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Abstract: Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin
resistance and β-cell dysfunction and leading to many micro- and macrovascular complications. In
this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients
with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially
expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced
level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the
same group of patients depending on body mass index and identified differential expression of
miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative
target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing
chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.

Keywords: type 2 diabetes mellitus; obesity; miRNA; miR-496; miR-5588-5p; miR-125b-2-3p;
miR-1284; miR-144-3p; miR-99a-5p; obesity

1. Introduction

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin
resistance and β-cell dysfunction resulting in persistent hyperglycemia. Patients with T2D
are at increased risk of microvascular and macrovascular complications, such as retinopathy,
peripheral neuropathy, nephropathy, atherosclerotic cardiovascular, and cerebrovascular
disease. Also, arterial hypertension, obesity, and dyslipoproteinemia often accompany
T2D [1]. The wide range of complications and the predicted increase in the prevalence of
T2D make presymptomatic testing and early diagnosis of diabetes extremely important.
Incomplete understanding of molecular mechanisms underlying T2D, as well as a lack of
optimal early biomarkers, is one of the few challenges that researchers face in developing
approaches to presymptomatic testing. A perfect biomarker, according to the SMART
concept proposed by Shehabi and colleagues, should meet the following criteria: it is
Sensitive and Specific, Measurable, Available and Affordable, Responsive and Reproducible,
allowing for Timely repeated measurements [2,3]. MicroRNAs (miRNAs) are a potential
biomarker for the identification of high-risk groups of developing T2D.

MiRNAs are small (~22 nt) non-coding RNAs involved in transcriptional and post-
transcriptional regulation of gene expression [4] by binding to a specific site in the 3’UTR
(untranslated region) of the target mRNA and thereby inducing mRNA deadenylation and
decapping [5]. MiRNAs could potentially become early or presymptomatic biomarkers due
to their role in the initial stages of T2D pathogenesis. Even low-abundant miRNAs can be
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detected easily with the amplification stage, unlike proteins and metabolites [6]. In addition,
the miRNA stability enables expression measurement, which is easier when compared
to the target mRNA [7]. Techniques that are currently in use for miRNA expression
analysis include quantitative reverse transcription PCR (RT-qPCR), expression arrays, and
next generation sequencing (NGS). While expression arrays and NGS are mainly used
in scientific research, RT-qPCR is actively used both in clinical practice and in scientific
experiments as it is fast, affordable, modern, and accurate.

To date, altered expression of numerous miRNAs has been demonstrated in patients
with T2D in several studies. Since miRNA meets most of the requirements for an ideal
biomarker, the aim of the present study was to analyze the spectrum of differentially
expressed miRNAs in the blood plasma of T2D patients, to find differentially expressed
miRNAs associated with T2D and suitable for further validation on an extended sample,
and to analyze the potential target genes of these miRNAs and the processes in which they
are involved.

2. Results
2.1. Identification of Differentially Expressed Circulating miRNA

MiRNA expression profiles were determined in blood plasma samples of T2D patients
and healthy controls using the NGS approach. More than 1 million miRNA reads were
mapped for each sample. Analysis of total miRNA expression profiles using principal
component analysis (PCA) showed lack of clear separation and clustering of control and
T2D samples (Figure 1a), which suggested the existence of factors other than disease status
affecting the miRNA expression. Nevertheless, the differential expression analysis revealed
229 miRNA with significant differences in expression levels between control samples and
patients with T2D (the entire list is provided in Table S1). Of these, 192 miRNA showed
more than two-fold expression change between study groups, with 147 of them upregulated
and 45 downregulated in T2D patients. Notably, none of the most studied miRNA markers
of T2D (hsa-miR-126, hsa-miR-375, hsa-miR-34a, hsa-miR-29a, hsa-miR-144) were found
among the differentially expressed ones [8–12].

