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Abstract: Research into Alzheimer’s Disease (AD) describes a link between AD and the resident
immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying
sex effects, although the mechanisms of these effects are only just beginning to be understood. Many
of these insights are the result of policies put in place by funding agencies such as the National
Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards
precision medicine due to continued lackluster therapeutic options. The purpose of this review is
to provide an updated assessment of the current research that summarizes sex differences and the
research pertaining to microglia and their varied responses in AD.
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1. Introduction

Alzheimer’s disease (AD) affects approximately 6.7 million Americans aged 65 or
older, of whom approximately two-thirds are women [1]. The higher number of female AD
cases (the prevalence of AD) is comprised of both the number of newly diagnosed cases
(the incidence of AD) and the number of individuals living with a diagnosis. Whether
the incidence of AD in the US is sexually dimorphic is unclear, but women do live longer
following an AD diagnosis [2,3]. This suggests not only the existence of factors that increase
the overall risk in females and/or decrease the risk in males but also an increased resilience
to disease processes among women diagnosed with AD. Furthermore, sexual dimorphism
is seen in clinical manifestations of the disease, disease progression, neuroimaging, and
pathology [4–13]. The mechanisms underlying these disparities are unknown, but research
suggests a variety of candidate mechanisms, including risks linked to sex, age, gender,
genetics, and environment.

Several excellent reviews have recently been written describing microglial sex dif-
ferences in brain development, maintenance, disease, and in response to lifestyle influ-
ences [14–21]. Although microglia recruit and respond to the adaptive immune system, and
this interaction is becoming progressively more appreciated, the adaptive immune system
in AD has been recently reviewed elsewhere [22]. We will therefore focus this review on
the most recent findings, situating and contextualizing them in a rapidly expanding field to
provide a comprehensive view of sex differences in AD, highlighting the contribution of
microglia to these differences (summarized in Figure 1).

The authors would like to note the term sex used within this article will follow
the Merriam-Webster usage guidelines (available at https://www.merriam-webster.com/
dictionary/sex, accessed 29 June 2023). The authors recognize sex and gender have often
been used interchangeably in western cultures, and that many languages and cultures make
no distinction between the two terms [23]. However, within the context of this review, sex
refers to physical traits. Gender, referring to cultural and/or societal constructs, is beyond
the scope of this review. As the field continues to expand at a prodigious rate, it must

Int. J. Mol. Sci. 2023, 24, 17377. https://doi.org/10.3390/ijms242417377 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242417377
https://doi.org/10.3390/ijms242417377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8115-0347
https://orcid.org/0000-0001-6175-4517
https://www.merriam-webster.com/dictionary/sex
https://www.merriam-webster.com/dictionary/sex
https://doi.org/10.3390/ijms242417377
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242417377?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 17377 2 of 29

coalesce around nomenclature and approaches to assess these differences to appropriately
interpret and extend findings [24].
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Figure 1. Summary figure of microglial sex differences contributing to the pathological features of 
Alzheimer’s disease discussed in this review. The composition of sex chromosomes (XX/XY) and/or 
hormones contribute to sex-specific features of microglia, including their number (#), morphology, 
gene and protein expression, and function. These differences may promote or inhibit sex-specific 
processes and pathways in neurons, amyloid plaque load, and tau tangle pathology to bias disease 
onset and progression in a sex-specific manner. Created with BioRender.com (accessed on 4 Decem-
ber 2023). 

2. Sex Differences in AD 
2.1. The First Patient Was a Woman 

AD was first characterized by its namesake German psychiatrist, Dr. Alois Alz-
heimer, in 1901 when Alzheimer was introduced to Auguste Deter, a 51-year-old woman 
struggling with cognitive and behavioral abnormalities [25]. Alzheimer’s observations of 
Auguste and the subsequent evaluation of her post-mortem cerebral tissue samples by 
Alzheimer and two physicians, Gaetano Perusini and Francesco Bonfiglio, became the first 
clinical record of AD [25]. The gross histopathological observations made by Alzheimer 
and his team, namely the presence of neuritic β-amyloid (Aβ) plaques and neurofibrillary 
tangles, remain the hallmark diagnostic criteria for the final stage of AD progression 
[25,26]. 

Dr. Alzheimer’s seminal studies laid the foundation for the characterization of AD 
pathology in human subjects, and, in the century following his initial investigations, the 
origins of AD’s characteristic plaques and tangles are now understood. Additionally, new 
mechanisms of AD pathophysiology implicate peripheral body systems in the disorder, 
indicating that plaques and tangles are only one piece of the much larger puzzle that is 
AD. 

2.2. Consistency across AD Subtypes 

Figure 1. Summary figure of microglial sex differences contributing to the pathological features of
Alzheimer’s disease discussed in this review. The composition of sex chromosomes (XX/XY) and/or
hormones contribute to sex-specific features of microglia, including their number (#), morphology,
gene and protein expression, and function. These differences may promote or inhibit sex-specific
processes and pathways in neurons, amyloid plaque load, and tau tangle pathology to bias dis-
ease onset and progression in a sex-specific manner. Created with BioRender.com (accessed on 4
December 2023).

2. Sex Differences in AD
2.1. The First Patient Was a Woman

AD was first characterized by its namesake German psychiatrist, Dr. Alois Alzheimer,
in 1901 when Alzheimer was introduced to Auguste Deter, a 51-year-old woman struggling
with cognitive and behavioral abnormalities [25]. Alzheimer’s observations of Auguste
and the subsequent evaluation of her post-mortem cerebral tissue samples by Alzheimer
and two physicians, Gaetano Perusini and Francesco Bonfiglio, became the first clinical
record of AD [25]. The gross histopathological observations made by Alzheimer and his
team, namely the presence of neuritic β-amyloid (Aβ) plaques and neurofibrillary tangles,
remain the hallmark diagnostic criteria for the final stage of AD progression [25,26].

Dr. Alzheimer’s seminal studies laid the foundation for the characterization of AD
pathology in human subjects, and, in the century following his initial investigations, the
origins of AD’s characteristic plaques and tangles are now understood. Additionally, new
mechanisms of AD pathophysiology implicate peripheral body systems in the disorder,
indicating that plaques and tangles are only one piece of the much larger puzzle that is AD.

