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Abstract: Extracellular vesicles, as bioactive molecules, have been extensively studied. There are
abundant studies in the literature on their biogenesis, secretion, structure, and content, and their
roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for
use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body
fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by
patients. In recent years, there have been numerous new studies investigating the role of salivary
extracellular vesicles as biomarkers. These studies have significant implications for future clinical
diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary
extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis,
innate immune defense) in both oral and non-oral diseases.
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1. Introduction

Extracellular vesicles (EVs) are particles secreted by cells into the extracellular envi-
ronment [1,2] which are enveloped by the lipid bilayer and contain donor-cell-derived
proteins and cytoplasmic and genetic materials [1]. EVs can be mainly divided into exo-
somes, microvesicles (MVs), apoptotic bodies, and other subtypes according to their size,
morphology, biosynthesis, and secretion methods [2,3]. The circulating particles are mainly
exosomes and MVs [4], which contribute to intercellular communication and have attracted
much attention. In the past, it was thought that the secretion of EVs was due to donor
cells discarding unwanted components; however, recent studies suggest that the release of
EVs is involved in the physiological activity of intercellular communication and plays a
pivotal role in information transfer [5]. Intercellular communication methods are varied;
they include direct cell-to-cell interaction, secreting soluble factors (e.g., growth factors,
hormones), and communication through EVs [2,6]. The reason why EVs are unique in
intercellular communication is that they can carry many biologically active molecules, such
as nucleic acids, proteins, and lipids [2], and they can mediate the physiological activity of
the recipient cells [2,6,7]. Additionally, EVs show promise for application in clinical settings,
mainly because they are rich in the biomarkers of donor cells [3] and widely distributed in
body fluids, making them easy to collect for use in diagnosing disease, delivering drugs,
and observing therapeutic responses [5,8,9]. Currently, the methods for isolation and purifi-
cation of EV subclasses are not well established [5] and it is not yet possible to completely
separate exosomes from MVs [4,9]. Further development is needed to meet the demands
for EVs as biomarkers, vaccines, drug delivery devices, and therapeutic tools [4].
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EVs are abundant in saliva [10,11]. Molecular cargoes in salivary extracellular vesicles
(sEVs) will change depending on the pathophysiological state of the donor cells [12,13],
suggesting that these molecular cargoes can be potential biomarkers of diseases. Studies
have reported that sEVs can be used in the early detection and monitoring of oral and
systemic diseases [14,15]. Additionally, as a liquid biopsy for disease diagnosis, sEVs are
non-invasive and cost-effective. Thus, sEVs have attracted much attention and become a
rapidly advancing field of study [16].

In the past two years, there have been a large number of new sEV-related studies. This
article, as an updated review, summarizes the literature from the most recent two years and
previously, in order to discuss the characteristics of sEVs and their roles in human diseases.

2. Characteristics of sEVs

Saliva is a biological fluid produced by the three pairs of major salivary glands and
many minor salivary glands in the oral cavity. When referring to the term “spit” in daily
life, it is more appropriate to describe it as whole-mouth saliva (WMS) [17]. In addition to
99% water, WMS also contains organic substances (e.g., proteins, enzymes, lipids), inor-
ganic ions (e.g., potassium, sodium, calcium), as well as epithelial cells, bacteria, gingival
crevicular fluid, and secreted vesicles [16,18,19]. The composition of saliva can change due
to oral diseases or systemic diseases, and it has been confirmed that salivary mRNA can be
used for cancer monitoring [20]. Saliva is an optimal candidate for monitoring oral diseases,
as it not only contains abundant microparticles, but it is easier to obtain compared with
other body fluids such as blood, urine, and breast milk [18]. Furthermore, RNA enclosed in
EVs can be protected from degradation by salivary nucleases and provide disease-related
information, highlighting the advantages of sEVs as biomarkers. SEVs also participate in
many physiological and pathological activities. Evidence has proved that salivary exo-
somes from periodontitis participate in the transmission of inflammatory signals, thereby
promoting the process of periodontitis [21]. Moreover, experiments in vitro demonstrated
that labeled saliva exosomes could be taken up by keratinocytes and transmit their genetic
information (mRNA) to oral keratinocytes, thereby altering the gene expression [22]. Fur-
ther, sEVs from mice bearing pancreatic tumors could inhibit NK cells’ cytotoxic potential
against tumor cells, thus promoting tumor immunity escape [23]. In addition to serving as
biomarkers and facilitating information communication, sEVs also have other functions,
such as participating in innate immune defense [24] and coagulation [25], and serving as
drug delivery system carriers [26].

2.1. Types of EV

EVs are a type of secreted vesicle carrying cargoes from their parental cells. The cargoes
mainly consist of biologically active proteins, nucleic acids, and lipids [2]. Initially, it was
believed that the release of EVs was merely a way for cells to discard unwanted waste. Now
it is known that EVs play functional roles in both physiological and pathological processes,
such as intercellular communication [2,19,27], coagulation [25], and tumor metastasis [2].
EVs can be categorized into exosomes, MVs, and apoptotic bodies based on their size,
morphology, density, biogenesis pathways, and secretion methods [1–3] (Figure 1).