We next performed an additional differential expression analysis grouping patients
by T2D risk factors, such as obesity and family history of diabetes, since obesity and T2D
in close relatives were known risk factors for T2D [13,14]. To analyze these factors, the
following groups of participants were formed: (a) 25 participants with a family history
of T2D and 41 individuals without close relatives with T2D; (b) 23 obese patients with
BMI ≥ 30 and 43 subjects with BMI < 30. Differentially expressed miRNA were detected in
all such analyses (Figure 1b,c); however, far fewer miRNAs were identified as differentially
expressed for obesity (38) and only a single such miRNA was found for family history of
T2D. All but two of the obesity-associated miRNAs presented expectedly also among the
ones differentially expressed in T2D (Figure 1c). The only obesity-specific miRNAs were
miR-144-3p and miR-99a-5p. Taken together, these results suggest that the development
of T2D has a much larger impact on the miRNA expression profile compared to obesity,
and that miRNAs other than the most widely studied ones contribute to the observed
differences. Hence, we went on to select several of the identified differentially expressed
miRNAs for further experimental validation and use as potential T2D markers.
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Figure 1. Differential miRNA expression analysis in Russian T2D patients. (a) Scatterplot showing the
results of principal component analysis of rlog-transformed miRNA expression profiles for 22 controls
and 44 T2D patients. (b) Volcano plot showing differentially expressed miRNAs for patients with T2D,
obesity, and family history of T2D. (c) Venn diagram showing overlapping differentially expressed
miRNAs for T2D, obesity, and family history of T2D.

2.2. RT-qPCR Verification

MiR-496, miR-5588-5p, miR-125b-2-3p, and miR-1284 were selected for RT-qPCR
quantification to verify the reliability of the results obtained by high-throughput sequencing
as the most promising based on the results of filtering by adjusted p-value, |log2FC|, and
the proportion of samples with zero expression.

To validate that the set of selected miRNA (miR-5588-5p, miR-125b-2-3p, miR-1284, and
miR-496) effectively separates T2D patients from the control samples, we constructed a machine
learning model for the prediction of the patient’s phenotype based on the expression of four
identified miRNA. Such a model showed high predictive power (ROC/AUC = 0.94± 0.10 in
three-fold cross-validation).

MiR-361-5p demonstrated stable expression levels in both T2D patients and controls
and was chosen as an endogenous control. MiR-5588-5p, miR-125b-2-3p, miR-1284 were
upregulated, and miR-496 was downregulated in T2D patients (log 2 fold change was 4.99,
4.85, 4.64, and −2.0, respectively) according to the results of NGS. The verification results
were consistent with those of NGS and showed reduced expression of miR-496 (p = 0.036)
and a minor trend towards increased expression of miR-5588-5p (p = 0.06), miR-125b-2-3p
(p = 0.08), and miR-1284 (p = 0.14) in T2D patients (Figure 2).
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Figure 2. Verification of NGS results by RT-qPCR. The box represents the interquartile range (from
the 25 to 75 percentile), the line inside the box represents the median, the whiskers represent the
maximum and minimum values.

2.3. Identification and Functional Analysis of Putative miRNAs Target Genes

After the observed differential expression of selected miRNAs was experimentally
validated, we next turned to investigation of their potential functional effects. To do so, we
retrieved known target genes of these miRNA using the miRTarBase v8. In total, 288 target
genes were determined. We next analyzed this set of target genes using Gene Ontology
(GO) term enrichment analysis (see Section 4). This analysis revealed only two biological
process terms reaching statistical significance (adjusted p-value < 0.1), including response
to ketone and response to dexamethasone (Figure 3). Enrichment analysis of the same gene
set using the Molecular Signatures Database (MSigDB) canonical pathway set discovered
more significant hits, with chromatin modifying enzymes and apoptotic pathways genes
among the significantly enriched pathways.

Figure 3. Dot plots showing the results of gene set enrichment analysis of target genes for the
4 identified miRNAs (miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496). Gene Ontology biologi-
cal process (GO-BP) (a) and Molecular Signatures Database (MSigDB) canonical pathways (b) are
used as target gene sets in the analysis.

