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Abstract: With the growing global population, abiotic factors have emerged as a formidable threat to
agricultural food production. If left unaddressed, these stress factors might reduce food yields by
up to 25% by 2050. Plants utilize natural mechanisms, such as reactive oxygen species scavenging,
to mitigate the adverse impacts of abiotic stressors. Diverse plants exhibit unique adaptations to
abiotic stresses, which are regulated by phytohormones at various levels. Brassinosteroids (BRs) play
a crucial role in controlling essential physiological processes in plants, including seed germination,
xylem differentiation, and reproduction. The BR cascade serves as the mechanism through which
plants respond to environmental stimuli, including drought and extreme temperatures. Despite
two decades of research, the complex signaling of BRs under different stress conditions is still being
elucidated. Manipulating BR signaling, biosynthesis, or perception holds promise for enhancing crop
resilience. This review explores the role of BRs in signaling cascades and summarizes their substantial
contribution to plants’ ability to withstand abiotic stresses.

Keywords: abiotic stress; abscisic acid; brassinosteroids; ethylene; hydrogen peroxide; signaling
pathway

1. Introduction

The ability of plants to withstand abiotic stresses is enhanced through internal defense
mechanisms [1]. Abiotic stresses encompass nonliving environmental conditions detrimen-
tal to plant development, eliciting diverse physiological, molecular, and growth responses
in plants (Figure 1). These responses include gene regulation adjustments, altered protein
and metabolite production, hormone signaling changes, and increased antioxidant enzyme
activities [2]. Phytohormones, which are naturally occurring organic compounds, exert a
substantial influence on crucial plant life cycle processes at low concentrations [3]. Their
involvement in signal transduction networks enhances plant development and produc-
tivity in response to abiotic challenges [4]. Brassinosteroids (BRs) regulate a variety of
biological and cellular processes, including stem elongation, pollen tube development,
leaf morphology, root growth inhibition, fruit maturation, ethylene production, xylem
separation, chlorophyll production, and gene expression [5,6]. Furthermore, BRs have been
demonstrated to modify antioxidant enzyme and nonenzymatic defense mechanisms as
well as enhancing plant development and chlorophyll, sugar, and proline content [7,8]. Pre-
vious studies have highlighted BRs’ positive impact on Solanum nigrum L., enhancing sugar
and photosynthetic pigment accumulation, improving photosystem II (PSII) efficiency, and
reducing electrolyte leakage, malondialdehyde levels, and cadmium (Cd) accumulation [9].
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Additionally, BRs enhance rice growth and biomass under chromium (Cr) stress, influenc-
ing nutrient uptake and modulating antioxidant enzyme activity [7,9]. Furthermore, BRs
elevate enzymatic activity and mitigate oxidative damage in Raphanus sativus L. during
extreme reaction oxygen species (ROS) levels [10]. Similarly, exogenous BR administration
has been shown to increase rice biomass and overall growth [7]. BRs also mitigate abiotic
stressors, such high temperature, chilling stress, and metal stress [11–14]. Considering
their crucial role in protecting plants from environmental stresses, BRs also play a pivotal
role in sustainable crop production [8]. Therefore, adjusting BR signaling, biosynthesis
routes, or perceptions holds promise for crop improvement. This review aims to explore the
genuine role of BRs in signal cascades and outline their beneficial contributions to abiotic
stress resistance.
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Figure 1. Abiotic stresses affect different aspects of plant growth and development. This figure was
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2. Structure and Biosynthesis of BRs