2.1.1. Exosomes

The term “exosomes” was first used to describe vesicles released by different cells that
contain 5′-nucleotidase activity [28]. In 1987, exosomes were defined as vesicles formed
by the inward budding of multivesicular bodies (MVBs) during the differentiation of
reticulocytes [29]. According to observations conducted via electron microscopy, the size
of exosomes is approximately 30–100 nm, sometimes up to 150 nm [28]. Exosomes can
be secreted by various kinds of cells [30,31] and are widely distributed in body fluids,
including blood [29], synovial fluid [32], saliva [33,34], urine [35], breast milk [36], pleural
effusion [37], and amniotic fluid [31]. The biogenesis of exosomes primarily relies on the
endosomal system. First, the membrane of the endosome buds inward to form MVBs [4,38],
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which contain numerous intraluminal vesicles (ILVs) [1]. Then, a portion of the MVBs is
transported to lysosomes for degradation [39], while another portion is transported to the
plasma membrane. Finally, they fuse with the plasma membrane and release the ILVs,
called exosomes [40,41].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 21 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. Different types of cells can secrete various types of extracellular vesicles. (a) The releasing 
process of exosomes, which rely on the endosomal system. (b) The release of MVs, which directly 
bud from the plasma membrane. (c) Cells undergoing programmed cell death can form apoptotic 
bodies. (d) Oncosomes are secreted by tumor cells, which have a larger diameter compared with 
other extracellular vesicles. Figures were created with BioRender.com (accessed on 17 October 2023). 
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Figure 1. Different types of cells can secrete various types of extracellular vesicles. (a) The releasing
process of exosomes, which rely on the endosomal system. (b) The release of MVs, which directly
bud from the plasma membrane. (c) Cells undergoing programmed cell death can form apoptotic
bodies. (d) Oncosomes are secreted by tumor cells, which have a larger diameter compared with
other extracellular vesicles. Figures were created with BioRender.com (accessed on 17 October 2023).

2.1.2. MVs

MVs, initially known as “platelet dust”, were believed to be products of activated
platelets and reticulocytes, playing roles in clotting [41,42]. MVs can also be released by
various kinds of cells, such as mesenchymal stem cells (MSCs) and adipose-derived stem
cells (ADSCs) [43]. The diameter of MVs typically ranges from 50 to 1000 nm [38]. MVs
secreted by tumor cells are also called oncosomes, which can reach 10 µm in diameter [44].
MVs are usually formed by direct budding or extrusion of the cell membrane [45,46].

2.1.3. Apoptotic Bodies

Blebbing is a very common feature of apoptotic cells. Apoptotic bodies are released
from apoptotic cells through a physical process mediated by actomyosin [47]. After the cell
membrane separates from the cortical cytoskeleton, the apoptotic body is formed; it has a
diameter of 1000–5000 nm [48]. Apoptotic bodies are filled with cellular content, such as
intact organelles, condensed chromatin, and proteins [47–49].

2.2. Origins of sEVs

sEVs have various different origins and can enter into saliva through several pathways,
such as originating from cells in the oral cavity, the salivary glands, or the circulation.
Moreover, bacterial-derived extracellular vesicles also constitute a significant portion of
sEVs (Figure 2).
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Figure 2. The origins of sEVs: (a) SEVs can be directly secreted from oral epithelial cells and
granulocytes in the oral cavity. (b) They can also be secreted by the major salivary glands, including
the parotid gland, submandibular gland, and sublingual gland, as well as many minor salivary
glands into the oral cavity. (c) Some sEVs in the oral cavity can originate from circulation. These
circulation-derived extracellular vesicles often contain extracellular proteins and secreted proteins.
(d) The bacteria present in the oral cavity can also secrete EVs, known as bEVs, which play an
important role in oral health. The different colors/ arrows represent different origins of sEVs. The
figure was created with BioRender.com (accessed on 17 October 2023).

2.2.1. Cellular Origin

A portion of sEVs is directly released from cells. Epithelial cells and granulocytes in
the oral cavity can directly release EVs into saliva, and most cell-derived sEVs are released
from those cell types [20,22,25].

2.2.2. Glandular Origin

Exosomes have been detected in “pure glandular saliva” secreted from the parotid
gland and submandibular gland, indicating that parts of sEVs are derived from the salivary
glands [50,51]. Moreover, exosomes secreted by individual glands are derived from cells
within that particular gland, which means we may monitor the physiologic state of glands
through exosomes [51].

2.2.3. Circulatory Origin

Through analyzing salivary exosome proteins it was found that approximately 40%
of these proteins are extracellular proteins or secretory proteins, suggesting that some of
the vesicles in saliva originate from circulation [52]. By constructing a mouse model of
pancreatic cancer, exosomes containing pancreatic-cancer-specific transcriptome biomark-
ers (mRNA) were detected in saliva, proving that tumor-derived exosomes may enter into
saliva through circulation [53]. In addition, an earlier experiment found after injecting
H460 human lung cancer cells which stably express hCD63-GFP into immunocompromised
mice, exosome-like microvesicles (ELMs) expressing hCD63 were detected in mouse saliva,
and species-specific CD63 protein and GAPDH mRNA were also detected. That is to
say, ELMs can carry tumor-cell-specific mRNA into the circulation, and this eventually
reaches the saliva [54]. The evidence not only suggests that salivary exosomes can originate
from the circulation, but also provides a theoretical basis for salivary exosomes acting as
disease biomarkers.

BioRender.com


Int. J. Mol. Sci. 2023, 24, 17328 5 of 21

2.2.4. Bacterial Origin

As mentioned above, almost all cells can secrete EVs, and even bacteria can release
vesicles from their cell membranes. Since the oral cavity is a bacteria-rich environment, it is
undeniable that saliva also contains a large number of EVs secreted by bacteria, which are
of great significance in the study of oral microbiology and diseases.

EVs secreted by bacteria are collectively referred to as bacterial extracellular vesicles
(bEVs). The vesicles secreted by Gram-positive bacteria are called cytoplasmic membrane
vesicles (CMVs). These originate from the cytoplasmic membrane and carry components
from the cytoplasm. Vesicles secreted by Gram-negative bacteria are called outer-membrane
vesicles (OMVs) and have a diameter of approximately 20–300 nm. They contain lipids,
lipopolysaccharides (LPS), outer membrane proteins, and periplasmic components, and
they also include some cytoplasmic components [55,56].

