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Abstract: Determining neuroendocrine tumor (NET) primary sites is pivotal for patient care as
pancreatic NETs (pNETs) and small bowel NETs (sbNETs) have distinct treatment approaches. The
diagnostic power and prioritization of fluorescence in situ hybridization (FISH) assay biomarkers
for establishing primary sites has not been thoroughly investigated using machine learning (ML)
techniques. We trained ML models on FISH assay metrics from 85 sbNET and 59 pNET samples
for primary site prediction. Exploring multiple methods for imputing missing data, the impute-by-
median dataset coupled with a support vector machine model achieved the highest classification
accuracy of 93.1% on a held-out test set, with the top importance variables originating from the ERBB2
FISH probe. Due to the greater interpretability of decision tree (DT) models, we fit DT models to ten
dataset splits, achieving optimal performance with k-nearest neighbor (KNN) imputed data and a
transformation to single categorical biomarker probe variables, with a mean accuracy of 81.4%, on
held-out test sets. ERBB2 and MET variables ranked as top-performing features in 9 of 10 DT models
and the full dataset model. These findings offer probabilistic guidance for FISH testing, emphasizing
the prioritization of the ERBB2, SMAD4, and CDKN2A FISH probes in diagnosing NET primary sites.

Keywords: fluorescence in situ hybridization; neuroendocrine tumor; machine learning; biomarker;
imputation; model

1. Introduction

Neuroendocrine tumors (NETs) are a diverse collection of tumors arising from neu-
roendocrine cells, which are present in most bodily tissues [1]. The latest data reveals a rise
in the incidence and the prevalence of NETs, with a prevalence of just over 170,000 reported
cases in the United States [1,2]. Gastroenteropancreatic NETs are the most common NETs,
with small bowel NETs (sbNETs) accounting for 17–20% and pancreatic NETs (pNETs)
comprising 7–10% of all NET cases [3,4]. NETs can present either asymptomatically or
with a range of symptoms that may resemble other medical conditions, potentially causing
delays in diagnosis and leading to more advanced stages of cancer [5–7]. Metastasis is
common with sbNETs and pNETs, most often in the liver, where many patients present
with an unknown primary site [8]. Determining the primary site of NETs is pivotal for
patient care as treatment approaches differ for sbNETs and pNETs and the primary site has
important implications for surgical management [9].
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Imaging continues to hold a crucial role for diagnosis and establishing NET primary
sites, although it yields inconclusive results in 12–22% of cases [10–12]. Blood peptide and
protein biomarkers have been identified for diagnosing primary sites with limited valida-
tion and results [13,14]. However, histological classification with immunohistochemistry
(IHC) persists as the primary approach for diagnosis, with no universally standardized
diagnostic algorithm in place [15,16]. Several IHC biomarkers have been established for
NET diagnosis. At the University of Iowa, the clinical classification model for distinguish-
ing NET subtypes using IHC biomarkers has a 90% sensitivity for sbNETs and pNETs [15].
Molecular tests have the potential to be extremely useful in determining NET primary sites.
Recently, a discovery and validation study found association of eight fluorescence in situ
hybridization (FISH) test probes with sbNET and pNET primary sites [17]. FISH tests assess
biopsied NET cells for copy number alterations in gene biomarkers, providing a count of
cells exhibiting either a loss in, normal, or gain in number of copies of the gene. Clinically
validated thresholds for these counts are applied to determine the final test results.

Machine learning (ML) models offer the advantage of concurrently assessing multiple
features, discovering patterns and interactions in the data undetected by human observation
or conventional analytical methods. ML methods have found widespread application in
healthcare research for predicting diagnoses, treatment options, and prognoses, yielding
clinically implementable results and impacting patient care [18]. In cancer research, ML
has been used to explore the development of new clinical biomarker tests and augment
the detection capabilities of established tests and imaging methods [19]. ML methods have
been applied to classify sbNET and pNET samples from multiple blood protein biomarkers,
with results contributing to the recent push to establish new biomarkers or a multianalyte
test for NETs [20,21]. In a similar effort, ML models fitted with microRNA (miRNA) marker
expression data have had success in classifying NET subtypes [22]. The NETest is another
multianalyte analysis of circulating transcripts that employs ML algorithms to predict NETs
compared to controls with a classification accuracy of 94% for small intestinal NETs and
91% for pNETs [23–25]. However, concerns regarding cost-effectiveness and accessibility
for the NETest have been raised [13].

Feature importance can be assessed across ML models, identifying the variables that
are significantly influencing predictive performance and are contributing the most impor-
tant information [26]. While many ML models lack interpretability for how predictions are
generated, decision tree (DT) models offer transparency with the ability of visualizing the
model as a series of decisions for predictions [27].

