used to develop the liver injury modules in
our original study, where granular degeneration was the experimental histopathological
outcome [25–27]. This result shows that the 5-day rat study using the S1500+ platform
was able to capture the histopathological outcomes effectively from the extrapolated gene
expression changes.
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Figure 5. Summary of the liver histopathological outcomes for all 18 chemicals. (A) An exemplar
summary of the dose–response behavior of injury module activation scores for the chemical fenofi-
brate (FEN). Green shaded region indicates the dose levels for which the z-score values are significant
(p < 0.05). (B) An overall summary of the liver injury module predictions of the histopathological
outcomes for all 18 chemicals classified as non-toxic, non-hepatotoxic, and hepatotoxic. We indicate a
module is activated with the color red, and this is consistent for each chemical if the z-score values
are greater than 2 and are significant with p-values less than 0.05 for at least two consecutive dose
levels (Supplementary Table S4). If the z-score values are greater than 2 and significant for low dose
levels but not significant at high dose levels (p-value > 0.05), then the module activation is considered
inconsistent (striped bar).
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Figure 5B shows a summary of the liver histopathological outcomes for all 18 chemicals.
Here, we retained the original classification by which the chemicals were divided into
non-toxic, non-hepatotoxic, and hepatotoxic based on the chronic studies [13]. As described
above (Figure 5A), for a module to be activated, we selected the criteria of a z-score greater
than 2 and a p-value less than 0.05 and indicated the histopathological outcome in red if it
was activated consistently for at least two dose levels. If the module was activated only by
magnitude (z-score > 2) but was not statistically significant, then we indicated that with a
striped bar. We did not observe any significant activation of the liver injury modules for
GIN, THU, ACR, or BDCA, hence their status as non-hepatotoxic chemicals. However, we
did observe the activation of liver injury modules for MTE, EE2, and TBBPA. Historically,
MTE was used as a liver-protective agent [28,29], and currently our liver injury modules are
not able to differentiate protective and toxic gene expression signatures. Similarly, our liver
injury modules predicted activation for the two non-hepatotoxic chemicals EE2 and TBBPA.
Previous studies indicated the activation of several gene-ontology-based liver biological
processes for these two chemicals, and liver toxicity was indicated in some of the human
hormonal therapy and mouse studies, indicating their potential to cause liver toxicity at
high concentrations [13,30,31].

In the case of the hepatotoxic chemicals, the liver injury modules significantly activated
multiple cellular processes for each chemical (Figure 5B). The majority of the hepatotoxic
chemicals significantly activated several histopathological endpoints in cellular inflam-
mation and proliferation processes. For example, COU [32], PUL [33], and TCAB [34]
commonly activated hematopoiesis, cellular infiltration, fibrogenesis, and cellular foci,
whereas TCCP, DE71, FEN, and FUR activated single-cell necrosis and nuclear alteration as
the major histopathological endpoints [35]. In contrast, MET and HCB [36] activated only
nuclear alteration in the proliferation process as the major histopathological endpoint, while
PFOA and DEHP activated only degeneration-related processes. These results suggest that
despite differences in their molecular structures and mechanisms of chemical toxicity, our
injury modules showed that these chemicals activate several common injury processes that
ultimately lead to liver toxicity. Our predictions are supported by several studies in the
literature that predicted similar histological outcomes for the majority of the hepatotoxic
chemicals [33–35,37–41].

3. Materials and Methods
3.1. Animals and Chemical Selection

All the animal experiments were approved by the Battelle Animal Care and Use
Committee and were conducted in accordance with all relevant National Institutes of Health
and NTP animal care and use policies. A detailed description of the complete methods is
available as part of the original study [13]. Briefly, 8- to 10-week-old male Sprague Dawley
rats were exposed to eight or nine concentrations of each of the 18 selected chemicals, along
with a control group. The chemicals were administered via oral gavage (5 mL/kg) once
per day for 5 consecutive days (Days 0–4), with four animals for each dose and a vehicle
control. The dose levels for each chemical were selected based on the concentrations used
in the chronic and sub-chronic toxicity study and included concentrations that were higher
and lower than those previously used [13]. Table 1 shows all the chemicals, their dose
levels, and their corresponding vehicle controls used in this study. On Day 5, the rats were
killed via exsanguination and the liver and kidney tissues were collected. The left liver
lobes and right kidneys were transferred into RNAlater (Qiagen, Valencia, CA, USA) in
accordance with the manufacturer’s guidelines for RNA extraction.