Inherited key antigenic components and pathogen-associated molecular patterns
(PAMPs) have been found in bEVs, making them usable as vaccine platforms [56,57].
Moreover, OMV vaccines have already shown their effectiveness on the stage of history.
The earliest clinical application of OMV vaccines was undertaken in 1987 in Cuba to
combat Neisseria meningitidis serogroup B (MenB) [58]. In recent years, intense preclinical
research on bEV vaccines against N. gonorrhoea, V. cholerae, Mycobacterium tuberculosis, and
nontyphoidal Salmonella has also been conducted. These vaccines have been shown to
induce both cellular and humoral immune responses [57].

In periodontitis, OMVs secreted by Gram-negative bacteria such as Porphyromonas
gingivalis (P. gingivalis) can invade gingival epithelial cells and impact their functions [59].
Experimental evidence has shown that bEVs derived from periodontal pathogens and oral
commensal bacterium can activate Toll-like receptor 2 (TLR2) to promote osteoclast differen-
tiation and exert bone resorption effects [60]. Additionally, bEVs are one of the components
of dental biofilm, which threatens oral health [61]. Furthermore, OMVs may transport LPS
from the early endosomal compartments to the cytosol of macrophages after endocytosis,
mediating immune-inflammatory responses [62]. Studies have detailed the pathogenic role
of bEVs derived from periodontal pathogens in periodontal homeostasis [63].

Burkholderia thailandensis OMVs can inhibit the bactericidal activity of the oral pathogen
S. mutans, one of the most cariogenic microorganisms, and disrupt pre-formed S. mutans
biofilm [64]. All these pieces of evidence indicate that bEVs have intricate connections with
oral diseases. Although there are relatively few experimental studies on bEVs and dental
caries in recent years, looking ahead, bEVs have a bright prospect as a therapeutic tool
for caries.

2.3. Structure of sEVs

Currently, research on the structure of sEVs mainly focuses on salivary exosomes.
Therefore, this section primarily describes the structure of salivary exosomes, whereas the
other two types are not discussed in detail here.

Exosomes are secreted lipid vesicles enveloped by a lipid bilayer membrane [28]. They
often share a common set of proteins [3], including membrane transport and fusion proteins
(e.g., Rab GTPases, Annexins), proteins associated with endosomal sorting complex re-
quired for transport (ESCRT) (e.g., Alix and TSG101), heat shock proteins (HSPs), integrins,
tetraspanins (CD63, CD9, CD81), and major histocompatibility complex (MHC) [20,40,65].
In addition, the membrane of exosomes is enriched with sphingolipids, cholesterol, phos-
phatidylserine (PS), and disaturated lipids [66,67]. The enrichment of sphingolipids and
disaturated lipids enhances the rigidity of the membrane [2]. Lipid molecules such as
phosphatidylethanolamine (PE), phosphatidylserine (PS), lysophosphatidic acid, and phos-
phatidic acid (PA) play important roles in maintaining membrane curvature. Moreover,
ceramide also contributes to exosome biogenesis [68]. Once secreted to the extracellular
environment from parental cells, exosomes will carry nucleic acid, including mRNA and
non-coding RNA (small nuclear RNA, miRNA, tRNA) [69]. Equally, exosomal DNA also
exists, such as single-stranded DNA, double-stranded DNA [70,71], and mitochondrial
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DNA [72]. Research has revealed that most DNA contained in tumor-associated exosomes
is double-stranded DNA, which may serve as a novel biomarker in the early detection of
cancer and metastasis [71].

Salivary exosomes, similar to those derived from other bodily fluids, are small vesicles
with a diameter of 30–150 nm, surrounded by a phospholipid bilayer membrane [22].
Similarly, salivary exosomes also contain exosome marker proteins, including tetraspanins,
HSP, MHC (e.g., MHC class I and MHC class II), membrane transport and fusion proteins,
and ESCRT-associated proteins [20]. Cytoskeletal, metabolic, and carrier proteins can also
be found in salivary exosomes [20]. In particular, salivary exosomes are typically rich in
aquaporins (apical plasma membrane channels), reflecting the unique features of exosomes
secreted by salivary glands [20,22,50]. Of note, salivary exosomes contain tissue factor (TF),
which can trigger factor-VII-mediated coagulation and shorten clotting time [19]. Except
for proteins, salivary exosomes also carry nucleic acids from their donor cells [22,51]. The
databases Vesiclepedia [73] and ExoCarta [74] have catalogued the nucleic acids, proteins,
and lipids currently identified in salivary exosomes. Changes in the nanoscale structure
of salivary exosomes are associated with disease. In fact, cancer exosomes have a larger
size compared with normal exosomes, and their CD63 surface density also increases [19,20]
(Figure 3).
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2.4. Isolation of sEVs

At present, there is much research being conducted into the isolation of EVs from other
biofluids, such as blood and urine. However, there are limited reports on isolating sEVs.
Some aspects need to be taken into consideration, such as cells and solid contaminants, and
viscosity of samples. Methods used to isolate sEVs mainly consist of ultracentrifugation
(UC), magnetic-bead-based exosome extraction, and density gradient ultracentrifugation.

The most popular method for isolating salivary exosomes is UC, which can yield
exosomes with minimally contaminated pellets. However, the process is time-consuming
and it requires an expensive and bulky device [75]. In addition, high viscosity with saliva
requires a longer centrifugation period, thus diminishing the exosomes’ integrity [76].
A study on extracting salivary exosomes using the magnetic bead affinity method has
been conducted [53]. However, the relevant research is limited, and effort is required

BioRender.com
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before the magnetic bead affinity method is used in clinical settings. Density gradient
ultracentrifugation is a method of EV fractionation based on density. The viscosity of EVs
prepared from saliva is higher than that of EVs from blood, and, thus, the protocol must
be modified. A pretreatment step and iodixanol are required to concentrate the EVs to a
1.1 g/mL density [77].