In this study, we investigated eight FISH biomarker probes and assessed the resulting
metrics with ML techniques for the prediction of sbNET and pNET primary sites with
the main aim of prioritizing FISH probes for diagnosis. To accomplish this, we assessed
variable importance for predictions from the best performing models and used DT models
for plotting algorithmic prioritization of FISH probes. Our findings suggest prioritization
of ERBB2, SMAD4, and CDKN2A FISH probes for determination of sbNET and pNET
primary sites.

2. Results

A total of 8 FISH test gene biomarker probes were assessed for 144 patient samples
consisting of 85 sbNETs (59%) and 59 pNETs (41%). Each sample had an average of
3.13 gene biomarker FISH test results with 5 samples having only 1 gene biomarker test
and 6 samples with 7 gene biomarker tests Table 1. No sample had all 8 gene biomarker
tests performed. Among the 8 FISH probes, the MET test was performed on 93 samples,
while the CDKN2A test was conducted on 36 samples (Table 2).
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Table 1. Distribution of the number of fluorescence in situ hybridization (FISH) tests performed
on samples.

Number of FISH Tests Number of Samples

1 5
2 68
3 13
4 41
5 1
6 10
7 6
8 0

Table 2. Distribution of FISH tests performed on samples.

Biomarker Number of Samples

CKS1B 56
FGFR3 57
CSF1R 54
MET 93

CDKN2A 36
ERBB2 73

SMAD4 41
CCNE1 41

Implementation of the naïve bayes (NB) and extreme gradient boosted tree (XGBTree)
models were able to be fit to the training set with missing data. The naïve bayes model
outperformed the XGBTree model on the training set with 10-fold cross-validation (CV)
mean brier score = 0.156 (lower is better), mean accuracy = 83.5%, and mean area under
the receiver operating characteristic (AUROC) curve = 0.869, as well as on the held-out
test set with brier score = 0.117, accuracy = 86.2%, and AUROC curve = 0.928 (Table 3 and
Supplementary Figure S1). Top models with parameters are included in Supplementary
Table S2. Relative permutation-based variable importance (PVI) for the naïve bayes model
resulted in an ERBB2 biomarker variable being most important (Figure 1). To address
the missing data, imputation methods were employed, and all models were fitted to the
training set. Substituting missing data with variable medians with the support vector
machine with radial basis kernel function (SVM-RB) model yielded the best performance
on the training set: mean brier score = 0.115, mean accuracy = 85.4%, mean AUROC
curve = 0.919. On the held-out test set, the SVM-RB model had a predictive performance of
brier score = 0.0658, accuracy = 93.1%, and AUROC curve = 0.861 (Table 3, Figure 2A, and
Supplementary Table S3). The top two variables for the SVM-RB model are ERBB2_loss and
ERBB2_gain (Figure 2B). The decision tree model, trained on the median-imputed dataset,
achieved a mean training accuracy of 75.5% and a testing accuracy of 72.4%, with the first
four decision tree splits based on ERBB2 and CCNE1 variables (Table 3 and Figure 3A). The
top two variables for the decision tree model by PVI include ERBB2_gain and CCNE1_gain
(Figure 3B).
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Table 3. Mean 10-fold cross-validation (CV) Training set performance and held-out test set perfor-
mance of top models from raw and imputed datasets.

Training Performance

Raw Data Mean Median KNN Bagged Trees

Top Models NB XGBTree SVM-RB Log Reg SVM-RB Log Reg DT SVM-RB Log Reg NB SVM-RB Log Reg
Brier Score 0.156 0.157 0.117 0.172 0.115 0.251 0.175 0.115 0.228 0.176 0.119 0.190
Accuracy 83.5% 79.9% 86.2% 78.2% 85.4% 74.9% 75.5% 86.3% 72.1% 81.9% 83.5% 78.5%

AUROC curve 0.869 0.861 0.924 0.839 0.919 0.739 0.826 0.908 0.756 0.877 0.909 0.803

Test Performance

Raw Data Mean Median KNN Bagged Trees

Top Models NB XGBTree SVM-RB Log Reg SVM-RB Log Reg DT SVM-RB Log Reg NB SVM-RB Log Reg
Brier Score 0.117 0.166 0.069 0.069 0.066 0.066 0.183 0.077 0.077 0.105 0.068 0.068
Accuracy 86.2% 79.3% 93.1% 93.1% 93.1% 93.1% 72.4% 89.7% 89.7% 89.7% 93.1% 93.1%

AUROC curve 0.928 0.856 0.981 0.981 0.986 0.986 0.820 0.976 0.976 0.952 0.962 0.962
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Figure 1. Permutation-based variable importance for naïve bayes model trained on raw dataset. All
variables included in the model are assessed. Permutations per variable were performed 25 times
and performance is assessed based on mean brier score.
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Figure 3. Decision tree (DT) model trained on median-imputed data. (a) DT model with internal 
nodes shown with variables being split with thresholds. Samples with a value for a variable less 
than the threshold are split down the left branch and samples with a value greater than the threshold 
are split down the right branch. Terminal nodes show the final classification of the samples with 
either pancreatic neuroendocrine tumor (pNET) or small bowel neuroendocrine tumor (sbNET). 
Classification of sample subsets at internal nodes are shown under horizontal lines. (b) Permutation-
based variable importance. All variables included in the model are assessed. Permutations per var-
iable were performed 25 times and performance is assessed based on mean brier score. 