Of particular interest were 16 target genes differentially expressed in T2D patients according
to previously published transcriptomic studies and also located at the loci associated with T2D
according to GWAS data [15] (ACVR1C, ATXN7, DCUN1D4, GIN1, GOLGA7, GTF3C2, HMG20A,
HMGB1, INTS8, KIF11, RNF6, SBN1, SDC2, SSR1, UBE3C, ZFP36L2).
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3. Discussion

Altered miRNA expression was demonstrated in various diseases, including cancer,
viral diseases, immune-related, endocrine, and neurodegenerative diseases [6]. Over the
past decade, many studies have been conducted on the analysis of miRNA expression in
T2D using qPCR, expression arrays, and NGS approaches to shed light on the molecular
basis of this disease and to find the effective biomarkers for the risk assessment of T2D
and its complications [16]. Differentially expressed miRNAs were found in striated muscle,
pancreatic islet cells, adipose tissue, whole blood, serum, and plasma [16–24]. While striated
muscle, pancreatic islet cells, and adipose tissue are undoubtedly of scientific interest for
the study of T2D, they are difficult to access and are not suitable for use as a biomaterial for
assessing the risk of T2D in routine clinical practice. Plasma, serum, and whole blood are
more easily accessible for testing and can be used for the search of T2D biomarkers.

In the present pilot study, we compared miRNA expression profiles in plasma sam-
ples from T2D patients and healthy controls using the NGS method to find differentially
expressed miRNAs associated with T2D suitable for further validation on extended sample.
A total of 229 differentially expressed miRNAs were identified. For four of them with the
most altered expression levels (miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496), a
simultaneous change in expression was confirmed by RT-qPCR. To our knowledge, this is
the first time that dysregulation of miR-496, miR-125b-2-3p, miR-1284, and miR-5588-5p
has been demonstrated in the plasma of patients with T2D. To date, differential expression
of these miRNAs was demonstrated in conditions such as mild cognitive impairment due
to Alzheimer’s disease (miR-5588-5p), hepatocellular carcinoma (miR-125b-2-3p), gastric
cancer (miR-1284), and osteosarcoma (miR-1284, miR-496) [25–29]; however, no simulta-
neous changes in the level of these miRNAs are known. Therefore, the detected miRNAs
are of particular interest since they are rarely differentially expressed in other conditions,
making them quite specific, especially when analyzed simultaneously. Expression changes
were verified using RT-qPCR, but further validation is required in a larger sample. The
participation of the detected miRNAs in the development of T2D has not been sufficiently
studied to date; however, some mechanisms can be assumed based on the nature of their
involvement in the pathogenesis of other conditions.

MiR-496 was previously studied mainly in patients with malignant tumors. Previous
research demonstrated a significant role of miR-496 in the processes of cell proliferation and
differentiation. For example, a suppression of tumor cell proliferation through AKT/mTOR
and PI3K/AKT signaling pathways is well known [30,31]. It can be assumed that this
miRNA could be also involved in the regulation of β-cell proliferation. Our results are
consistent with the available data on reduced expression of miR-496 in patients with
T2D [32]. Downregulation of miR-496 was previously demonstrated in peripheral blood
mononuclear cells (PBMCs), while miR-496 levels were reduced in plasma in the present
study. One of the possible mechanisms for the participation of miR-496 in the pathogenesis
of T2D is a persistent activation of mTOR complex caused by downregulated miR-496
expression, since an inverse correlation between miR-496 expression and the amount of
mTOR proteins in PBMC was shown [33]. mTOR is a conserved serine/threonine kinase
complex involved in the metabolism of proteins, lipids, carbohydrates, nucleotides, and
regulating cell survival and cytoskeleton remodeling. Short-term activation of mTOR
is shown to stimulate β-cell proliferation and increase β-cell mass, whereas permanent
activation has a negative impact on β-cell mass and function [34].