2.2. Consistency across AD Subtypes

AD is categorized based on age at symptom onset and heritability. The arbitrary age
of 65 years is used to distinguish early- and late-onset AD. Two or more family members
having AD results in it being considered familial [27]. These categories give rise to four
subtypes: familial early-onset AD (FEOAD), sporadic early-onset AD (SEOAD), familial
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late-onset AD (FLOAD), and sporadic late-onset AD (SLOAD). Clinical features vary
between subgroups (reviewed in [28]) but overlap so substantially that subtypes cannot be
clinically distinguished from each other [27]. Furthermore, common biological pathways,
shared clinical and pathological features, and consistent sex effects suggest findings in one
subtype (summarized in Table 1) will be relevant to the others.

Table 1. Sex differences in clinical phenotypes observed in AD subtypes.

AD Subtype * Clinical Metric Sex Difference * References

EOAD

Tau burden F > M [29]
Brain atrophy, cognition at diagnosis F > M [30]

Rate of neurodegeneration
and impairment F > M [31,32]

Cognitive resilience F > M [33]

LOAD
Rate of hippocampal volume loss F > M [12]

Brain glucose hypometabolism F > M [34]
Rate of cognitive decline, progression

to dementia F > M [4,6,7,12,35–39]

* EOAD, early-onset AD; LOAD, late-onset AD; F, females; and M, males.

In EOAD (early-onset AD), symptoms manifest prior to the age of 65 but in rare
instances may begin as early as a patient’s 30s. EOAD accounts for approximately 10% of
all AD patients [40]. The heritability of EOAD is 92–100% [41], and 10–15% of these familial
cases are due to autosomal dominant transmission [42,43]. Numerous pathogenic loci
within three genes—Amyloid Precursor Protein (APP), Presenilin 1 (PSEN1), and Presenilin
2 (PSEN2)—have been identified, each contributing to disease pathogenesis in a unique
manner. It is important to note that mutations in these three genes only explain 5–10% of
EOAD diagnoses [41,44], leaving 90–95% of EOAD cases without a definitive cause.

Among EOAD patients, females have elevated tau burden compared to their male
counterparts [29]. They also present with broader atrophy associated with worse cognition
at diagnosis [30]. Intriguingly, female EOAD carriers may have greater cognitive resilience
to AD pathology and neurodegeneration [33] but exhibit a greater rate of neurodegen-
eration and memory impairment during disease progression [31,32]. The mechanisms
underlying accelerated neurodegeneration in females is unknown but could be due to
the sex-selective vulnerability of specific brain regions that have reciprocal connections
to other regions [45,46], the interactions between tau pathology and sex-specific genes,
chromosomes, and/or hormones [47], possible genetic modifying factors [28], and the
sex-specific amyloid and/or tau dynamics.

Autosomal dominant mutations in APP, PSEN1, and PSEN2 have been used to gen-
erate a variety of mouse models to recapitulate the amyloid pathology with subsequent
neuroinflammation and neuron loss (reviewed in [48,49]). As in human EOAD patients,
mouse models exhibit sex differences in plaque burden and rates of deposition, neuroin-
flammation, and cognition. While these models have extensive benefits to understanding
amyloidogenic processes, they do have drawbacks including: (1) the neuronal loss in these
mice is not as great as in human patients; (2) the sex effects are at times the opposite as
those in human patients; (3) the absence of tau pathology, leading investigators to introduce
mutations found in other tauopathies such as frontotemporal dementia to replicate that
pathology. It had been proposed that the accelerated amyloid deposition in female mice was
an artifact of the model, arising from the estrogen response element within the promoter
used to express these mutations [50,51]. However, recent studies, some of which will be
discussed in detail below, have indicated non-estrogen sensitive (i.e., sex chromosome)
mechanisms may be behind some of these differences.

In contrast to EOAD, LOAD exhibits symptom onset after the age of 65 and accounts
for almost all AD cases. LOAD is a complex disorder with a heterogeneous etiology and
70–80% heritability [41,52], where 40% of total LOAD cases are familial [53]. LOAD is driven



Int. J. Mol. Sci. 2023, 24, 17377 4 of 29

by several factors including genetics, lifestyle, environment, and neurodevelopmental disor-
ders. More than 50 genetic risk loci have been identified [54], with Apolipoprotein E (APOE)
having the strongest correlation [55] followed by Triggering receptor expressed on myeloid
cells 2 (TREM2; [56,57]). These risk genes are associated with various biological processes,
including the immune response/inflammation, lipid metabolism, and neuronal/synaptic
function. Sex differences are observed in LOAD patients, with females showing faster hip-
pocampal volume loss [12] and greater brain glucose hypometabolism [34]. Significantly, as
in EOAD, females with LOAD may have greater cognitive resilience to early pathology and
neurodegeneration but exhibit faster decline and progression to dementia as the disease
progresses [4,6,7,12,35–39,58]. Several factors have been proposed as contributions to the
sex differences in LOAD, including specific genes [59–61], inflammation [62], cardiovas-
cular disease [63], and hormonal changes [64], although the exact mechanisms remain to
be determined.

Numerous mouse models of LOAD exist. Since none of the LOAD risk alleles are
independently necessary or sufficient to drive AD, investigators are generating mouse
models of combinatorial risk variants [54]. As these models are developed and further
characterized, it will be important to determine whether they recapitulate the sex-specific
effects seen in human patients. Additional approaches involve metabolic dysregulation,
traumatic brain injury, adeno-associated virus 1 (AAV1) gene transduction, toxin exposure,
perturbed metal ion homeostasis, and aging (reviewed in [65]). Like in the EOAD models,
many of these LOAD models show sex differences, but not all recapitulate those seen in
human patients. The senescence-accelerated mouse prone 8 (SAMP8) model is of particular
interest and relevance. Age is the single greatest risk factor for LOAD, and although the
exact cause of accelerated senescence has yet to be determined, the SAMP8 model may
shed light on the relationship between aging and AD [66], particularly in sex-specific gene
regulation, as discussed below.

Sex differences occur across multiple domains in both human AD patients and in
mouse models of the disease, regardless of the pathogenic mechanism. A disadvantage is
that the mouse models are often only replicating a portion of the disease process, such as
dominant mutations driving amyloid production. Despite these drawbacks, the consistent
commonalities suggest that findings in one context may translate to others. Where there
are differences between the sexes in the mechanisms underlying each type of AD, this
finding provides critical avenues to develop additional therapeutics to target specific
patient populations. In short, while each mouse model is an imperfect representation of the
human AD condition, in a disease with such varied pathogenesis there is still much work
to be done with the tools available to further our understanding and the development of
effective therapeutics.