Figure 2. Support vector machine with radial basis kernel function (SVM-RB) model trained on
median-imputed dataset. (a) Receiver operating characteristic (ROC) curve. Area under the receiver
operating characteristic (AUROC) curve = 0.986. (b) Permutation-based variable importance. All
variables included in the model are assessed. Permutations per variable were performed 25 times
and performance is assessed based on mean brier score.
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Figure 3. Decision tree (DT) model trained on median-imputed data. (a) DT model with internal
nodes shown with variables being split with thresholds. Samples with a value for a variable less
than the threshold are split down the left branch and samples with a value greater than the threshold
are split down the right branch. Terminal nodes show the final classification of the samples with
either pancreatic neuroendocrine tumor (pNET) or small bowel neuroendocrine tumor (sbNET).
Classification of sample subsets at internal nodes are shown under horizontal lines. (b) Permutation-
based variable importance. All variables included in the model are assessed. Permutations per
variable were performed 25 times and performance is assessed based on mean brier score.
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Cytogenetic standard thresholds for FISH test results when considering a loss, normal,
and gain were applied to the initial dataset after imputation to construct single categorical vari-
ables for each gene biomarker. Models fitted to the bagged trees imputed dataset performed
slightly worse than the datasets imputed by other methods (Supplementary Tables S4 and S5).
Imputation by mean, median, and k-nearest neighbor (KNN) performed similarly across most
models with the random forest and SVM-RB models performing slightly better on the training
and test sets (Table 4, Supplementary Tables S4 and S5). The random forest model performed
best on the mean-imputed training and test sets, having a training mean brier score = 0.174,
mean accuracy = 77.2%, and mean AUROC curve = 0.797, and a testing brier score = 0.147,
accuracy = 75.9, and AUROC curve = 0.885 (Table 4, Supplementary Tables S4 and S5).
SVM-RB models excelled on median-imputed and KNN-imputed training data, with the
KNN dataset showing the best performance: mean brier score = 0.168, mean accuracy =
79.1%, and mean AUROC curve = 0.786 (Table 4, Supplementary Table S4). On the testing
set, the SVM-RB models had an increase in performance for the median-imputed and
KNN-imputed datasets with the best performance on the median dataset: brier score =
0.158, accuracy = 79.3%, and AUROC curve = 0.916 (Table 4, Supplementary Table S5).
The best test performance on the median-imputed dataset was with the random forest
model with brier score = 0.133, accuracy = 79.3%, and AUROC curve = 0.930 (Table 4,
Supplementary Table S5). For the KNN-imputed test set, the random forest model had the
best brier score = 0.154 and AUROC curve = 0.873, while the decision tree model had the
best accuracy = 82.8% (Table 4, Supplementary Table S5).

Table 4. Mean 10-fold CV Training set performance and held-out test set performance of top mod-
els from imputed datasets with a transformation of the data to single categorical variables for
each biomarker.

Training Performance

Mean Median KNN Bagged Trees

Top Models RF RF SVM-RB DT RF SVM-RB RF SVM-P
Brier Score 0.174 0.187 0.168 0.180 0.176 0.168 0.211 0.179
Accuracy 77.2% 76.6% 77.4% 78.1% 74.0% 79.1% 73.1% 77.5%

AUROC curve 0.797 0.766 0.843 0.781 0.806 0.786 0.726 0.759

Test Performance

Mean Median KNN Bagged Trees

Top Models RF RF SVM-RB DT RF SVM-RB RF SVM-P
Brier Score 0.147 0.133 0.158 0.157 0.154 0.169 0.132 0.200
Accuracy 75.9% 79.3% 79.3% 82.8% 79.3% 79.3% 79.3% 72.4%