MiR-125b-2-3p expression was mainly studied in patients with hepatocellular carci-
noma, ischemic stroke, and also was considered as a predictor of the therapy effectiveness
in colorectal cancer [29,35,36]. This miRNA can act both as an oncogene and as a tumor
suppressor in tumors of different origin. It can be also involved in proliferation, differentia-
tion, migration, and invasion of tumor cells [37]. The participation of miR-125b-2-3p in T2D
pathogenesis can be explained through AMP-activated protein kinase (AMPK) way. AMPK
is known to be the key regulator of glucose metabolism in insulin-dependent tissues (skele-
tal muscles, liver, and adipose tissue) and β-cells; therefore, AMPK dysregulation in β-cells
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causes impairment of glucose homeostasis [38]. Cheung and colleagues previously showed
that β-cell-specific inactivation of AMPK in mice was associated with miR-125b overexpres-
sion, concluding that AMPK may act as a negative regulator of miR-125b expression [39].
More recently, in vitro and in vivo studies demonstrated that upregulation of miR-125b
caused by AMPK repression in islet cells impairs glucose-stimulated insulin secretion and
thus leads to hyperglycemia and glucose intolerance. The authors hypothesized these
changes are caused by targeting M6PR and MTFP1 genes associated with mitochondrial
and lysosomal functions [40]. MiR-125b overexpression was demonstrated not only in
islet cells, but also in other tissues. MiR-125b level was upregulated in visceral adipose
tissue and PBMCs of T2D and prediabetic patients compared to healthy ones [41,42]. The
differential expression of miR-125b in adipose tissue may be associated with its suppression
of adipogenesis of brite adipose tissue by modulating the expression of mitochondrial
protein UCP1 [43]. BMI also plays a crucial role in miR-125b expression-regulated glucose
metabolism: miR-125b knockout reduced insulin sensitivity and, consequently, glucose
utilization in mice with high-fat diet-induced obesity [44].

The dysregulation of miR-1284 expression has not yet been described in T2D patients,
but it was studied in patients with breast, gastric, and lung cancer [45–47]. To date, one of
the main and essential functions of miR-1284 is known to be participation in the regulation
of cell viability and apoptosis. Overexpression of miR-1284 was shown to significantly
inhibit the proliferation, migration, and invasion of breast cancer cells. One of the possible
mechanisms is targeting ZIC2, a potential oncogene for many types of cancer [47,48]. MiR-
1284 also reduced cell viability and stimulated apoptosis in ovarian cancer cells by affecting
p27 and via the PI3K/Akt pathway, both of which play a significant role in cell cycle
regulation [49]. When evaluating the viability and proliferation of lung cancer cells, a
similar tendency was demonstrated. Overexpression of miR-1284 led to the stimulation of
apoptosis, a decrease in cell viability and proliferation by activating p27 [46]. One of the
possible mechanisms for the miR-1284 involvement in T2D development is also activation
of p27, since it regulates the proliferation of β-cells, and an increase in p27 expression
reduces β-cell mass, resulting in impaired glucose tolerance [50,51].

MiR-5588-5p has not been sufficiently studied to date; its expression was examined
only in the cerebrospinal fluid of patients with a mild cognitive disorder due to Alzheimer’s
disease and served as a marker of cognitive deterioration [28]. To date, there is no infor-
mation about experimentally confirmed target genes for this miRNA. Further studies are
required to evaluate the expression levels of miR-5588-5p in T2D patients. Possible mecha-
nisms of the detected miRNAs participation in T2D pathogenesis, as well as tissues and
biological fluids in which they are expressed, are summarized in Table 1.

In the present study, miRNA expression profiles were also compared in plasma sam-
ples from obese and non-obese patients. The results demonstrated differential expression
of miR-144-3p and miR-99a-5p in obese patients. Several mechanisms are known for
miR-144-3p to promote adipogenesis: from suppressing the FOXO1 and reducing its regu-
lation of adiponectin to stimulating differentiation of adipocytes by direct targeting Klf3
and CtBP2, protective factors against obesity [52,53]. MiR-99a-5p was also reported to be
negatively correlated with obesity [54,55].