Alongside the traditional methods, new technology has also been established. For
instance, ExoQuick (EQ), a proprietary reagent, has been used for isolating exosomes from
saliva. Pellets obtained by EQ have larger diameters, which are readily discernable and con-
venient to manipulate compared with UC. The main advantages of EQ consist of technical
simplicity, quick isolation of exosomes, and the ability to operate with a small sample vol-
ume. However, EQ pellets also contain higher biological impurities [75]. RNAPro•SAL™
(Oasis Diagnostics® Corporation, Vancouver, WA, USA), an oral specimen collection sys-
tem, can collect controlled and standardized oral fluid specimens. RNAPro•SAL™ used in
conjunction with EQ can simplify exosome isolation, with less non-exosomal contaminating
materials and without exosomes loss [78].

These interesting findings suggest that sEVs can serve as biomarkers for diseases and
have potential applications in disease diagnosis and monitoring. However, there remain
challenges in the isolation of EVs from saliva. Salivary components and pH value can
change in accordance with circadian rhythms [79,80]. Thus, sample collection at different
time points may result in variability in sEVs. Additionally, the viscosity of saliva not only
makes the processing more complicated but also compromises the purity of saliva exosomes
obtained through UC [76]. Each method mentioned above has limits, and, therefore, a
uniform purification approach for sEVs is lacking. Consequently, endeavors are required to
develop an efficient, reproducible, standardized isolation method.

3. Roles of sEVs in Human Diseases
3.1. Biomarkers

Biomarkers can provide useful information for disease prevention, diagnosis, prog-
nosis, and treatment through measurement or identification in vitro [81]. In addition,
biomarkers must be accurately and reliably measured within a defined context of applica-
tion [82,83].

In saliva, EVs protect cargoes from contamination of the oral environment, thereby
stabilizing components such as miRNA and enhancing the accuracy of detection [84].
Additionally, saliva is non-coagulating and easily collected in a non-invasive manner,
resulting in good patient compliance [12,15]. Numerous studies have highlighted the
potential of molecules in sEVs as promising biomarkers for various diseases.

3.1.1. Oral Diseases

Ninety percent of the global population will experience oral diseases during their
lifetime, primarily including dental caries, periodontal diseases, and oral cancer [85]. Dental
caries [86] and periodontal diseases [87] can both lead to tooth loss, impacting oral health
and overall health through reduced mastication function. Oral cancer (OC) is the sixth most
common cancer worldwide [88], with a high mortality rate and an increasing trend in recent
years, posing a serious threat to human health [89]. However, the prevalence, severity,
and often overlooked nature of oral diseases [90] make them one of the most common
global public health issues [85]. Therefore, emphasizing oral health and the treatment
of oral diseases is of the utmost importance. The utilization of sEVs as biomarkers can
contribute to the diagnosis, prognosis assessment, and evaluation of treatment efficacy for
oral diseases (Table 1), thereby promoting oral and overall health.

Oral Cancers

OC can occur in the lips, tongue, gums, and lining of the oral cavity [12]. In total,
90% are derived from squamous cells, and are known as oral squamous cell carcinoma
(OSCC) [83,88]. One of the main reasons for the high mortality of OC is delayed diagnosis,
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emphasizing the importance of screening and early diagnosis [88,91]. In recent years, there
have been many studies on sEVs as biomarkers of OC.

Proteomic analysis of sEVs has revealed differences between OSCC patients and
healthy individuals [92,93]. These differentially expressed proteins are mainly associated
with immune responses, cell growth and proliferation, and inflammatory responses, all
of which are closely related to the development of cancer [93]. The differential expression
of these proteins may partly reflect biological changes in patients compared with healthy
individuals, and therefore have potential as OSCC biomarkers [92,93]. Compared with
healthy individuals, in OSCC patients, CD63 was highly expressed, whereas CD81 and
CD9 were lowly expressed [94,95]. Alix (apoptosis linked gene-2-interacting protein X) was
highly expressed the in sEVs of OC patients, and its receiver operating curve (ROC) showed
good diagnostic performance, indicating it as a promising biomarker [96]. In addition,
Sun et al. tried to screen out biomarkers for evaluating the therapeutic effect of OSCC.
What is interesting is that they invented a new method for isolating EVs—bi-functionalized
magnetic beads (BiMBs), which were shown to effectively isolate EVs from a small amount
of saliva. After analyzing the proteomic profile of sEVs, among the numerous upregulated
proteins, three whole proteins and three phosphoproteins were found to have sensitive
responses to surgical treatment of OSSC, with the potential to evaluate the therapeutic
effect [97].

MiRNAs in sEVs are also promising biomarkers for OC, including miR-1307-5p, miR-24-
3p, miR-10b-5p, miR-486-5p, and so on (Table 1) [98–100]. Among them, miR-1307-5p could
promote OSCC progression, and the overexpression of it suggested a poor prognosis for
OSCC patients [98]. A review assessed the quality of the literature published between 2010
and 2021 to identify the most promising biomarkers for oral and oropharyngeal cancer. The
authors identified miR-10b-5p, miR-486-5p, miR-24-3p, and miR-200a as having significant
clinical utility as biomarkers [101]. Interestingly, Patel et al. combined miR-140-5p, miR-143-
5p, and miR-145-5p, which were significantly downregulated in OSCC patients, and the
combined 3-RNA showed good diagnostic performance for OSCC. This provides a concept
for the seeking of new useful biomarkers—combining several differentially expressed
substances to improve diagnostic performance [102].