2.3. Accompanying Gene Expression

Not surprisingly, in both humans and mice the sex differences in disease manifesta-
tion and progression described above are accompanied by sex-specific gene expression
patterns [67,68] and epigenetic profiles [69,70]. Integrative network analysis of human
samples revealed sex-specific functional modules, pathways, and genes that were associ-
ated with clinical characteristics in males only and molecular networks that were more
conserved temporally and spatially in females [71]. Brain-region-specific, sex-biased pat-
terns may arise from differences in vulnerabilities and/or resilience in different brain
regions at distinct stages of AD development [72]. Updates on the possible mechanisms
underlying these vulnerabilities and/or resilience will be addressed in more detail in the
following sections.

A gene commonly implicated across all AD subtypes is APOE. The predominant
function of APOE is that of trafficking lipids in the central nervous system; however, it
functions in several brain processes, including neuron development and function, formation
of cytosolic lipid droplets, endolysosomal trafficking, mitochondrial metabolism, and innate
immunity [73,74]. These varied roles contribute to the widespread effects of APOE on AD
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risk. There are three common isoforms—APOE2, APOE3, and APOE4—that are generated
by single nucleotide polymorphisms (SNPs), resulting in differences of two amino acid
residues [73]. Notably, APOE2 seems to have a protective effect, while APOE4 confers
a significant risk for developing AD, although recent studies have suggested that the
risks associated with APOE4 may be overestimated (reviewed in [75]). Furthermore, the
biological pathways underlying the APOE4-associated risk are distinct from the protective
effects of APOE2 and intersect with age-related changes in sex biology [76].

Work in mice demonstrated that ApoE is abundantly expressed in both the brain
and in the periphery as distinct pools that are kept separate by the blood brain barrier
(BBB). Within the brain, ApoE is predominantly produced by astrocytes, but can come
from stimulated microglia [77–79]. In fact, in mice, microglial-derived ApoE4 signals
through the ITGB8-TGFβ (integrin subunit beta 8-transforming growth factor-β) pathway
to negatively regulate the microglial response to AD pathology [80]. ApoE4 produced by
the liver, while not entering the brain, can exacerbate amyloid pathology [81], providing a
potential peripheral therapeutic target to treat AD.

In human AD patients and in mouse models, females are more strongly affected by
APOE status. Female-specific effects due to APOE4 are seen in cognitive impairment [82],
tau accumulation [83], gene expression [84,85], brain metabolism [86], cerebral microbleed
frequency [87], TREM2-dependent microglial activation [88], and astrogliosis [89]. This
could be due in part to the APOE4 modulating expression of the estrogen receptor ERα.
It has been proposed that males and females share genetic regulators of amyloidosis, but,
as amyloid pathology progresses, it has been demonstrated that APOE exerts sex-specific
effects on gene expression, resulting in sex bias in disease manifestation [60,61].

A top key regulator of female AD gene networks was determined to be lipopro-
tein receptor-related protein 10 (LRP10), potentially driving sex differences based on its
high regulatory strength and network connectivity, sex-specific differential expression,
and dependence on APOE4 gene dosage [72]. It is hypothesized that reduced LRP10 in
APOE4-carrier female AD brains increases the amyloid burden through enhanced amyloid
production and reduced clearance due to impaired protein trafficking [72].

Epigenetic modifications including methylation and acetylation regulate chromatin
structure and gene expression without modifying the DNA sequence. They are important
contributors to sex differences in brain function and AD vulnerability [90–100]. Signifi-
cantly, they are modifiable, transmissible, and strongly influenced by environmental factors
including hyperphosphorylated tau [101–105]. Epigenetic changes, including chromatin-
modifying enzymes, epigenetic marks, and microRNAs (miRNAs), are observed in humans
during normal aging and AD, and are found in the SAMP8 mouse model, potentially ac-
counting for the accelerated senescence (reviewed in [106]). Sex-specific epigenetic changes
in the dorsal hippocampus, a region important for learning and memory, suggest epige-
netic mechanisms in this region are regulated in sexually dimorphic ways [70]. Zhang
et al. recently conducted a comprehensive meta-analysis revealing several novel DNA
methylations associated with the AD Braak stage in a sex-specific manner [69]. In fact, for
many genes previously implicated in AD neuropathology, the effects are predominantly
driven by only one sex, with enrichment of integrin activation in females and complement
activation in males [69].

These studies provide important insights into the molecular contributions underlying
sex differences in AD onset and disease progression. However, while many studies did
evaluate regional differences, cell-type-specific changes were largely absent. This is signif-
icant as each brain cell type contributes to brain function in disease in a unique manner.
Furthermore, various cell types may work in concert or in opposition to other cell types in
response to pathology.

3. Sex-Specific Neuroinflammation

Inflammation and neurodegeneration are strongly correlated, which is evidenced
by the presence of inflammatory cytokines in the brains and CSF (cerebrospinal fluid) of
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AD patients. These are produced in response to several AD-related processes, including
amyloid plaques, neurofibrillary tangles, and signals coming from sick, dying, and dead
neurons [107]. As these stimuli are never completely removed, the inflammatory response
becomes chronic, exacerbating the pathology and furthering disease processes. The sig-
nificance of this neuroinflammatory response is highlighted by the substantial number of
immune-related genes found to be correlated with AD risk in several genetic studies.

3.1. Sexually Dimorphic Microglia

The cells primarily responsible for this inflammatory response in the AD brain are
microglia. They derive from peripheral macrophages that infiltrate the brain early in em-
bryonic development prior to the formation of the blood–brain barrier [108,109]. These
microglial progenitors proliferate and colonize the brain, tiling themselves such that no
two microglia survey the same brain area. This colony of cells continues to proliferate
until the cells reach optimum density [108,110]. Throughout development and adult-
hood, microglia serve a variety of homeostatic needs, ranging from synaptic pruning to
acting as macrophages when cells undergo apoptosis [111–113]. They secrete both pro-
and anti-inflammatory cytokines in a context-dependent manner, as well as neurotrophic
factors [112].

Microglia actively survey the brain parenchyma, constantly extending and retract-
ing processes such that the entire brain parenchyma is assessed within a few hours [114].
Following disruption by injury, infection, or disease, microglia shift from this active surveil-
lance state to one that is responsive to the disruption. This shift is reflected by a general
change in their morphology, and the acquisition of distinct transcriptional profiles. With the
advent of advanced techniques, a more comprehensive understanding of these phenotypes
has led to a recent re-evaluation of microglial nomenclature and classification [115].