According to functional analysis, the most enriched molecular pathways of T2D patho-
genesis include chromatin modifying enzymes and apoptotic pathway genes. The target
genes identified during the functional analysis partly overlapped with those differentially
expressed in T2D patients based on the results of RNA-seq. According to GWAS results,
16 of them (ACVR1C, ATXN7, DCUN1D4, GIN1, GOLGA7, GTF3C2, HMG20A, HMGB1,
INTS8, KIF11, RNF6, SBN1, SDC2, SSR1, UBE3C, ZFP36L2) were also located in loci asso-
ciated with T2D. The association of these genes with cellular processes such as cell-cycle
control and apoptosis is consistent with the results of studies demonstrating the signifi-
cance of these processes in the pathogenesis of T2D and its complications. Activation of
cell cycle regulatory genes predicts T2D and correlates with β-cell proliferation, as shown
earlier [56]. It is also known that cell-cycle dysregulation is an important link in the patho-
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genesis of diabetic kidney disease [57]. B-cell apoptosis also plays a significant role in the
pathogenesis of T2D along with obesity-associated insulin resistance and impaired insulin
secretion [58]. In addition to genetic factors, epigenetic changes play a critical role in the
T2D development [59]. Chromatin modification, such as methylation, acetylation, and
post-translational modifications to histone proteins is crucial for epigenetic regulation of
genes involved in the development of T2D and obesity [60], which explains the activation
of chromatin modifying enzymes genes.

Table 1. Description of detected miRNAs associated with T2D.

MiRNA log2FC Adjusted
p-Value

Associated
Conditions

Tissues/Biological
Fluids Pathways References

miR-5588-5p 4.81 3.7 × 10−15 Alzheimer’s
disease

Whole blood,
serum,

cerebrospinal
fluid, plasma

Further studies
are required [28]

miR-125b-2-
3p 4.43 3.1 × 10−7

Hepatocellular
carcinoma,

Ischemic stroke,
colorectal cancer

Islet cells,
visceral adipose

tissue, PBMC,
plasma

AMPK pathway [29,35–44]

miR-1284 4.20 5.4 × 10−7

Breast, gastric,
lung cancer

cancer,
osteosarcoma

Tumor tissues,
plasma

PI3K/Akt, p27
pathways [45–51]

miR-496 −3.90 4.4 × 10−4 Osteosarcoma,
T2D PBMC, plasma PI3K/AKT,

mTOR pathway [30–34]

Artificial intelligence is increasingly used in various spheres of life and may find
applications in healthcare to assist in the diagnosis and treatment of different diseases,
including T2D. The possibility of a machine learning model’s implementation in clinical
practice for the T2D onset prediction and high-risk patients’ identification is now widely
discussed. The operating principle of machine learning algorithms is based on the analysis
of large amounts of data and the identification of patterns that can be used to make
predictions. In the case of T2D, factors such as gender, age, BMI, laboratory values, as
well as genetic and epigenetic indicators are typically analyzed. The predictive power of
models for assessing polygenic risk score in multifactorial traits and disorders is currently
quite low. The relative performance of the models varies from 0.571 to 0.901 [61]. The
constructed machine learning model for prediction of T2D based on the expression levels
of four miRNAs (miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496) showed relatively
high performance (AUC = 0.94). However, the limited size of the training sample in this
study makes it necessary to analyze the expression of the detected miRNAs on an expanded
sample with the correction of the model, which can affect its performance. Adjusting the
model for additional factors such as gender, age, BMI, genetic predisposition can also
potentially increase the predictive power of the constructed model, since the influence of
these factors on T2D susceptibility is well known [62–65].

Based on the results of the present study, four differentially expressed microRNAs
were detected that were not previously associated with T2D by other researchers. There are
a number of causes for impacting the expression profile and discrepancies in experiment
results. For example, changes in miRNA expression can be altered by external factors such
as clinical course of a disease, its complications (diabetic nephropathy, retinopathy) [66],
and presence of concomitant diseases. As well, researchers demonstrated differences in
miRNA expression in different populations [67]. In addition, the expression of a particular
miRNA can change to the same extent in other pathological conditions. All these factors
make extremely important the rigorous selection of study participants. Moreover, the
analyzed biomaterial, sample handling, miRNA isolation method and conditions, pref-
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erential miRNA extraction or degradation during storage, and other technical variations
(“batch effects”) [68] can also potentially affect the differential expression analysis results.
One of the possible solutions to these problems is to search for a set of miRNAs with
simultaneous expression changes, which is only possible when using methods such as NGS
or microarrays.