It is worth noting that some miRNAs are not only related to OSCC, but also to
other cancers. MiR-24-3p has been shown to play a role in promoting the progression of
breast cancer [103], bladder cancer [104], hepatocellular carcinoma [105], and Hodgkin
lymphoma [99,106]. MiR-140 has been reported to exhibit decreased expression in various
cancers, including breast cancer [107], prostate cancer [108], lung cancer [109], and so on.
Furthermore, miR-140, miR-143, and miR-145 have been shown to inhibit the progression of
gastric cancer [102,110,111]. This poses challenges for their use as OSCC biomarkers, as
the differential expression of these miRNAs may be due to other cancers. If differentially
expressed molecules unique to OSCC can be found, it will make a huge contribution to the
application of oral cancer biomarkers.

Periodontal Disease

Periodontal disease is a common inflammatory condition in the oral cavity that
can lead to tooth loss [87]. Additionally, periodontal disease is associated with various
inflammation-related diseases, including diabetes, cardiovascular diseases, neurodegen-
erative diseases, autoimmune diseases, and cancer. Treatment of periodontitis may help
to improve these associated comorbidities [112]. Maintaining periodontal health not only
benefits oral health but also plays a crucial role in overall well-being. Recent studies have
demonstrated the potential of sEVs in the diagnosis and detection of periodontal diseases.

The proteomics of sEVs in periodontitis patients is different from that in healthy in-
dividuals [113,114]. As with OSCC, CD9 and CD81 were lowly expressed in sEVs from
patients with periodontitis [113]. Conversely, immune-related proteins such as complement
components were highly expressed, and thus have the potential to serve as biomarkers [114].
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It was reported that many RNAs in sEVs were potential biomarkers for periodonti-
tis. A comparative study profiled eight salivary exosomal miRNA samples, identifying
1995 differentially expressed miRNAs in chronic periodontitis (CP) saliva compared with
healthy controls. A promising biomarker for further investigation was hsa-miR-125a-3p
which had a strong correlation with periodontal pocket depth (PPD) [115]. Additionally,
a study found that miR-223-3p was downregulated in periodontitis patients, and, thus, it
could serve as a biomarker for diagnosing and assessing disease severity [21]. Another
study found that the level of PD-L1 mRNA in sEVs showed differences at different stages of
periodontitis, indicating that detection of the PD-L1 mRNA could also provide information
on the severity of periodontitis [116]. In addition, in a two-year cohort study, several
salivary miRNAs, including hsa-miR-5571-5p, hsa-let-7f-5p, hsa-miR-99a-5p, hsa-miR-28-5p,
and hsa-miR-320d, showed a fair discrimination power for periodontitis progression. These
miRNAs could serve as biomarkers for monitoring the progression of periodontitis, con-
tributing to precision medicine for this disease [117]. A pilot study discovered that specific
miRNAs (hsa-miR-140-5p, hsa-miR-628-5p, and hsa-miR-146a-5p) exhibited a significant
increase in sEVs from periodontitis patients, demonstrating a high diagnostic accuracy
when considering all three miRNAs together (AUC of ROC = 0.96) [118]. Furthermore,
Global 5mC hypermethylation in sEVs effectively distinguishes periodontitis patients from
both gingivitis patients and healthy individuals, indicating its potential as a biomarker for
periodontitis [119].

Primary Sjögren’s Syndrome

Primary Sjögren’s syndrome (pSS) is a multifactorial autoimmune disease with a triad
of dryness, pain, and fatigue [120,121]. Aqrawi et al. characterized the proteomics of
sEVs in patients with pSS and healthy individuals and identified the top five upregulated
proteins, as listed in Table 1. These proteins are promising biomarkers for pSS and may be
used for prognosis evaluation and disease monitoring [122].

Another study found that 121 proteins in sEVs were differentially expressed in pSS
patients compared with healthy controls. The most differentially expressed proteins were
related to immune response, including the S100 protein family (S100A7, A9, A12), resistin
(RETN), and so on. Further studies are needed to identify the promising biomarkers among
those proteins [123].

Oral Lichen Planus

Oral lichen planus (OLP), most common in the buccal mucosa, is an immune-mediated
inflammatory disease. It can be asymptomatic or painful [124]. Byun et al. compared
miRNA profiles in sEVs between OLP patients and healthy controls and found that miR-
4484 was significantly upregulated in OLP patients, suggesting that it could be used as a
potential biomarker for OLP [125].

Table 1. Potential biomarkers of oral diseases in sEVs.

Disease Type Potential
Biomarker Expression Application AUC of

ROC Curve Ref. Year

OC Protein

CD81 and CD9 Downregulated Diagnosis / [94,95] 2011; 2016

CD63 Upregulated Diagnosis / [94] 2016

Alix Upregulated Diagnosis AUC = 0.712 [96] 2021

Three full proteins
(HEP2, NHERF-2,

and MMP25)
and three

phosphoproteins
(PGM 1, ACLY,

and KPCD)

Upregulated

Assessing
OSCC

therapeutical
outcomes

/ [97] 2023



Int. J. Mol. Sci. 2023, 24, 17328 10 of 21

Table 1. Cont.

Disease Type Potential
Biomarker Expression Application AUC of

ROC Curve Ref. Year

OC RNA

miR-1307-5p Upregulated
Diagnosis and

suggesting
poor prognosis

/ [98] 2022

miR-24-3p Upregulated Diagnosis AUC = 0.738,
p = 0.02 [99] 2020

miR-486-5p Upregulated Diagnosis AUC = 0.67,
p = 0.05 [100] 2022

miR-10b-5p Downregulated Diagnosis AUC = 0.58,
p = 0.33 [100] 2022

miR-140-5p,
miR-143-5p and

miR-145-5p
Downregulated Diagnosis

(Combination
of these three

RNAs) AUC of
0.93

(p < 0.0001)