Whether microglia exhibit sex differences under homeostatic conditions has been
under active investigation and has yielded sex-specific patterns that depend on brain
region and age (summarized in Table 2). There are no differences in microglial num-
ber or density in the amygdala, hippocampus, or prefrontal cortex during the embry-
onic or early-neonatal periods [16,116,117]. During the first postnatal week, males have
more phagocytic amoeboid microglia in the amygdala, while females have more in the
hippocampus [16,116,118]. Microglia of the dentate gyrus do not exhibit sex differences in
their number, density, or morphology at post-natal day 10 (P10) [119]. However, by ado-
lescence, morphological sex differences are accompanied by sex differences in microglial
density. Male microglia in the prefrontal cortex have more complex branching, particularly
in the branches more proximal to the soma [117], and a higher density in the cortex and
hippocampus, compared to a higher density in the amygdala in females [120]. Microglia
in the hippocampus of females are larger and more phagocytic than those in males [121].
Between adolescence and adulthood, another shift occurs, where the branching of female
microglia in the prefrontal cortex becomes more complex [117]. Males continue to have
a higher density of microglia in the hippocampus and cortex [120]. However, using hier-
archical clustering on principal components, a recent study of the microglia of the adult
mouse central nervous system found no sex differences in microglial morphology [122].
These discrepancies in microglial density and morphology could arise from a variety of
sources, including pathogen exposure in housing, tissue processing and immunostaining
techniques, and quantitative approaches. Moreover, sex and strain differences have been
noted in other immune cell types such as B and T lymphocytes, NK cells, immature myeloid
cells, and macrophages [123], suggesting that evaluation of various mouse strains may
further complicate both comparison and interpretations.

While the general features of microglia (i.e., their number and shape) provide conflict-
ing evidence of sex differences, expression studies are much more definitive, indicative of
latent sex differences where male and female microglia use different mechanisms (such
as gene expression and signaling cascades) to achieve similar outcomes (including the
number, shape, and response to insult). At embryonic day 14.5 (E14.5), microglia from
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male and female mice are not transcriptionally different from each other [124]; however,
distinct transcriptomes are seen at E18.5, with enrichment of apoptotic and inflammatory
genes in female microglia [125]. Homeostatic microglia from male and female neonatal and
adult mice continue to express different genes [120,126–129] and miRNAs [130], such that
the inflammatory milieu of the brain is different [131]. Notably, marginal sex differences
were observed in the gene expression profiles of hippocampal microglia from young mice,
but sex chromosomally and autosomally encoded differences emerged with aging, with
a female bias towards senescence and inflammation [132]. These studies have led to the
hypothesis that male and female microglia mature at different rates, with implications
for their response to various stimuli. In fact, after immune challenge, there are sex dif-
ferences in the cytokines found in the hippocampus [133] and in discrimination memory
impairments [134]. Microglia migrate at sex-specific rates [120], and, after injury, microglial
mobility is regulated by interferon (IFN) γ in males but not females [135]. Single-cell and
bulk RNA sequencing have also provided evidence for sex-specific gene expression in
human microglia [136], extending the relevance of the findings in mice to humans.

Table 2. Sex differences observed in microglia across the rodent lifespan.

Age * Species Microglial Sex Difference References

E14.5 Mouse No difference in transcriptome [124]

E17 Rat No difference in number, morphology in amygdala, hippocampus [116]

E18.5 Mouse Females: express more apoptotic, inflammatory genes [125]

Birth/P0 Rat No difference in morphology in prefrontal cortex [117]

P0–P4 Rat Males: higher density in amygdala [16]

P3
Rat Females: more phagocytic in hippocampus [118]

Mouse Females: express more inflammatory cytokines [126]

P4 Rat Males: more amoeboid in cortex, hippocampus, amygdala [116]

P8 Mouse Females: larger, more phagocytic in hippocampus [121]

P10 Mouse No differences in number, density, morphology in dentate gyrus [119]

3 weeks Mouse Males: higher density in hippocampusFemales: higher density in amygdalaNo
difference in density in striatum, cerebellum [120]

P28 Mouse Males: larger, more phagocytic in hippocampus [121]

P30 Rat
Females: more activated in cortex, hippocampus, amygdala [116]

Males: more complex branching in prefrontal cortex [117]

P60

Rat Females: more activated in cortex, hippocampus, amygdala [116]

Mouse Females: more transcriptionally mature [127]

Mouse Females: increased inflammatory gene expression [127]

2–6 months Mouse Males: IFN-dependent migration after injury [135]

12 weeks Mouse Males: express more inflammatory genesFemales: more neuroprotective [129]

P90 Rat Females: more complex branching in prefrontal cortex [117]

3 months Mouse No difference in morphology in any brain, spinal cord region [122]

13 weeks Mouse Males: higher density in hippocampus, cortex, amygdalaNo difference in
density in striatum, cerebellumMales: greater antigen presentation capability [120]

18 months Mouse Females: more phagocytic, reduced ability to respond to insult [137]

22–25 months Mouse Females: express more disease, senescence genes [132]

24 months Mouse Females: express more inflammatory genes [128]

* E, embryonic day; and P, postnatal day.
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3.2. Sources of Microglial Sex Differences

The mechanisms giving rise to these sex differences in microglial gene expression
and responses are currently being investigated and include both genetic and hormonal
influences. Significantly, sex chromosomes and sex hormones can act in a synergistic or
antagonistic manner on a given process [138].

From a genetic standpoint, every cell in the body, microglia included, contains a set
of sex chromosomes. Placental mammalian females have two X chromosomes, and pla-
cental mammalian males have an X and a Y chromosome. As the X chromosome contains
a plethora of genes, many with immune-related functions, and a high concentration of
microRNAs that can regulate expression of autosomal genes, the expression of XX chro-
mosome gene dosage must be normalized to the XY levels in males. This is accomplished
through the action of the long non-coding (lnc) RNA Xist in a process referred to as X chro-
mosome inactivation (XCI). Detailed reviews of this complex process have been recently
published [139–142], so we will only summarize it here.

Xist is randomly transcribed from one X chromosome; one to two RNA molecules
recruit chromatin-modifying proteins, transcriptional silencers, and other RNA-binding
proteins to approximately 50 distinct foci along one X chromosome; subsequently, local pro-
tein gradients are generated to coat and render that X chromosome inactive (Xi; [139–143]).
Interestingly, San Roman et al. found that the active X (Xa) and inactive X (Xi) transcrip-
tomes to be modular, with Xi modulating Xa transcript levels in cis and in trans [144].
Furthermore, only ten X chromosome genes were identified as most likely to contribute
to male–female differences in common diseases [144], providing critical insight into the
expression of genes on the X chromosomes. The escape or disruption of XCI leads to
the loss of gene dosage compensation, driving pathogenic immune responses [145]. X
chromosome epigenetics may relate to an elevated AD risk [146], where there is a robust
neuroinflammatory response contributing to disease onset and progression. Furthermore,
the extent of XCI, particularly in the brain, decreases with age [147], further increasing X
chromosome-related gene expression.