The choice of expression analysis method is another significant issue. While hybridiza-
tion arrays make it possible to analyze a larger number of miRNAs compared to RT-qPCR,
and NGS even allows identifying new ones, it is necessary to verify the results of these
studies using RT-qPCR. Unfortunately, the verification step is often missing, which compli-
cates the selection of miRNAs for validation of obtained results on an extended sample. In
our study, differential expression for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496
was verified using RT-qPCR; however, significant differences were demonstrated only for
miR-496, which is likely due to the small sample size.

The limitations of this study, in addition to the limited sample size, include the lack
of validation of the results on an expanded sample, as well as differences in age, WHR,
and BMI between T2D patients and healthy controls. Lack of validation can be overcome
through the additional research conduction; however, age, hypoglycemic medications,
WHR, and BMI cannot always be considered while conducting a study on T2D since classic
manifestations of T2D develop in older people, and increased BMI and abdominal obesity
are two of the main risk factors for T2D and a consequence of insulin resistance at the same
time. In addition, increased WHR and BMI are a limitation that is difficult to overcome
since it is not always amenable to therapeutic correction for various reasons, ranging from
resistance to therapy to low compliance with therapy and recommended diet. The selection
of subjects for the control group was based on the minimum risk of developing T2D and,
as a result, the absence of increased WHR, BMI, and older age.

Further studies are required to investigate the functions of analyzed miRNAs and their
involvement in T2D pathogenesis, which have not yet been evaluated in T2D patients. RT-
qPCR of detected miRNAs in an expanded sample, transcriptomic analysis in T2D patients
for identification of target genes followed by RT-qPCR verification may help shed some
light on the pathogenesis of T2D. Another important direction in miRNAs studies is the
consideration of detected miRNAs as a potential biomarker for presymptomatic diagnosis
of T2D. To implement this direction, it is necessary to analyze the expression of miRNAs in
a large sample, considering associated factors, as well as long-term dynamic monitoring
of miRNA expression in patients and healthy controls. Another promising direction for
future research is single-cell transcriptomic studies performed on islet cells and peripheral
blood mononuclear cells, as they will give us a better understanding of proliferation and
differentiation of islet cells, as well as pathogenesis of immune inflammation at T2D.

4. Materials and Methods
4.1. Study Cohorts and Participants

Peripheral blood samples were collected from 22 healthy controls and 44 individuals
with T2D. T2D was diagnosed based on the World Health Organization criteria. The
inclusion criteria for the control group were no history of diabetes and age over 30 years.
Patients with new-onset diabetes mellitus (less than 1 year), acute and/or decompensated
liver and kidney disease, autoimmune disorders, malignancies, and under 30 years of
age were excluded from the study. The levels of HbA1c, fasting blood glucose (FBG),
high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and
creatinine were measured in a fasting blood sample. Body height and body weight were
measured, and the body mass index (BMI) was calculated in all the participants. Clinical
and biochemical parameters of all the participants enrolled in the study are summarized in
Table 2.

The study was approved by the ethics committee of the D.O. Ott’s Institute of Obstet-
rics, Gynecology, and Reproductology (protocol #130 dated 16 July 2020) and conducted
in accordance with the guidelines of the Declaration of Helsinki. Patients with T2D and
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healthy controls were recruited at the D.O. Ott Institute of Obstetrics, Gynecology, and
Reproductology (Saint-Petersburg) and St. Martyr George City Hospital (Saint-Petersburg).
Written informed consent was obtained from all the subjects for being included in the
study. This study was performed using large-scale research facilities #3076082 “Human
Reproductive Health”.

Table 2. Clinical and biochemical characteristics of T2D patients and healthy controls.