[102] 2023

Periodontal
disease

Protein

CD9, CD81 Downregulated Diagnosis / [113] 2019

Complement
components and

chemokine
ligand 28

Upregulated Diagnosis / [114] 2020

RNA

hsa-miR-125a-3p Downregulated Diagnosis
of CP

AUC = 1, p =
0.02 [115] 2020

miR-223-3p Downregulated
Diagnosis and

assessing
its severity

/ [21] 2021

PD-L1 mRNA Upregulated
Diagnosis and

assessing
its severity

/ [116] 2019

Periodontal
disease

RNA

hsa-miR-5571-5p Upregulated

Monitoring
and

diagnosing the
progression of
periodontitis

AUC = 0.849,
p < 0.001

[117] 2021hsa-let-7f-5p Downregulated AUC = 0.705,
p = 0.02

hsa-miR-99a-5p Downregulated AUC = 0.747,
p = 0.0054

hsa-miR-28-5p Downregulated AUC = 0.711,
p = 0.017

hsa-miR-320d Downregulated AUC = 0.705,
p = 0.02

hsa-miR-140-5p,
hsa-miR-628-5p,

and
hsa-miR-146a-5p

Upregulated

(Panel of three
miRNAs)

diagnosis of
periodontal

disease status

AUC = 0.96,
p < 0.0001 for
periodontitis;
AUC = 0.78,

p = 0.0006 for
gingivitis

[118] 2020

/ Global 5mC
hypermethylation

Significantly
increased

Diagnosis of
periodontitis

AUC = 1,
p = 0.001 [119] 2021

PSS Protein

APMAP, GNA13,
WDR1,

SIRPA, LSP1
Upregulated

Diagnosis and
prognosis

evaluation and
disease

monitoring

/ [122] 2017

S100A7, S100A8,
S100A9, S100A11,

and S100A12,
RETN, SERPINB1

and SERPINB5,
AZU1, CD14,

ANXA2, CFL-1,
LCP1, MIF

Upregulated Diagnosis / [123] 2021
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Table 1. Cont.

Disease Type Potential
Biomarker Expression Application AUC of

ROC Curve Ref. Year

OLP RNA miR-4484 Upregulated Diagnosis / [125] 2015

Abbreviations. ACLY: adenosine triphosphate citrate lyase; Alix: apoptosis linked gene-2-interacting protein X;
ANXA2: annexin A2; APMAP: adipocyte plasma membrane-associated protein; AZU1: azurocidin; AUC: area under
curve; CFL-1: cofilin-1; CP: chronic periodontitis; GNA13: guanine nucleotide-binding protein subunit alpha-13;
HEP2: heparin cofactor 2; KPCD: protein kinase C delta type; LCP1: plastin-2; LSP1: lymphocyte-specific protein 1;
MIF: macrophage migration inhibitory factor; MMP25: matrix metalloproteinase-25; NHERF-2: Na+/H+ exchanger
regulatory factor 2; OC: oral cancer; OLP: oral lichen planus; OSCC: oral squamous cell carcinoma; PD-L1: programmed
death-ligand 1; pSS: primary Sjögren’s syndrome; PGM 1: phosphoglucomutase 1; Ref: reference; RETN: resistin; ROC:
receiver operating curve; SEVs: saliva extracellular vesicles; SERPINB1 and SERPINB5: serpin peptidase inhibitors;
SIRPA: tyrosine-protein phosphatase nonreceptor type substrate 1; S100A7, S100A8, S100A9, S100A11, and S100A12:
S100 protein family; WDR1: WD repeat-containing protein 1.

3.1.2. Non-Oral Diseases

SEVs are not only associated with oral diseases but also with non-oral diseases [126–128].
Research indicates that sEVs can serve as potential biomarkers for numerous non-oral diseases
(Table 2).

Lung Cancer

Lung cancer is one of the most common cancers globally and stands as a primary
contributor to cancer-related fatalities [129]. Due to the lack of advanced diagnostic meth-
ods, 75% of patients are diagnosed in an advanced stage [130]. Recently, sEVs have gained
much attention as potential early diagnostic tools.

Wahid et al. used the Ti4+- IMAC (immobilized metal affinity chromatography)
method to compare the phosphoprotein profiles in the sEVs of lung cancer patients and
normal individuals. A total of 857 unique phosphopeptides corresponding to 721 saliva
phosphoproteins were identified. Among the identified phosphorylation sites, 37 sites and
217 sites were, respectively, upregulated and downregulated in patients, holding potential
for the early detection of lung cancer via salivary diagnostics [131].

MiRNA-205 has been identified as a potential biomarker for non-small-cell lung can-
cer [132]. Based on a high sensitivity for miRNA-205, an inexpensive, user-friendly, and
highly sensitive lung cancer diagnostic kit (LCDK) has been developed. The LCDK enables
rapid and non-invasive lung cancer diagnosis using clinical samples of saliva and urine
within a short timeframe [133]. The invention of this diagnostic kit shows a significant
advancement in the clinical application of sEVs as biomarkers, but its widespread clinical
adoption still requires much effort.

Other Cancers

Aside from lung cancer, other cancers, including esophageal, pancreaticobiliary, and
prostate cancer, may be diagnosed by detecting sEVs.

Lin et al. suggested that salivary exosomal GOLM1 (Golgi membrane protein 1)-
NAA35 (Nα-acetyltransferase 35 gene) chimeric RNA (seG-NchiRNA) was an efficient
candidate non-invasive biomarker for esophageal cancer, which could be conveniently
and reliably used to evaluate treatment outcomes and risk of recurrence, and for early
detection [134]. In addition, a signature based on salivary exosomal tsRNAs exhibited
diagnostic and prognostic potential for esophageal cancer, as well as the potential to guide
treatment, which may contribute to precision medicine for esophageal cancer [135].

In a study of pancreaticobiliary carcinoma, it was found that miR-1246 and miR-4644
in the salivary exosomes of patients were significantly higher than in those from healthy
controls, and the combination of the two showed a good disease diagnosis ability [136].