3.2. Liver RNA Extraction and HTT Using the Rat S1500+

Total RNA was extracted from the liver with a DNA digestion step using an RNeasy
Mini Kit (Qiagen). After RNA purity and quality checks using the absorbance ratio
(260/280) and the RNA integrity number, respectively, the samples were frozen and sent
to BioSpyder (Carlsbad, CA, USA) for HTT analysis using the rat S1500+ TempO-Seq
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platform [12]. The mRNA targets were hybridized with a detector oligo (DO) mix for
amplification and barcoded for proper identification following sequencing. The prepared
libraries were then sequenced using the HiSeq 2500 Ultra-High-Throughput Sequencing
System (Illumina, San Diego, CA, USA), and readouts were demultiplexed to generate
FASTQ files.

After an initial quality control analysis of the FASTQ files, the sequences were then
aligned to the probe sequences from the target platform using Bowtie version 1.2.2 [42]. This
configuration allowed up to three mismatches and reported the single best alignment. After
alignment, the total sequenced reads, the percentage of reads aligning with the platform
manifest, the alignment rate, and the percentage of expressed probes (≥5 reads per probe)
were calculated for each sample. Samples were flagged for values below the following
thresholds: sequencing depth < 300 K, total alignment rate < 40%, unique alignment
rate < 30%, number of aligned reads < 300 K, and percentage of probes with at least
five reads < 50%. Filtering based on the percentage of expressed probes eliminated biased
samples for which the sequenced reads only reflected a small portion of the measured
transcriptome. Furthermore, principal component, hierarchical cluster, and inter-replicate
correlation analyses were performed to determine which samples were outliers so they
could be removed from further downstream analyses. Subsequently, the aligned read
counts for attenuated probes were properly readjusted to calculate unattenuated equivalent
counts using the attenuation factors provided in the platform manifest. To account for
between-sample sequencing depth variation, unattenuated read counts were normalized at
the probe level by applying reads-per-million normalization. A pseudo-read-count of 1.0
was added to each normalized expression value. Then, the values were log2 transformed
to complete the normalization.

Finally, the normalized log-transformed values from the S1500+ dataset were then
used to extrapolate them to the whole transcriptome (~18 K genes) using a commercial
platform (GeniE) [12]. This approach incorporated PC regression [43] and was updated to
use a quality-filtered subset (reduced from 125,501 to 64,514 samples) of a large collection of
publicly available RNA-Seq data [44] to train the model. The filtering criteria for the training
data required samples to meet the following minimum thresholds: 1,000,000 aligned reads,
non-zero expression for 35% of whole transcriptome genes, and non-zero expression for
35% of species-specific S1500+ genes. Samples were also required to have 90% of the total
reads mapped to at least 1000 genes. The training dataset included 25,599 genes.

3.3. Gene Expression, KEGG Pathway, and Liver Injury Module Analysis

To identify differentially expressed genes from the extrapolated log-transformed
whole-transcriptomic data, we performed a one-way ANOVA and estimated the FDR
to correct for multiple comparisons. We defined a significantly expressed gene as one
with an FDR-adjusted p-value of ≤0.05. We also used our previously developed AFC and
aggregate absolute fold-change methods (AAFC) to identify gene sets that significantly
changed between the treatment and control conditions [16,45,46]. For the KEGG pathway
enrichment analysis, we used the AFC method, and it provided directionality of gene
expression in terms of whether the pathway was up- or downregulated. Briefly, the AFC
method calculated the mean fold-change (FC) value for each gene and defined the KEGG
pathway score as the total FC value of all genes in the pathway. The sign of the pathway
score represented the direction of regulation, with positive values indicating upregulation
and negative values indicating downregulation in the treatment condition compared to
their corresponding controls.