Characteristics T2D Patients
(n = 44)

Healthy Controls
(n = 22)

Male (n) 14 11

Female (n) 30 11

Age (years) 73.15 ± 7.72 * 42.90 ± 16.52

FBG (mmol/L) 8.34 ± 2.64 * 4.62 ± 0.39

Family history of diabetes (n) 17 (38.6%) 8 (36.3%)

HbA1c (%) 8.36 ± 1.42 NA

HDL (mmol/L) 1.29 ± 0.33 * 1.60 ± 0.54

LDL (mmol/L) 2.62 ± 0.88 3.35 ± 1.69

Total cholesterol (mmol/L) 4.59 ± 1.14 5.57 ± 1.79

Creatinine (mmol/L) 0.115 ± 0.03 * 0.083 ± 0.01

BMI (kg/m2) 30.25 ± 4.98 * 23.98 ± 2.23

WHR 0.95 ± 0.08 * 0.75 ± 0.09
* p < 0.05 compared to control group. NA: not applicable. The level of glycated hemoglobin was not assessed in
the control group.

4.2. Plasma Sample Collection

Whole blood samples were collected from the study subjects in Improvacuter 9 mL
K2EDTA tubes (Guangzhou Improve Medical Instruments Co., Ltd., Guangzhou, China)
after an overnight fasting period of 12 h. The plasma was separated by centrifugation of
the whole blood sample at 1500 g for 10 min at room temperature. The plasma samples
were then immediately aliquoted in RNAse-free cryotubes (Fluidx Ltd., Cheshire, UK) and
stored at −80 ◦C until use to prevent freeze–thaw cycles.

4.3. Small RNA Isolation

Archived plasma specimens were retrieved from cryostorage and thawed at +4 ◦C. The
total RNA, including miRNA, was isolated from 200 µL of thawed plasma using miRNeasy
Serum/Plasma Advanced Kit (Qiagen GmbH, Germany) following the manufacturer’s
instructions, eluted with 20 µL RNase-free water, and quantified with the use of Qubit™
microRNA Assay Kit and Qubit 2.0 Fluorometer (both Invitrogen™, Carlsbad, CA, USA).
The miRNA concentration ranged from 0.7 to 3.8 ng/µL. MiRNA samples were stored at
−20 ◦C until library preparation.

4.4. Small RNA Libraries Preparation and Sequencing

Libraries were constructed from 5 µL of extracted small RNA using QIAseq miRNA
Library Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s protocol.
Briefly, reverse transcription was performed after adapter ligation to the 3′ and 5′ ends of
mature miRNAs. Following cDNA cleanup, library amplification, unique index assignment,
and final cleanup were completed. The concentration of libraries was measured using
Qubit dsDNA HS Assay Kit (Invitrogen™, CA, USA). The library’s size distribution was
analyzed with Agilent 2200 TapeStation and Agilent High Sensitivity D1000 ScreenTape
(both Agilent Technologies, Inc., Waltham, MA, USA). Barcoded libraries were pooled at
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equimolar ratios and paired-end sequenced with Illumina HiSeq 2500 System using HiSeq
Rapid SBS Kit (all Illumina, Inc., Waltham, MA, USA).

4.5. Differential Expression Analysis

Small RNA-seq data alignment and quantification was conducted using GeneGlobe Data
Analysis Center (https://geneglobe.qiagen.com/us/analyze, accessed on 2 November 2020).
The analysis of miRNA differential expression (DE) was performed using the UMI counts.
The DESeq2 [69] package was used to conduct the DE analysis. Adjusted p-value (<0.05) was
used to select differentially expressed transcripts, and logarithm of fold expression change
(|log2FC| > 1) was used to further filter the set of candidates.

Selection of candidate miRNA for further validation was carried out based on adjusted
p-value, expression level, and the proportion of samples with zero expression. Combined
relevance of miRNAs selected for validation was tested by fitting a support vector machine
(SVM) model to predict the patient’s phenotype based on the expression of the miRNA
candidates. The area under the receiver–operator curve (ROC/AUC) was used to evaluate
the model performance in three-fold cross-validation. The model was constructed and
evaluated using the caret package.