In addition, a study found that hsa-mir-331-3p and hsa-mir-200b in prostate cancer were
significantly downregulated compared with the control group, suggesting that they can be
used as potential biomarkers for prostate cancer [137].
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Neurodegenerative Diseases

Neurodegenerative diseases are the gradual loss of selective and fragile neuronal
populations. The clinical manifestations are cognitive and behavioral disorders, including
Alzheimer’s disease (AD), Parkinson’s syndrome and motor neuron disease [138].

A study presented an innovative approach utilizing nanoparticle tracking analysis
(NTA) for the direct quantification of salivary exosome concentration and its association
with the advancement of cognitive decline in AD. It showed a negative correlation between
exosome concentration and Addenbrooke’s cognitive examination III (ACE III) scores.
A lower score on the ACE III indicates a more severe condition in patients with AD.
It suggested that employing the nano-tracking technique to measure salivary exosome
concentration holds promise as a screening method for early disease detection [139].

Rani et al. found that the abundance of neuron-derived salivary exosomes and the level
of phosphorylated α-synuclein (α-syn) in salivary exosomes in patients with Parkinson’s
disease (PD) were significantly higher than those in healthy controls [140]. Similarly,
Cao et al. collected saliva samples from PD patients and healthy controls to detect the level
of α-syn in the salivary exosomes of each group. It was found that the levels of α-synOlig
(oligomeric α-syn) and α-synOlig/α-synTotal (Total α-syn) in the salivary exosomes of PD
patients were higher than in those of healthy controls, which could be used to distinguish
PD and healthy people [141]. These findings suggested that the detection of α-syn in sEVs
might be helpful for the diagnosis of PD.

Amyotrophic lateral sclerosis (ALS), alternatively referred to as motor neuron disease, is a
fatal neurodegenerative disorder affecting the central nervous system [142,143]. Sjoqvist et al.
established a workflow for the analysis of saliva and sEVs to compare protein profiles between
ALS patients and healthy individuals. The study revealed a downregulation trend in ZNF428
(zinc finger protein 428) in sEVs from ALS patients compared with the control group [144].

Traumatic Brain Injury

Traumatic brain injury (TBI) often results in mortality and acquired disability among
people of all ages, including both adults and children [145]. According to the severity of
clinical symptoms, TBI can be divided into mild, moderate, and severe. Secondary damage
is caused by cellular and molecular mechanisms that respond to initial damage and may
last for a long time [146]. There is a need for objective and quantifiable biomarkers to aid in
the diagnosis of acute TBI and predict the risk of long-term consequences.

A study recruited healthy individuals, concussion patients, and TBI patients in the emer-
gency department and performed real-time PCR analysis on their sEVs. Compared with the
control group, 57 genes and 56 genes were upregulated in emergency department patients and
patients with concussion, respectively. Additionally, three genes, namely, CDC2, CSNK1A1, and
CTSD, were upregulated in both emergency department patients and patients with concussion.
This indicates that genes within sEVs may serve as potential biomarkers for mild TBI [145]. Simi-
larly, Cheng Y. et al. found that a total of nine genes were upregulated in emergency department
patients’ sEVs compared with healthy controls, and a total of 13 genes were upregulated in
patients with concussion. Every group displayed its own unique profile. This indicates that sEVs
have the potential to be applied in the diagnosis and assessment of the severity of TBI [147].

Mental Disorders

Mental disorders have attracted attention due to their high incidence in recent years. Some
researchers have selected potential biomarkers by analyzing the proteomics of sEVs [148,149].
In a study, 10 candidate proteins related to emotional disorders were identified in sEVs, and
it was found that the level of neuronal glycoprotein M6a (GPM6a) was positively correlated
with the stress level in depressed individuals. Additionally, there was a difference in GPM6a
levels between treated depression patients and the untreated group. This indicates that GPM6a
can be used as a potential biomarker for stress and has a potential therapeutic monitoring
effect [149]. In addition, studies have shown that phosphoglycerate kinase 1 (PGK1) in sEVs is
a potential biomarker for assessing fatigue levels [150].
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Table 2. Potential biomarkers of non-oral diseases in sEVs.

Disease Type Potential
Biomarker Expression Application AUC of

ROC Curve Ref. Year

Lung cancer Protein

Differentially
expressed

phosphopep-
tides

37 phospho-
peptides

were
upregulated

Diagnosis

/ [131] 2022
Differentially

expressed
phosphopep-

tides

217 phospho-
peptides

were down-
regulated

Diagnosis

Other cancers Esophageal cancer RNA seG-
NchiRNA Upregulated

Diagnosis
and

evaluating
treatment
response

and risk of
recurrence

AUC = 0.912
p < 0.001 [134] 2019

Other cancers

Esophageal cancer RNA

A
combination
of a tsRNA

(tRNA-
GlyGCC-5)

and a
previously

undocu-
mented

small RNA

Upregulated

Diagnosis
and

prognosis
and guiding

therapy

/ [135] 2022

Pancreaticobiliary carcinoma RNA
miR-1246

and
miR-4644

Upregulated Diagnosis

The
combination
of these two

RNAs
showed

AUC = 0.833
p = 0.005

[136] 2016

Prostate cancer RNA
miR-331-3p

and
miR-200b

Downregulated Diagnosis

AUC = 0.663
(miR-200b);

AUC = 0.648
(miR-331-3p)

[137] 2022

Neurodegenerative
diseases PD Protein α-synuclein Upregulated Diagnosis / [140] 2019

Neurodegenerative diseases
PD Protein α-synOlig Upregulated Diagnosis AUC = 0.941 [141] 2019