We used the AAFC method to calculate the activation scores of liver injury (histopathol-
ogy) modules that were significantly changed [16,46]. It provided a measure of how much a
set of genes was disrupted, regardless of whether the genes were over- or under-expressed.
Briefly, the AAFC method first calculated the absolute value of each gene’s log-transformed
FC value and then calculated the total FC value of the absolute values for each module.
We then used the gene set scores to perform null hypothesis tests and estimated each gene
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set’s significance using its p-value, defined as the probability that the score for randomly
selected FC values (10,000 times) was greater than the score from the actual gene set. A
small p-value implied that the gene set value was significant. The z-score was the number
of standard deviations by which the actual gene set value differed from the mean of the
randomly selected FC values (10,000 times). In this study, we used all the genes, irrespective
of their significance criteria for each chemical, to determine the module activation scores.

4. Conclusions

There is an imminent need to assess a large number of environmental chemicals for their
potential toxicity and to provide adequate countermeasures to protect human health. As a
result, there has been a substantial effort to develop rapid, cost-efficient, high-throughput
methods that can screen thousands of chemicals and characterize their potential toxicity.
These newly developed HTT platforms provide a screening approach for estimating safe
chemical exposure doses that produce minimal biological activity [11,12]. In this work, we
used the HTT platform and a 5-day in vivo rat model using 18 environmental and industrial
chemicals with the objective of evaluating whether the HTT-derived altered gene expression
changes from the chemical exposures can predict hepatotoxicity outcomes to differentiate
between hepatotoxic and non-toxic chemicals and predict potential histopathological injury-
initiating processes that indicate liver injury.

Our results show that the extrapolated whole-transcriptomic chemical exposure data
obtained using the HTT platform provided potential altered gene signatures with distinct
expression patterns that differentiated hepatotoxic from non-hepatotoxic chemicals. Specif-
ically, we identified a set of 941 common genes that were significantly altered (FDR < 0.1),
with a high correlation across the highly hepatotoxic chemicals, and showed that the
majority of the genes were upregulated for the hepatotoxic chemicals compared to the
non-hepatotoxic chemicals. In addition, indicative of the potential mechanism of toxicity,
we identified several molecular pathways in the endocrine and immune systems, such
as the complement and coagulation cascades (downregulated) and the PPAR signaling
pathways (upregulated) [47,48], respectively, that were uniquely altered for hepatotoxic
chemicals compared to non-toxic chemicals. Similarly, in the signal transduction pathways,
we identified pathways, such as FoxO signaling and Jak-STAT signaling [49], that were
significantly downregulated only for hepatotoxic chemicals (Supplementary Table S3). Fur-
thermore, our analysis also indicated several metabolism-related processes in amino acid
metabolism, such as valine, leucine, and isoleucine metabolism; cysteine and methionine
metabolism; tryptophan metabolism; and glutathione metabolism, that were upregulated
only for hepatotoxic chemicals (Figure 3 and Supplementary Figure S5). Similarly, we
identified pathways associated with lipid metabolism, such as the biosynthesis of unsat-
urated fatty acids, fatty acid elongation, and alpha-linolenic acid metabolism, that were
significantly upregulated only for the hepatotoxic chemicals (Figure 4), indicating potential
molecular initiating processes that lead to liver toxicity. Importantly, our study provided
high-level description and identification of liver histopathological phenotypes based on
changes in gene expression using the liver injury module analysis. Our results showed
clear inflammatory and proliferation responses for the majority of the chemicals, which
matched with prior experimental studies. Taken together, these results indicated that
the changes in gene expression obtained using the HTT platform provided a reasonable
estimate of hepatotoxicity at multiple levels of cellular complexity and provided potential
histopathological outcomes. Therefore, the proposed platform can be used as an approach
to characterize new chemicals to understand their mechanisms of toxicity and potential
liver injury phenotypes that might lead to end-stage liver disease.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms242417425/s1.
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