4.6. Functional Analysis of miRNA Target Genes

To select the target genes of the selected subset of miRNA, we used miRTarBase
(https://mirtarbase.cuhk.edu.cn/, accessed on 10 December 2022). Unique target genes
were selected for further functional analysis. Gene set enrichment analysis on the set of
miRNA target genes was performed using the clusterProfiler package [11]. Gene Ontology
(GO) biological process terms and Molecular Signatures Database (MSigDB) [70] canonical
pathways were used as target gene sets for analysis. FDR-adjusted p-value < 0.1 was used
to identify significantly enriched gene sets.

4.7. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

The results obtained by RNA-seq were verified through reverse transcription-quantitative
PCR. 20 RNA samples (10 T2D and 10 controls) from those previously analyzed by NGS
were randomly selected for the verification. Prior to RT-qPCR, cDNA was synthesized
using TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham,
MA, USA). The concentration of the resulting cDNA was measured using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and ranged from
120 to 130 ng/µL. Candidate miRNAs were selected for RT-qPCR verification based on fold
changes and p values. PCR was performed using commercially available TaqMan Advanced
miRNA Assays for measurement of miR-361-5p, miR-496, miR-5588-5p, miR-125b-2-3p, and
miR-1284 expression levels (purchased from Thermo Fisher Scientific, Waltham, MA, USA).
The reaction mixtures (20 µL) consisted of TaqMan Advanced miRNA Assays (1 µL), TaqMan
Advanced miRNA Master Mix (10 µL), nuclease-free water (4 µL), and cDNA product (5 µL).
The amplification was performed in MicroAmp optical reaction plates using ABI 7500 Fast Real
time PCR system (all Applied Biosystems, Waltham, MA, USA) with two technical replicates
for each PCR reaction. The RT-qPCR temperature cycling conditions were as follows: initial
denaturation 95 ◦C for 20 s, followed by 40 cycles (95 ◦C for 3 s and 60 ◦C for 30 s). MiR-361-5p
was selected as an endogenous control on the recommendation of the assay’s manufacturer as
a gene with relatively stable expression across samples and tissues. Results were analyzed
using comparative delta Ct (2−∆∆Ct) method [71].

4.8. Statistical Analysis

Statistics were calculated using Statistica 12.0 software (Tibco, Palo Alto, CA, USA).
The Mann–Whitney U test and Fisher’s exact test were used to compare differences between
groups. Differences were considered significant at p-value < 0.05. The sample size was
calculated considering the prevalence of T2D in the study population, equal to 3.3% [72],
the 80% sample size power at 95% confidence interval, using formula [73].

https://geneglobe.qiagen.com/us/analyze
https://mirtarbase.cuhk.edu.cn/
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4.9. Machine Learning Model Construction

The combined relevance of miRNAs selected for validation was tested by fitting a
support vector machine (SVM) model to predict the patient’s phenotype based on the
expression of candidate miRNAs. The area under receiver–operator curve (ROC/AUC)
was used for evaluation of the model performance in three-fold cross-validation. The model
was constructed and evaluated using the caret package.

5. Conclusions

MicroRNA profiling studies look intriguing for opening new perspectives in funda-
mental research and for developing new instruments for T2DM diagnosis. According to
modern knowledge and molecular characteristics of microRNAs, they can be considered
excellent early or presymptomatic biomarkers due to their role in the initial stages of patho-
genesis of many chronic diseases. This is especially important for T2DM, a serious chronic
disease that can remain asymptomatic for a long time. Our preliminary results showed
differential expression in plasma of miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496
in T2DM and miR-144-3p and miR-99a-5p in obesity. Functional analysis demonstrated
the importance of cellular processes such as cell cycle regulation, apoptosis, and chromatin
modifications in T2D development. Further validation of miRNAs’ differential expression
on an extended sample using alternative techniques and analysis of target genes expression,
protein synthesis, and organ functions may shed light on some aspects of the intricate
structure of T2D pathogenesis.
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