AUROC curve 0.885 0.930 0.916 0.841 0.873 0.817 0.916 0.829

The DT model performed best on the KNN-imputed dataset with a transformation to
single categorical biomarker variables. Ten random training-testing splits were constructed
for Monte Carlo CV and sample summary statistics for the split datasets and probabilities
for a given FISH test result for the KNN dataset are given in the supplementary materials
(Supplementary Tables S6 and S7). A DT model was fitted to each training split with
average estimated predictive performance on all splits having a mean brier score of 0.185
(0.161–0.228), mean accuracy of 75.9% (range of 63.5–80.4%), and a mean AUROC curve of
0.764 (0.696–0.827) (Table 5). Test set performance of the ten models had a mean accuracy of
81.4% (range of 69.0–89.7%), a mean brier score of 0.156 (0.104–0.252), and a mean AUROC
curve of 0.816 (0.710–0.909) (Table 5). In 8 of 10 tree models, the ERBB2 variable was selected
as the initial split of the DT, with ERBB2 gain (3) samples proceeding down the left branch
and ERBB2 loss and normal (1 and 2) samples proceeding down the right branch of the trees
(Figure 4, Supplementary Figures S2A,B–S10A,B). The ERBB2 variable was included as a de-
cision split in 9 tree models and selected as a split for 11 of the 49 total splits across all trees
(Supplementary Table S8). The SMAD4 variables were the second most featured for 7 of
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the 49 total splits across all trees (Supplementary Table S8). Three tree models incorporated
only a single split with two utilizing the ERBB2 variable and the third utilizing the CDKN2A
variable (Supplementary Figures S7A,B, S8A,B and S10A,B, Supplementary Table S9). For
all tree models, 89.9% of the branch of decisions for classification at the terminal nodes
have a probability greater than a majority class classifier for each split (Supplemen-
tary Table S9). PVI yielded ERBB2 and MET biomarker variables at the first and sec-
ond positions for 9 of the 10 decision tree models. ERBB2 and MET biomarker vari-
ables consisted of the top five variables of importance for 6 of 10 models (Figure 4C,
Supplementary Figures S2C–S10C). The consensus tree model generated from the predic-
tive probabilities of all ten DT models has a brier score = 0.135, accuracy = 79.2%, and
AUROC curve = 0.908 (Supplementary Figure S11, Supplementary Table S10). The distri-
bution of correctly classified samples by all ten DT models is close to expected, with
82 samples (27 pNETs, 55 sbNETs) being correctly classified by all ten models and 21 sam-
ples (7 pNETs, 14 sbNETs) being correctly classified by 9 of the 10 models. There were 9
samples (8 pNETs, 1 sbNETs) misclassified by all ten models, 7 samples (6 pNETs, 1 sbNETs)
misclassified by nine models, and 9 samples (4 pNETs, 5 sbNETs) misclassified by eight
models (Supplementary Figure S12).

Table 5. Summary statistics for mean 10-fold CV Training set performance and held-out test set
performance of top ten DT models from manual Monte Carlo CV with ten random 80/20 dataset
splits. DT models are trained on KNN-imputed data with a transformation of the data to single
categorical variables for each biomarker.

Training Performance

Brier
Score Accuracy Kappa AUROC

Curve Sensitivity Specificity

Minimum 0.161 63.5% 0.250 0.696 0.662 0.570
Maximum 0.228 80.4% 0.600 0.827 0.895 0.760

Mean (SD) 0.185
(0.020)

75.9%
(0.050)

0.486
(0.099)

0.764
(0.047)

0.846
(0.068)

0.633
(0.056)

Test Performance

Brier
Score Accuracy Kappa AUROC

Curve Sensitivity Specificity

Minimum 0.104 69.0% 0.393 0.710 0.727 0.546
Maximum 0.252 89.7% 0.784 0.909 1.000 0.900

Mean (SD) 0.156
(0.043)

81.4%
(0.068)

0.598
(0.127)

0.816
(0.072)

0.864
(0.090)

0.732
(0.140)

The DT model trained on the full dataset (all 144 samples) generated tree splitting on
three variables. The first split is on the ERBB2 variable, followed by splits on the CDKN2A
and SMAD4 variables (Figure 5A). Estimated predictive performance with 10-fold CV
yielded a mean brier score = 0.161, mean accuracy = 79.8%, and mean AUROC curve =
0.800. The tree performance was assessed with the same dataset used to train the model
and had a brier score = 0.158, an accuracy = 79.2%, and an AUROC curve = 0.793 (Figure 5B,
Supplementary Table S9). Three of the four terminal nodes for the full dataset model have
a prediction probability greater than the majority class classifier at 0.590 (Supplementary
Table S9). PVI resulted with the top two variables being ERBB2 gain and MET gain
(Figure 5C).
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sample numbers of subsets from the split are displayed at the edges of the horizontal lines. Each 
node lists correctly classified samples as a fraction and percent accuracy. Tree accuracy = 79.1% 
(91/115). (b) Test set DT model plot with same design as (a) with test set data. Tree accuracy = 82.8% 
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Permutations per variable were performed 25 times and performance is assessed based on mean 
brier score. (d) ROC curve. AUROC curve = 0.841. 