Another important event during aging that can alter expression from the sex chro-
mosomes is loss of the Y chromosome (LOY). An increasing frequency of mitotic mis-
segregation errors along with declining genomic instability and impaired DNA repair
capabilities may lead to LOY [148–150]. This common post-zygotic structural mutation
shows a robust association with AD [151,152], contributing to disease through immune sys-
tem dysfunction [150,153,154]. It has been hypothesized that as microglia proliferate, they
could be more prone to LOY accumulation [155]. A recent study showed LOY is enriched
in microglia from AD patients, resulting in dysregulation of many genes associated with
aging and inflammation [156]. This study demonstrates how perturbations in processes
associated with age-related inflammation could lead to neurodegeneration.

Hormones, including gonadotropins, androgens, and estrogens, also contribute to
brain sexualization (reviewed in [18]). During critical windows in the neonatal period,
sequential surges of these hormones result in the life-long patterning of brain circuitry
that can then be re-activated by circulating hormones in adulthood. Microglia are affected
by these neonatal surges, as administration of estradiol or testosterone to female rodents
during these critical windows phenotypically and molecularly masculinizes the microglia,
as well as masculinizes rodent behavior in adolescence and adulthood ([117,129,157]).
Furthermore, administration of indomethacin to males prevents the masculinizing effects
of prostaglandin E2 [158–160]. Epigenetic mechanisms prevent masculinization of the
brain; however, the details of how this occurs remain elusive [21]. Interestingly, a recent
study suggested estrogens may restrain microglial immune responses, thereby reducing
vulnerability to adverse behavioral changes [161].

3.3. Microglial Responses in AD

Upon recognition of injury or insult, microglia transition to a responsive state with
sex and age playing a role in this response [128,129,162]. Single-cell and single-nuclei
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sequencing studies have rapidly expanded the understanding of diverse microglial re-
sponses to AD-related pathology in human patients and in rodent disease models. Notably,
female mice indicate sex-dependent microglial activation in response to amyloid but not tau
pathology [163]. Although some differentially expressed genes in microglia are common
between amyloid and tau pathologies, microglia upregulate phagocytic, inflammatory,
and proteostatic pathways in areas of higher amyloid and interleukin (IL)-1 in association
with tau [164]. The gene signature of disease-associated microglia (DAM), also referred
to as neurodegenerative microglia (MGnD), is strongly correlated with apoptosis and
myelin debris, consequences of neurodegeneration and inflammation, and is associated
with amyloid pathogenesis [165–168]. Initially, DAMs/MGnDs associate with amyloid
plaques, aiding in amyloid clearance though inefficiently [165,169]. Their prolonged pres-
ence contributes to the pathogenesis of neurodegenerative diseases through the impairment
of microglial homeostatic mechanisms such as phagocytosis, antigen presentation, cell
motility, dysregulation of reactive oxygen species (ROS) generation, and increased cytokine
expression, resulting in neuron loss [165,166]. Notably, sex differences exist within these
gene signatures (reviewed in [170]), but how they arise and whether they induce or are
secondary to disease processes is not entirely clear and is being assessed.

It is becoming increasingly appreciated that early-life adverse events or conditions
may affect microglia such that they later behave in ways that promote AD pathogenesis. A
common approach to studying these effects is through neonatal maternal separation (MS)
of rodent pups from their mother. This early-life adversity drives sex-specific changes in
microglial morphology and immune challenge responses at various ages [171]. MS also
alters cortical microglial activation, hippocampal gene expression, synaptic markers, and
immune cell populations in sex-specific ways at various ages, and exacerbates amyloid de-
position, particularly in females [172,173]. Additionally, neonatal immune challenges result
in female-specific changes in social behavior and microglial cell number [174]. A recent
study reported that even prenatal environmental stressors activated the immune system
such that postnatal microglial function and adult behavior was impaired in males [175].
Together, these findings indicate that developmental and/or early-life events can pro-
gram microglia to respond in distinct ways, with implications for subsequent responses
during adulthood.

4. Sex-Specific Impacts on Brain Cytoarchitecture

As mentioned above and recently reviewed extensively elsewhere, the brain is highly
sexualized across multiple levels, from genes to cells, circuits, and behaviors [176–178].
Both sex chromosomes and signaling through gonadal hormone receptors affect brain struc-
tures and gene regulation in humans and mice [170,179,180]. Recent studies have reported
sex-specific microglial regulation of cell genesis in the neonatal hippocampus [181], sexual
dimorphism in stereotyped cell-type-based cortical architecture [182], hippocampal astro-
cytes [183], and oligodendrocyte precursor cells [184]. Sex differences exist in brain protein
expression [185] and gene expression and behavior [186]. Furthermore sex-specific reliance
on certain proteins impacts synaptic connectivity, microglial activity, and behavior [187].

4.1. Sex-Specific Neuronal Effects in AD

Female AD patients have greater brain atrophy and neurodegeneration than male
AD patients, contributing to greater declines in memory, reasoning, language, and spatial
orientation [2,7,10,35,188–191]. As discussed extensively elsewhere [192–195], olfactory
dysfunction has been reported in human AD patients and in mouse models of AD. It
is one of the earliest clinical symptoms of AD, thereby acting as a biomarker of disease,
and exhibits a strong sex bias. Changes in brain region volumes and connectivity as well
as neurotransmitters have been implicated in olfactory deficits (reviewed in [196]). In
fact, women exhibit accelerated age-related loss of olfactory cortical neurons [197]. Gene
expression (sex chromosomal and autosomal) and hormones have recently been identified
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as potential mechanisms that could contribute to sex differences in neuronal survival during
AD pathogenesis.

As discussed above, in females one X chromosome must be silenced or inactivated
to achieve proper gene dosage. However, some genes on the Xi escape this silencing and
may contribute to or modulate neurodegenerative processes. One such gene is KDM6A,
also known as Utx, which encodes a lysine-specific histone demethylase important in
cognition [198–206]. XCI escape by KDM6A increases its expression in the brains of females,
conferring resilience to AD-related neuronal vulnerability [3]. This effect is independent of
its demethylase function and could provide novel therapeutic targets for treating cognitive
deficits in both sexes [207].

Another gene important in neuronal survival is MGMT, which encodes a DNA methyl-
transferase that is important in protecting cells from apoptosis following DNA damage [208].
Women, particularly those who do not carry the APOE4 allele, express less MGMT and
are more likely to have AD [209]. The lower expression of MGMT stems from sex-specific
methylation patterns due to SNPs in the MGMT locus that interact with distal enhancers via
chromatin loops [210,211]. The mechanisms underlying sex-specific methylation patterns
and SNPs remain to be determined. The interaction of MGMT with APOE may occur due
to convergence on signaling pathways associated with inflammation.