ALS Protein ZNF428 Downregulated Diagnosis / [144] 2023

TBI Gene

CDC2,
CSNK1A1
and CTSD

Upregulated Diagnosis of
mild TBI / [145] 2019

ALOX5,
ANXA3,
CASP1,
IL2RG,

ITGAM,
ITGB2,
LTA4H,

MAPK14,
and

TNFRSF1A

Upregulated

Diagnosis
and

assessing the
severity
of TBI

/ [147] 2020

Mental disorders
Protein GPM6a Upregulated

Diagnosis of
stress and

monitoring
therapeutic

effect

/ [149] 2020

Gene PGK1 Upregulated
Assessing

fatigue
levels

/ [150] 2022

Abbreviations. AD: Alzheimer’s disease; ALOX5: Arachidonate 5-Lipoxygenase; ALS: amyotrophic lateral sclerosis;
ANXA3: annexin A3; AUC: area under curve; CASP1: caspase-1; CDC2: cell division cycle 2; CSNK1A1: Casein Kinase
1 Alpha 1; CTSD: cathepsin D; GPM6a: glycoprotein M6a; IL2RG: interleukin-2 receptor subunit gamma; ITGAM:
integrin alpha M; ITGB2: integrin beta-2 (CD18); LTA4H: leukotriene A4 hydrolase; MAPK14: mitogen-activated protein
kinase 14 (p38); PD: Parkinson’s disease; PGK1: phosphoglycerate kinase 1; Ref: reference; ROC: receiver operating
curve; seG-NchiRNA: salivary exosomal GOLM1 (Golgi membrane protein 1)-NAA35 (Nα-acetyltransferase
35 gene) chimeric RNA; SEVs: saliva extracellular vesicles; TBI: traumatic brain injury; TNFRSF1A: tumor necrosis
factor receptor superfamily member 1A (TNF receptor 1); ZNF428: zinc finger protein 428.
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3.1.3. Physiological Condition: Age

In addition to biomarkers of diseases, sEVs can also reflect physiological conditions
such as age. Differential protein expression was observed in salivary exosomes between
menopausal and adolescent women [151]. Menopausal women exhibited a higher total
protein content in their salivary exosomes compared with adolescent women, especially
major salivary proteins such as immunoglobulins and amylase. In contrast, adolescent
women had greater protein diversity than menopausal women. The levels of proteins
related to ribosomes and structural molecules were higher in adolescent women. This
indicates that sEV proteomics has the potential to provide age information.

3.2. Non-Biomarker Functions

SEVs have various functions beyond their potential use as biomarkers.

3.2.1. Innate Immune Defense

The Zika virus (ZIKV) is transmitted mainly by mosquitoes, and human-to-human
transmission also exists, but no record of saliva transmission has been found. Studies found
that sEVs prevented the attachment and infection of ZIKV at a natural concentration in
saliva, suggesting that sEVs might have an innate immune defense effect [24].

3.2.2. Hemostasis

A study found that sEVs exposed P-selectin ligand (CD24) and coagulation TF. Thus,
sEVs could bind to P-selectin to act on activated platelets and promote hemostasis at the
site of skin injury [152].

3.2.3. Therapy

An animal study found that the injection of salivary exosomes into diabetic rats could
reduce blood glucose levels, and improved salivary gland function, suggesting that salivary
exosomes might be a new treatment for diabetes-associated xerostomia and salivary gland
dysfunction [153].

In addition, it was identified that sEVs have potential therapeutic effects in corneal
wound healing. In vitro, primary corneal stromal cells were treated with salivary exosomes,
and scratches and cell migration were measured at various time points after stimulation. It
was found that compared with the control group, the cleavage of the corrugated protein
increased after treatment with salivary exosomes, which promoted wound healing and cell
migration [154].

3.2.4. Carrier for Drug Delivery Systems

Currently, drug delivery systems (DDSs) have attracted much attention in cancer
treatment due to their significant reduction in toxicity and adverse reactions [155]. As
carriers, exosomes have the advantages of good biocompatibility, low immunogenicity,
the ability to cross various biological barriers, and the modifiability of membrane surface
molecules [156]. Various types of exosomes, including plasma exosomes, tumor-cell-
derived exosomes, and mesenchymal-stem-cell-derived exosomes have been investigated
for possible applications as carriers for DDSs [26,157,158], but there is still a lack of research
on salivary exosomes as carriers. Future studies may explore the possibility of salivary
exosomes as drug delivery systems.

4. Conclusions

SEVs have been widely studied as biomarkers of oral and systemic diseases, including
OC, periodontitis, lung cancer, neurodegenerative diseases, traumatic brain injury, etc.
Most studies determine a component in sEVs as a potential biomarker based on its dif-
ference in expression between patients and healthy controls. Interestingly, recent studies
have often combined several differentially expressed components in a disease to form a
combined biomarker to improve the precision of disease diagnosis [97,102]. However, most
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studies have focused only on screening differentially expressed components. There is still
a gap between scientific research and the application of sEVs as biomarkers in clinical
practice. Taking OSCC as an example, the gold standard for its diagnosis is still tissue
biopsy [91]. Most research on sEVs as biomarkers is still in the laboratory stage, due to the
need for complex and expensive separation, characterization, and analysis techniques [88].
Surprisingly, an inexpensive, user-friendly, and highly sensitive diagnostic kit for lung
cancer has been developed [133]. Although it has not been widely used in clinical practice,
this development suggests that it is feasible to use sEVs as biomarkers in clinical practice.
Furthermore, it is also necessary to consider whether it is beneficial to use sEVs as biomark-
ers. For some diseases that are easy to diagnose and for which it is easy to evaluate the
effect of treatment according to symptoms, it is necessary to consider whether the previous
diagnosis method is more appropriate and beneficial.

In addition, sEVs also have immune defense, hemostatic, and therapeutic properties.
Furthermore, they have great application value as carriers in DDSs. Future research should
focus on the therapeutic roles of sEVs and their potential as carriers in DDSs.

In summary, non-invasive and easy-to-obtain sEVs have promising prospects for
application as biomarkers and can bring great benefits to patients. The therapeutic effects
of sEVs and their role as a carrier require further study.
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