Figure 4. DT model trained on KNN-imputed data with a transformation of the data to single
categorical variables for each biomarker. Training and test sets are from initial random 80/20 dataset
split (Training and Test Set 1). (a) Training set DT model with internal nodes shown with variables
being split with splitting criteria of 1 = loss, 2 = normal, and 3 = gain for number of copies at the
genomic regions. Samples categorized with a variable value equal to the splitting criteria are split
down the left branch and those with a variable value different than the splitting criteria are split
down the right branch. Terminal nodes show the final classification of the samples with either pNET
or sbNET. Classification of sample subsets at internal nodes are shown under horizontal lines and
sample numbers of subsets from the split are displayed at the edges of the horizontal lines. Each
node lists correctly classified samples as a fraction and percent accuracy. Tree accuracy = 79.1%
(91/115). (b) Test set DT model plot with same design as (a) with test set data. Tree accuracy = 82.8%
(24/29). (c) Permutation-based variable importance. All variables included in the model are assessed.
Permutations per variable were performed 25 times and performance is assessed based on mean brier
score. (d) ROC curve. AUROC curve = 0.841.
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Figure 5. Full dataset DT model trained on all samples with KNN-imputed data with a transformation
of the data to single categorical variables for each biomarker. (a) DT model with internal nodes shown
with variables being split with splitting criteria of 1 = loss, 2 = normal, and 3 = gain for number of
copies at the genomic regions. Samples categorized with a value for a variable equal to the splitting
criteria are split down the left branch and samples with a value different than the splitting criteria
are split down the right branch. Terminal nodes show the final classification of the samples with
either pNET or sbNET. Classification of sample subsets at internal nodes are shown under horizontal
lines and sample numbers of subsets from the split are displayed at the edges of the horizontal lines.
Each node lists correctly classified samples as a fraction and percent accuracy. Tree accuracy = 79.2%
(114/144). (b) ROC curve. AUROC curve = 0.793. (c) Permutation-based variable importance. All
variables included in the model are assessed. Permutations per variable were performed 25 times
and performance is assessed based on mean brier score.
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3. Discussion

In this study, we investigated the predictive capabilities of results obtained from eight
FISH gene biomarker probes for the classification of sbNETs and pNETs. The primary
aim was to prioritize FISH probes for the diagnosis of primary sites in patients presenting
with suspected sbNETs or pNETs. To our knowledge, this is the first study to attempt to
establish an algorithmic standard for the prioritization of FISH tests in NETs diagnostics
using machine learning techniques. To achieve this, we subjected numerous variations of
FISH result data to ML analyses to classify sbNET and pNET samples. Our rationale behind
this approach was that ML models can leverage multiple probes collectively for prediction.
The approach enabled us to discern the influence of individual probes on predictions,
facilitating prioritization. FISH tests offer clear advantages over other proposed multi-
biomarker (multianalyte) tests. They are common histological tests in cancer fields and
are frequently used to provide confirmation in cases where immunohistochemistry and
imaging tests yield unclear results [14–16]. FISH is a widely available clinical test, offering
a cost-effective approach compared to more elaborate methods and has a relatively swift
turnaround time for results. Through the prioritization of FISH probes in this study, there
is a potential to improve the diagnostic assessment of NETs and reduce the cost and the
time of results, improving patient care. The eight FISH probes selected to include in
our analysis underwent prior examination in a discovery and validation study, revealing
individual associations with sbNETs and/or pNETs [17]. Gene probes were chosen for
their commercial availability, targeting specific genomic regions associated with NET
subtypes through copy number alteration analysis [17]. Our analysis prioritizes probes
for diagnosing NET primary sites but does not offer evidence for selected genes and the
pathogenesis of tumors. Common copy number alterations of whole chromosomes and
chromosome regions have been previously found in sbNETs and pNETs [28,29]. The data
included in the present study were generated for the validation analysis [17]. Our top-
performing models can discern sbNET from pNET samples across all performance metrics.
Assessing variable importance in our top models, coupled with decision tree plots, enables
us to prioritize FISH probes, allowing for the establishment of algorithmic guidelines
for testing.

The complete sample set consisted of 59% sbNETs and 41% pNETs, comparable to
estimates of prevalence percentages in the population. The inclusion of a higher number
of pNET cases allows us to better identify patterns within pNETs, aligning with our objec-
tive of developing a broadly applicable and generalizable model for sbNETs and pNETs.
Imputation of missing data enabled all models to be fitted to the dataset and assessed for
performance, in contrast to only two models accommodating the extent of missing data
present in the raw dataset. We conducted multiple iterations of transformations of the
dataset, incorporating biological thresholds, to identify the optimal dataset for distinguish-
ing sbNETs from pNETs. Among all the datasets and models we examined, imputation
by mean, median, and KNN demonstrated comparable performances, whereas datasets
imputed by bagged tree models generally exhibited weaker results. In general, SVM and
random forest (RF) models consistently outperformed other models across all datasets.