The neuroprotective effects of estrogen are widely appreciated, but recently the pi-
tuitary gonadotropin follicle-stimulating hormone (FSH) was implicated in female sus-
ceptibility to AD [212]. FSH levels rapidly increase in the perimenopausal phase, and
elevated levels are strongly associated with the onset of AD [213–215]. FSH-induced neu-
ronal apoptosis in a mouse model of AD and blocking FSH activity using an anti-FSH
antibody prevented neuron loss [212]. These effects on neuronal survival were accompa-
nied by changes in synapse number, cognition, and amyloid and tau pathology, revealing a
new potential mechanism underlying the accelerated AD pathogenesis in women during
menopause, providing another potential therapeutic target.

In addition to neuronal survival, neuronal activity also exhibits sex specificity. Glu-
tamate is the main excitatory brain neurotransmitter and plays a key role in learning
in memory [216,217]. In males but not females, the G-coupled metabotropic glutamate
receptor mGluR5 on neurons tightly binds oligomeric amyloid in a cellular prion protein-
dependent manner, suppressing autophagic signaling, resulting in cognitive deficits [218].
These sex-specific effects in mGluR5 binding and scaffolding are estrogen-independent, but
the source of this difference remains to be determined. This study indicated the possibility
of repurposing mGluR5-selective modulators to treat male AD patients, highlighting the
need to stratify clinical trials assessing AD therapeutics by sex.

4.2. Sex-Specific Glial Effects in AD

Glia modulate neuronal activity. Astrocytes are the most abundant glial cells, playing
critical roles in synaptic transmission and plasticity by providing trophic and metabolic
support to neurons. Female hippocampal astrocytes in a mouse model of AD exhibited
low inflammatory activity and calcium flow associated with low cannabinoid signaling
compared to their male counterparts [219]. These sex differences were evident at birth,
suggesting intrinsic sex differences in astrocyte activity that may eventually impact their
response during disease progression.

Microglia also modulate the brain’s activity through removal of synapses as well as
entire neurons. A subset of microglia, ARG1+ microglia, located primarily in the basal
forebrain and ventral striatum during early-postnatal development in the mouse, were
recently reported [220]. These microglia are enriched in phagocytic inclusions, exhibit a
distinct molecular signature, and play a critical role in shaping neuronal circuits involved in
cognition through their actions on cholinergic innervation and spine maturation. Microglia
also communicate with astrocytes providing neuronal support and synapse pruning, as
discussed above. How microglial functions in homeostatic and AD processes interact with
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recently identified chromosomal and hormonal factors contributing to neuronal resilience
and protection remains to be determined.

Estrogens and androgens have long been understood to have neuroprotective and
anti-inflammatory effects. However, together, these recent findings illustrated in Figure 2
provide novel mechanisms contributing to neuronal resilience and vulnerability, whether it
be intrinsic to the neurons themselves, or secondary to glial-mediated effects. Autosomal
or sex chromosomal genes are now appreciated to have effects on neurons and glia, and
the identification of another hormone provides another potential therapeutic target.
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5. Sex Differences in Amyloid Deposition

Aβ was first implicated in the pathogenesis of neurocognitive disorders in 1984, when
meningovascular plaques from the brains of Down’s Syndrome patients were genetically
sequenced and found to be comprised primarily of Aβ [221,222]. Subsequent studies
sequenced the APP gene and confirmed that Aβ originated from the biochemical processing
of APP. By 1991, a large body of evidence suggested that the plaques observed in AD were
like those initially observed in Down’s Syndrome patients [222–224]. Females exhibit a
greater amyloid burden compared to males at comparable disease stages in both humans
and mice, which could arise from differential rates of amyloid production and/or clearance.

5.1. Aβ Production

Aβ is formed through sequential proteolytic processing of the transmembrane Amy-
loid Precursor Protein (APP), which is ubiquitous throughout the central nervous system
(CNS; [224]). In healthy brains, cleavage of APP by α-secretase does not produce pathogenic
Aβ but rather soluble byproducts [225]. In AD, APP is cleaved by β-secretase (BACE),
resulting in two soluble ectodomains and two carboxy-terminal fragments [224]. These
fragments are further cleaved by γ-secretase, leading to the production of pathogenic Aβ,
p3, and the intracellular APP domain [224,226]. γ-secretase is a multi-subunit protease
containing Nicastrin, Presenilin 1 and/or 2 (PSEN1/PSEN2), Presenilin 2 Enhancer (PEN2),
and Anterior Pharynx-Defective 1 (APH-1). The Presenilins form the catalytic subunit
of γ-secretase; thus, mutations in PSEN1/PSEN2 increase the activity of the γ-secretase
proteolytic pathway, increasing the deposition of Aβ [227–229].

Aβ has two major isoforms found in AD, Aβ40 and Aβ42, with the latter linked to
the deposition of neuritic plaques [230–232]. AD patients exhibit an increased Aβ42:Aβ40
ratio, which is thought to drive protein self-aggregation, contributing to Aβ plaque forma-
tion [233,234]. The accumulation of Aβ in AD follows a characteristic pattern, beginning
with the neocortex [226,235]. As the disease progresses, Aβ accumulates in progressively
deeper structures, ending with the brainstem [226,235]. Aβ deposition is thought to be the
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earliest pathology to develop in AD, preceding the onset of clinically observable symptoms
by decades, though this hypothesis remains debated [236–238]. The Amyloid Hypothesis
suggests Aβ deposition contributes to the development of later AD symptoms. How-
ever, the precise mechanisms underlying this catalysis remain to be determined, and the
hypothesis has been serially revised with new findings.

Though plaque load does not correlate well with cognitive deficits, the amyloid cascade
hypothesis suggests greater amyloid load eventually results in more significant disease. In
humans, there is an association between antecedent attention-deficit/hyperactivity disorder
and increased risk of dementia [239,240]. Within the striatum, female 5xFAD mice exhibit
increased amyloid plaque associated with changes in dopamine signaling in the dorsal
striatum, thereby resulting in hyperactivity of female but not male mice [241].

Some AD patients also exhibit cerebral amyloid angiopathy (CAA), which involves
accumulation of amyloid protein in the leptomeningeal and cortical blood vessels. In-
terestingly, men have more severe CAA than women [242]. Perez et al. have recently
shown that the transcription-regulating protein inhibitor of the DNA-binding protein 3
(ID3) is associated with CAA severity in women, while the nuclear respiratory factor 1
(NRF1) is associated with CAA severity in men [243], potentially providing new targets for
personalized medicine and/or prevention strategies against CAA.