The development of new biomarkers for diagnosing NET subtypes has been a long-
standing research focus in the field. While single biomarker tests have proven effective
in identifying certain NET subtypes, they are uninformative for others, leading to recent
increased efforts to establish a multi-biomarker strategy [10,13]. Our multi-probe analysis
falls within this category, with a primary focus on prioritizing FISH probes for the classi-
fication of sbNET and pNET primary sites using biopsied tumor samples. Our analysis
can be most similarly compared to an approach used at the University of Iowa Hospital
that has mapped out IHC tests on biopsied tumor samples with a classification model for
four NET subtypes. Our top model, the SVM-RB model, with accuracy = 93.1%, sensi-
tivity = 93.8%, and specificity = 92.3% on the held-out test set, performs similarly to the
clinical IHC classification model, having a 90% sensitivity for sbNETs and around 90%
sensitivity for pNETs, outperforming a reduced “community” model using commonly
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available stains [15,30]. Another notable approach uses quantitative polymerase chain
reaction (qPCR) to assess the expression of 4 genes for differentiating pNETS and sbNETs
and achieved an accuracy = 94% [15]. Our top model demonstrates similar or better perfor-
mance compared to other multi-biomarker analyses referenced. It is worth underscoring
that there are limitations observed in these studies, including issues related to sample size
and study design, which raise concerns regarding the generality of the model and the
practicality of widespread clinical implementation [13,15,21,22,25]. Our SVM-RB model
comes with the limitation that is inherent with most machine learning models. In the con-
text of clinical application, the model would need to be encapsulated within a deployable
software package. If pursued, the objective would be to reduce the testing to only two
or three of the most important variables or probes for model performance. This would
include the ERBB2, CKS1B, and CCNE1 FISH probes identified by PVI. The utilization of
only two probes is warranted, primarily because the majority of samples in our dataset
underwent two FISH probe tests, and we can expect similar performances. However, it is
worth noting that additional tests could increase confidence in the metrics provided to the
model for prediction. While having a deployable model is not uncommon, it does decrease
its practicality. This is the rationale for optimizing the DT models, an approach that allows
for direct clinical application due to the transparency of decisions.

Our best training and testing performance for a DT model was achieved with KNN-
imputed data, followed by a transformation to single-gene biomarker variables using
biologically defined thresholds to denote a loss, normal, or gain status for standard FISH
test results. Across all other models evaluated, a decrease in performance was observed
with this transformation, consistent with expectation when converting continuous variables
into categorical variables. With the DT models, the reduction in the number of variables
through the incorporation of biological thresholds allowed for better performance and
increased interpretability of the models in contrast to the tree fitted with the original
continuous variables. Through our manual Monte Carlo CV with ten random 80/20 dataset
splits, DT models generated tree plots with a range in complexity. Three trees featured only
a single split, with two splitting on the ERBB2 variable and one splitting on the CDKN2A
variable. Training Set 6 and Training Set 9 yielded the most complex tree models, having
12 and 10 splits, respectively. The DT model produced from Training Set 9 exhibited the
poorest performance on the held-out test set. This is expected, as the increase in splits
leads to overfitting of the training data and a decrease in performance on newly presented
data. On average, our DT models were not overfitting the training data and had better
performance on the held-out test sets.

In a clinical context, it is imperative to leverage all available data to inform decision-
making for new samples. This is the rationale for constructing a DT model on the complete
dataset. Our DT model trained on the entire dataset achieves an accuracy of 79.2%, classify-
ing sbNET and pNET samples with consistent 10-fold CV performance across metrics. The
limitation is that this model has not undergone testing on an independent held-out test set.
Its performance is consistent with the mean performance observed in our manual Monte
Carlo CV DT analysis and the consensus tree performance. These analyses are validation
for the full dataset DT model, and it is expected to maintain its performance. In general,
decision splits and PVI were consistent across all datasets and DT models constructed.
The ERBB2 variable was the most important variable for PVI and the primary split for the
full dataset model, providing evidence for prioritization as a clinical FISH test. The MET
variable was consistently included in the top variables for PVI across DT models. This can
be attributed to being tested on the greatest number of samples compared to all other FISH
probes and is important to model performance through the imputation of missing values.
The SMAD4 and CDKN2A are the other two variables included in the full dataset model
and should be prioritized. The University of Iowa IHC model [15] outperforms our full
dataset DT model when comparing sbNET sensitivity and specificity and pNET specificity,
but our model has greater pNET sensitivity. The final full dataset model included, with
accuracies at the terminal nodes, provides probabilities for assessing and diagnosing small
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bowel or pancreas primary sites of new NET samples, based on ERBB2, SMAD4, and
CDKN2A FISH probes test results.

A closer examination of the 25 samples predominately misclassified by our ten DT
models reveals that 16 of the 25 samples are pNETs misclassified as sbNETs. The reason
for the misclassification is due to the initial split in the ERBB2 variable for most models,
including the full dataset model, where these samples are pNETs but do not have a copy
number gain for ERBB2. As for the other samples, no trends for misclassification have been
identified. However, when selecting out these 25 samples and subjecting them to a DT
algorithm for classification by themselves, an initial split on the SMAD4 variable would
correctly classify 21 of the 25 samples (84%). The challenge lies in identifying these samples
in advance, where we are currently lacking the necessary link or variable(s) to do so. This
is a potential area for further investigation for expansion of this analysis and our models.

One of the main strengths of this study is the robust ML pipeline and analysis. Our
analysis produces actionable results from real-world clinical data. Data gathered from
clinical samples and electronic health records are not always complete across all samples.
An integral component of our pipeline is the assessment of imputation strategies to ad-
dress the gaps in the data, enhancing the performance of our analysis. All imputation
strategies and dataset transformations, in conjunction with hyperparameter tuning, were
implemented inside a stratified 10-fold cross-validation at each fold. This ensures a more
robust estimation of model performance, eliminating any biases and data leakage from the
validation sets. The initial step in our pipeline, prior to any data assessment or manipula-
tion, is an 80/20 split of the entire dataset, altogether estimating performance on validation
sets and assessing true performance on a held-out test set. When evaluating datasets
and model parameters, selection of the model was based on the brier score. Preliminary
analysis, indicating models selected based on other metrics, yielded weaker results when
assessed on the held-out test set. In assessing overall model performance, we considered
both training and test set performance, with a priority on the brier score, accuracy, and
AUROC curve metrics. We examined multiple well-established and validated ML models
previously demonstrated to produce insightful results on biological datasets [18]. Top-
performing models are not always transparent with how predictions are produced. We
demonstrate how to include and examine variables with a more transparent DT model that
yields probabilistic guidance on predictions. In our DT analysis, we expanded the approach
to a manual Monte Carlo CV to examine the multiple models constructed and establish
a consensus of important variables from the full dataset. This method ensures that our
initial random dataset 80/20 split and DT model were not presenting misleading results,
and top results could be reproduced with additional splits. The PVI assessment for each
model is an important element for the overall goal of the study, and resulting metrics can
be compared across models and are not model specific. Ultimately, PVI and the variables
utilized in the DT models allowed for a consensus for FISH probe prioritization. Our ML
pipeline offers a robust framework for future analyses investigating similar problems.

One limitation of this study is the moderate sample size of the dataset, which is partly
attributed to the rarity of NETs, making it challenging to gather larger cohorts. Another
limitation is the presence of missing values in our dataset. Although overcome by using
imputation strategies, observed FISH results for all variables and all samples would yield
more accurate overall results. Future studies aim to broaden the scope of biomarkers
being investigated to include other important biomarkers shown to have predictive value,
such as peripheral blood-based biomarkers and IHC [15,21,22,25,30]. Furthermore, we
plan to extend our predictive models to encompass multiple primary sites, in addition to
addressing both pNETs and sbNETs.

In conclusion, we sought to prioritize FISH probes for diagnosing pancreas and small
bowel primary sites for NETs using a multi-biomarker approach with ML techniques.
The models can correctly classify pNETs and sbNETs with the widely used and relatively
low-cost FISH tests. Results from our DT models and variable importance analysis offer
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probabilistic guidance for FISH testing, emphasizing the prioritization of ERBB2, SMAD4,
and CDKN2A FISH assays in diagnosing NET primary sites.

4. Materials and Methods

Patients were recruited from the University of Iowa Hospital and Clinics. Patients
were made aware of the present study and consented to participate. In total, 144 patients
participated, consisting of 85 sbNETs diagnoses and 59 pNETs diagnoses. The FISH
data used in this study was generated for validation of a discovery analysis for FISH
probe association with NET primary sites. FISH probes were tested individually for
statistical significance in differentiating NET subtypes and replication of initial findings.
The sample size for each FISH probe and samples selected were guided by power analyses
and tissue availability, resulting in an incomplete dataset with missing data for the present
study [17]. Collection of samples, construction of tissue microarrays, and both chromosomal
microarray and FISH testing have been described previously [17].