Secretion of Aβ via exosomes, which are small vesicles derived from the inward
budding of intraluminal vesicles (ILVs) inside multiple vesicle bodies (MVBs; [244]), fol-
lowing its production through the series of enzymatic steps described above, promotes
plaque formation in a variety of model systems (reviewed in [245]). Ceramides are integral
components of cell membranes, and the sphingolipid ceramide neutral sphingomyelinase
(nSMase) promotes the formation of exosomes [246,247]. In an AD mouse model, female
but not male mice exhibit elevated ceramide and exosome levels and are uniquely sen-
sitive to nSMase inhibition, which blocked exosome spreading and subsequent amyloid
pathology and rescued cognition [248]. The reason that ceramide and exosome biogeneses
have a more significant role in the amyloid pathology of females is unclear and remains to
be determined.

Furthermore, stress modulates amyloid production and does so in sex-specific ways.
Adult female APP/PS1 mice show significantly increased hippocampal Aβ, while males do
not, due to differences in β-arrestin involvement in corticotropin-releasing factor receptor
signaling pathways [249].

The relationship between hormones and amyloid levels is complex and seemingly
contradictory. The primary estrogen, 17β-estradiol (E2), decreases Aβ production [250–252]
and stimulates its degradation [253]. This would suggest that females, having higher
concentrations of circulating E2, would have decreased amyloid burden compared to males,
when in fact the opposite is true. Future work must tease apart the relative contributions
of and the balance between estrogenic effects on amyloid production and clearance and
its influence on other cellular processes that could in turn modulate those effects, such as
neuronal survival and neuroinflammation.

5.2. Aβ Clearance

Early-onset forms of AD are thought to arise from the increased production of Aβ,
while late-onset forms stem from reduced Aβ clearance [254,255]. This clearance occurs
through both enzymatic and non-enzymatic processes (reviewed in [256]).

In the brain, Aβ is primarily degraded and cleared through the proteolytic machin-
ery [257,258], and more than 20 different Aβ-degrading enzymes (ADEs) have been identi-
fied, including metallo-serine, aspartyl, cysteine, and threonine proteases [259]. To date,
metalloproteases are the best studied ADEs, with matrix metalloprotease 2 (MMP2), MMP7,
and MMP9 demonstrating Aβ-degrading activity and association with AD [256]. Tissue
inhibitors of metalloproteases (TIMPs) regulate MMP activity [260] and have been linked to
AD as well [137,261–263]. Notably, MMPs may have sex-specific mechanisms contributing
to AD [264], potentially due to their interactions with estrogen [265]. Aksnes and col-



Int. J. Mol. Sci. 2023, 24, 17377 13 of 29

leagues found that amyloid pathology is associated with MMP3 in males but with TIMP4
in females [266]. Furthermore, there was a female-specific effect of MMP10 on cognitive
and functional decline in AD patients, suggesting that MMPs and TIMPs could be useful
biomarkers for sex differences and progression in AD [266].

Non-enzymatic clearance of Aβ occurs through a variety of pathways, including mi-
croglial phagocytosis (reviewed in [267]). As microglia age, they become senescent/dystrophic,
exhibiting age-related changes in the expression of phagocytosis-related receptors and
processes, limiting their capability to respond to pathogens or neurodegenerative pro-
cesses [268]. Microglial aging is accompanied by increased phagocytosis of neuronal debris,
with female microglia exhibiting a greater increase but a loss in ability to adapt its phagocy-
tosis to inflammatory conditions [269]. A recent report found sST2, the secreted isoform
of the interleukin-3 (IL-33) receptor, is a decoy receptor that inhibits microglial activation,
increases in the blood and brain of females with AD, and is positively associated with
disease progression [270]. Furthermore, women with APOE4 that have lower amounts
of sST2 have a lower risk of AD [270]. The authors hypothesize that less sST2 facilitates
microglial clearance of Aβ from the brain, thereby reducing AD.

Recently, two companion studies demonstrated that microglial-derived ApoE4 was
detrimental to the microglial response to amyloid, and this was more pronounced in
females [80,271]. ApoE is essential for seeding amyloid deposits [272–274] as well as
being required for microglial conversion to a DAM/MgnD phenotype in the presence of
amyloid [165,169]. Using different genetic and molecular approaches, these studies showed
microglial ApoE3 induced microglial DAM/MGnD genes for plaque encapsulation and
clearance, while microglial ApoE4 induced ITGB8-TGFβ signaling that impaired this
DAM/MGnD response, thereby exacerbating amyloid pathology [80,271]. In both studies,
female AD patients were more strongly affected by the presence of an APOE4 allele in these
processes, though the mechanism behind this sex-specific effect was unclear.

Together, recent findings summarized in Figure 3 suggest sex differences in microglial
inflammatory response mechanisms may contribute to distinct inflammatory profiles,
thereby differentially stimulating amyloid production and/or modulating its clearance.
ApoE is likely to function in many of these processes, participating not only in amyloid clear-
ance and plaque seeding directly but also in the acquisition of microglial phenotypes that
facilitate or inhibit amyloid production and clearance. Future work will need to elucidate
mechanisms contributing to sex differences in microglial responses generally and ApoE4
sensitivity specifically, as they could provide avenues for more targeted interventions
and therapies.
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6. Sex Differences in Tau Pathology

The third pathological hallmark of AD is intraneuronal tangles composed of the
hyperphosphorylated microtubule-associated protein, tau. Unlike amyloid plaques, tau
pathology is well correlated with brain atrophy and cognitive decline [275–277].

6.1. Intracellular Tau Tangle Production

Microtubule Associated Protein Tau (MAPT) encodes the cytoskeletal phosphoprotein
tau, which encourages the formation of microtubules from tubulin and is normally found
in mature neurons [278]. The transcription of MAPT can result in six different tau iso-
forms, with varying numbers of microtubule-binding repeats and amino-binding terminal
inserts [278]. Tau shows highly variable structural confirmations, only exhibiting conforma-
tional consistency in β pleating between microtubule-binding repeats [278]. Under normal
physiological conditions, the ratio of tubulin to tau in mature neurons is approximately
10:1. With tau’s high binding affinity to tubulin, little tau remains unbound in healthy
adult cells [278]. As aforementioned, tau is a phosphoprotein, with over 40 different sites
where phosphorylation may occur [279]. The normal concentration of bound phosphate
relative to the tau protein is 2–3 mol phosphate/1 mol of protein; however, in AD pa-
tients, tau exhibits a 3–4-fold increase in bound phosphate concentration. This inhibits
protein function and induces tau aggregation, leading to the formation of neurofibrillary
tangles (NFTs; [278,280,281]). Although NFTs may develop in AD patients, most of the
hyperphosphorylated tau (hTau) generated remains in the cytosol, where it sequesters
functional tau proteins and disrupts the formation of microtubules [278]. Both NFTs and
cytosolic hTau disrupt normal cell function and lead to cognitive decline; however, when
hTau is dephosphorylated, it returns to a normal, functional state, supporting the creation
of microtubules [278,282].