A total of 8 gene biomarker probes were assessed during FISH testing, including
CDC28 protein kinase regulatory subunit 1B (CKS1B, 1q21.3), Fibroblast Growth Factor
Receptor 3 (FGFR3, 14p16.3), Colony Stimulating Factor 1 Receptor (CSF1R, 5q32), MET
Proto-Oncogene, Receptor Tyrosine Kinase (MET, 7q31.2), Cyclin Dependent Kinase In-
hibitor 2A (CDKN2A, 9p21.3), Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2, 17q12), SMAD
Family Member 4 (SMAD4, 18q21.2), and Cyclin E1 (CCNE1, 19q12). Each FISH test consists
of three metrics, percentage of nuclei exhibiting a loss of signal, a gain of signal, or no
change in signal (normal/wild-type), with ranges of 0–100 (averaged metric from test done
in triplicate). Not all gene biomarker probes were assessed with FISH testing for all samples.
FISH test metrics were utilized as predictor variables for classification of patients with
sbNETs or pNETs with machine learning models. Patients were diagnosed and labeled
as either sbNET or pNET by a combination of standard care tests including imaging and
immunohistochemistry tests.

Dataset curation, preprocessing, and machine learning analysis was performed on
the University of Iowa’s high-performance computing cluster within the R programming
language (version 4.1.3) [31]. To address multiple model testing and provide a measure
against overfitting and detection of false positive patterns in the data, machine learning
analyses used an 80/20 training-testing split, reserving 20% of the data as a held-out
test set. The initial dataset consists of 25 variables: a loss, normal, and gain variable for
each of the 8 gene biomarker FISH tests and the response variable. Preprocessing of the
training dataset was implemented within a pipeline, with the recipes R package (version
1.0.5) allowing for each preprocessing step to be performed at each resampling fold for
estimating predictive performance of models, and subsequently, with the held-out test set
for assessing true predictive performance [32]. We employed imputation techniques to
address the missing data as a preprocessing step, driven by the rationale that a complete
dataset would enhance our analysis. The methods utilized were impute by mean, median,
k-nearest neighbor (KNN), and bagged tree models (tree = 25) and assessed for effect on the
performance of models. KNN imputation was implemented by identifying the five nearest
samples (k = 5) based on Gower’s distance. These samples included both present and
missing variables of the sample being imputed, enabling the mean of the five samples to be
used for the missing variable(s). After imputation of missing data, predictor variables were
transformed into single categorical biomarker variables with 1 denoting a loss, 2 denoting
a normal, and 3 denoting a gain for the copy number of a gene biomarker. Loss, normal,
and gain values were determined by thresholds set on the original variables. The threshold
was set based on the percentage of nuclei that exhibited the change which yielded cut-off
thresholds of greater than 28.3% for a loss, greater than 68.3% for a normal, and greater
than 15.2% for a gain value. These thresholds were validated for these specific probes on
these tissue sample types previously [17]. Transformed biomarker variables were assigned
the value for the variable of the highest exceeding value when multiple variables breached
the thresholds and were assigned normal/wild-type (2) when no variables passed the
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thresholds. Multiple datasets were constructed and tested with various imputation and
transformation strategies to find an optimally performing dataset.

Models were trained and performance-assessed for each of the following datasets:
original variables without imputation, original variables with imputation, and transformed
variables with imputation. The models assessed were decision tree (DT), random forest (RF),
extreme gradient boosted tree (XGBTree), lasso, elasticnet, logistic regression (log reg), naïve
bayes (NB), support vector machine with radial basis kernel function (SVM-RB), support
vector machine with linear kernel function (SVM-L), and support vector machine with
polynomial kernel function (SVM-P). Model hyperparameter tuning was completed using a
grid search with stratified 10-fold cross-validation (CV) for model and parameter selection,
as well as to estimate predictive performance recorded as mean metrics. Parameter values
for each model are listed in supplementary methods (Supplementary Table S1). Calculated
training and testing performance metrics include brier score, accuracy, Cohen’s kappa,
area under the receiver operating characteristic (AUROC) curve, sensitivity, and specificity.
Selection of best performing model was based on brier score, due to brier score being a
proper scoring function, with measuring of the accuracy based on prediction probabilities.
Best performing models were used for prediction of samples in the held-out test sets.
For each model, relative permutation-based variable importance (PVI, samples = 25) was
calculated and reported for each initial input variable. Compared to other machine learning
models, decision tree models offer high interpretability, providing clear insights into
predictions. For this reason, decision tree models were assessed on a total of ten random
80/20 training testing splits for manual Monte Carlo CV of the transformed variable
dataset for predictive performance, PVI, and variable splits included in each model. A
consensus tree was built from the mean prediction probabilities of each sample across all
ten models using the full dataset and assessed for predictive performance. A decision tree
model was fit to the complete transformed variable dataset and assessed for predictive
performance, PVI, and variable splits. Machine learning analysis including models trained,
performance calculations, tree plots, and PVI plots, and ROC curves were performed using
the MachineShop R package (version 3.6.2) [33].
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