As in neuronal loss and amyloid burden, sexual dimorphism is evident in tau deposi-
tion and tau-related clinical progression, with women being more strongly
affected [12,38,283–288]. Higher tau levels occur in women, particularly in the context of
elevated Aβ and especially in the context of an earlier age of menopause and late initiation
of hormone replacement therapy (HRT; [289]).

6.2. Microglial Responses to Tau

Despite tau being a structural neuronal protein and contributing to intraneuronal
neurofibrillary tangles, it propagates from neuron to neuron, where it can activate microglia
(reviewed in [290]). Tau activates a variety of signaling cascades in microglia, including the
Toll-like Receptor 4 (TLR4)- NOD-, LRR- and pyrin domain-containing 3 (NLRP3)-caspase
1 cascade for phagocytosis of living neurons [291]. Additionally, the cyclic GMP-AMP syn-
thase (cGAS)-IFN signaling pathway suppresses MEF2C neuronal transcriptional networks
to attenuate cognitive resilience [292]. Microglial NFκB signaling also drives tau spreading
and toxicity [293]. The kinase Tumor progression locus 2 (TPL2; [294]) and insulin-like
growth factor-binding protein like protein 1 (IGFBPL1; [295]) function as master regulators
of the microglial inflammatory responses to tauopathy. Sex-specific microglial signaling
pathways and miRNAs contribute to differences in the microglial transcriptome, perturba-
tions in lipid metabolism and lipid-droplet accumulation, and differential recruitment of T
cells, all of which may contribute to sex-disparate tau pathology [130,296,297].

6.3. Reversal/Removal of Pathological Tau

Though tau pathology is reversible experimentally, clinical trials of therapies targeting
tau pathology have not yet yielded positive results, though candidate compounds continue
to make their way through the clinical trial pipeline [298,299]. Further, tau pathology is
intimately linked with the presence of Aβ plaques in AD, with Aβ clearance often aiding in
the clearance of hTau in the early stages of the disease [300,301]. The mechanism underlying
this close pathological relationship remains poorly understood, although some hypotheses
point toward the proteasome [300–302].
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Tau clearance occurs through the ubiquitin–proteasome system and the autophagy-
lysosome pathway, with the final modification being ubiquitination [303–305]. The ubiquitin-
specific peptidase 11 (USP11) deubiquitinates tau, augmenting its aggregation [306]. USP11
is an X-linked gene that escapes complete XCI, resulting in elevated USP11 expression in
females, correlating strongly with tau pathology in females but not males; therefore, it
potentially underpins heightened disease susceptibility in women [306].

There has been a significant shift in focus away from amyloid to tau pathology. The
focus on amyloid has been called into question due to failure of anti-amyloid therapeutics
in the clinic, and the appreciation for high correlation between tau levels and cognitive
decline. Recent work has illuminated the response of microglia to tau and has begun to
demonstrate sex-specific microglial responses, potentially contributing to distinct disease
manifestations. Many questions remain to be answered, most notably the role of APOE4.
As in amyloid pathology, APOE4 from neurons and astrocytes play important roles in the
tau-mediated gliosis and neurodegeneration [307,308]. What remains to be determined is
whether these effects are more acute in females compared to males, as in amyloid pathology.

7. Conclusions and Future Directions

In the century following Dr Alzheimer’s encounter with Auguste Deter, there has been
substantial progress in understanding the basic mechanisms of the three major pathological
hallmarks of AD: neuron loss, extracellular amyloid plaque deposits, and intracellular tau
tangles. Furthermore, inflammation mediated by the innate immune cells of the brain,
the microglia, is understood to be a key influence on those hallmark pathologies. While
the disparate impact of AD on women has long been widely appreciated, the reasons
for sex-specific disease onset and progression remain elusive. Early work focused on the
neuroprotective and anti-inflammatory aspects of hormones. More recently, genetic effects
driven by sex chromosomes and epigenetics have been shown to play a role in neuronal
resilience and activity, and microglial-mediated amyloid and tau clearance mechanisms.
Despite these advances, much work remains to be done, both in understanding sex-specific
mechanisms and in leveraging these findings for a personalized approach to preventing
and treating AD.

The mechanisms behind the increased sensitivity of women to the APOE4 isoform
remain a significant gap in our understanding. This has major implications on disease,
as APOE has such varied functions, from lipid transportation to amyloid clearance and
microglial responses to amyloid and tau. The complex interplay of APOE isoforms and
sex were highlighted in a recent paper demonstrating in mice that the ApoE-isoform and
microbiota-dependent progression of tau pathology occurred in a sex-specific manner [309].
Whether targeting gut microbiota may provide a potential preventative or therapeutic
approach to AD in one or both sexes remains to be determined.

Metabolism is another avenue ripe for future investigation. The AD brain exhibits
metabolic dysregulation, leading to the Metabolic Reprogramming Theory of AD [310]. In
human patients and in mouse models of the disease, there are sex differences in cerebrovas-
cular and brain metabolism [311–313]. In fact, elevated brain metabolism in women is hy-
pothesized to confer cognitive resilience against early-onset AD [36]. Furthermore, dietary
fat is known to influence microglia [314], and a high-fat, high-salt diet induces sex-specific
responses in the gut microbiome and in hypothalamic astrocytes and microglia [315]. Daily
administration of an insulin-sensitizing compound ameliorated female-specific metabolic
imbalances in a mouse model of AD [316]. Whether using drugs targeting genes associated
with both lipid metabolism and neuroinflammation [317] will be efficacious in one or both
sexes, if at all, remains to be determined.

Numerous other avenues for additional work exist and understanding them is re-
quired. AD, particularly late-onset sporadic forms, is incredibly heterogeneous and will
require multiple approaches to effectively treat the increasing patient population. Some
therapeutic targets will be consistent across groups of patients, such as ApoE, but how they
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are targeted and how effective they may be is likely to depend on sex and a variety of other
intersecting factors.
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