BRs are a class of polyhydroxylated steroidal phytohormones that are found naturally
in plants and are essential to their regular growth and development. Depending on their C-
24 alkyl substituents, these steroids are classified as C27, C28, or C29 [15]. Brassinolide (BL),
the most physiologically active chemical of all the BRs discovered so far, is present in a wide
variety of plant species [16]. The primary emphasis of BR research is on BL, a 28-carbon
molecule with an S-methyl group at position C24 of the side chain of the 5α-ergastane
structure. According to Zhao and Li [17], other BRs are primarily inactivated metabolites
that come from different catabolic processes of BRs or intermediates of the BL biosynthesis
pathway. A detailed analysis of the biosynthesis of BL, a C28 BR, showed that the early and
late C-6 oxidation processes operate in tandem [18]. Campesterol (CR), the biosynthetic
precursor specific to BR, is first transformed to campestanol (CN), and then to BL by early or
late C-6 oxidation routes. Since the precursor, CN, is the starting point for both the early and
late C-6 oxidation processes, they are referred to as CN-dependent pathways. In crop plants
like tomato and tobacco, the late C-6 oxidation pathway appears to be the predominant
route because most of the endogenous BRs in these species comprise only members of
the late C-6 oxidation pathway. In the early C-6 oxidation pathway, C-6 oxidation takes
place before DWF4-mediated C-22 hydroxylation. In the early C-6 oxidation pathway,
CN is mainly converted to 6-oxocampestanol (6-oxoCN) and then to cathasterone (CT),
teasterone (TE), 3-dehydroteaserone (3DT), typhasterol (TY), and then to castasterone (CS),
in order. In the late C-6 oxidation pathway, C-22 hydroxylation takes place ahead of C-6
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oxidation. The intemediates undergo further modification and are included into the late C-6
oxidation pathway following CR’s hydroxylation by DWF4. To create 6-deoxocathasterone
(6-deoxoCT), CN is first hydroxylated at C-22. It is subsequently transformed to matching
intermediates, like those in the early C-6 oxidation pathway, but in a C-6 deoxy form [17].
The enzymes CYP85A1 and CYP85A2, respectively, catalyse the oxidation processes of
6-deoxoTY and 6-deoxoCS into TY and CS [16]. On the other hand, BR6ox connects the
early and late C-6 oxidation pathways in Arabidopsis at many locations. Additionally,
DWF4 is CN-independent since it can operate on several biosynthetic intermediates in
the upstream pathways. An early C-22 hydroxylation pathway can be established by
the pathways branching at campesterol [15]. Figure 2 depicts the synopsis of the BRs
biosynthesis pathway.
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3. Role of BRs in Plant Growth and Development

BRs function as steroid hormones, influencing plant growth and development [19,20].
These compounds are implicated in diverse biological processes in addition to plant growth,
including stem cell maintenance, cell division, vascular growth, and flowering [21,22].
Hydroponically grown plants can leverage BRs to stimulate growth through activation of
the cell cycle during seed sprouting, cell cycle control, and leaf growth. BRs play a vital
role in regulating responses to both abiotic and biotic stresses as well as the formation of
stomata [20,23]. Furthermore, BRs govern the fertility of both female and male crops [24].
BRs influence etiolation, promote stigma elongation [25] and influence leaf size and angle,
responses to atmospheric pollution, and thermotolerance [26,27]. Exogenous BR application
or manipulation of BR biosynthesis and signaling pathways has the potential to enhance
crop yields [28]. Chen et al. [25] discovered that the regulation of Arabidopsis thaliana L.
growth is regulated by the BR-activated WRKY46, WRKY54, and WRKY70. In addition, the
histone lysine methyltransferase SDG8 emerged a critical regulator of BR-regulated gene
expression, with a knockout mutant exhibiting impaired BR response and reduced growth
in Arabidopsis [29].

In Arabidopsis, BR also modulates transcriptional pathways controlling seed and ovule
development, influencing their size, weight, and number [30]. BRs also regulate the re-
sponse to mild nitrogen deficits in Arabidopsis, mediating the elongation of primary roots
through the BSK3 gene [31]. In rice, BR controls plant structure and grain yield, with
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BRD1 and D11, which influence plant height, implicated in BR biosynthesis [32]. OsD-
warf2/OsDwarf1, enzymes that contribute to BR biosynthesis, are known to negatively
affect second internode and seed size in rice [32]. During rice panicle development, an-
tioxidant system activation and energy charge are elevated, promoting spikelet growth in
response to nitrogen fertilization [33]. In wheat, exogenous BR application delays the transi-
tion from vegetative to generative states, whereas the BR inhibitor brassinazole accelerates
the transition and heading steps [34].

Winter rapeseed matures 4–8 days faster with BR application [31], and interactions
between BRs and other plant hormones enhance plant performance and adjust growth [35].
Disruption of BR signaling impacts seed formation, pollen development, flowering dura-
tion, and other developmental processes [36]. BR-deficient plants exhibit notable charac-
teristics such as short hypocotyls, petioles, and internodes as well as downward-curled
leaves, delayed flowering, altered stomatal development, lower male fertility, and reduced
plant structure due to decreased lamina inclination [36,37]. According to Zhu et al. [38], BR
deficiency results in smaller grains, less fertile seeds, fewer tillers, inappropriate stomatal
distribution, and decreased seed germination. BR-insensitive or BR-deficient mutants are
often referred to as late-flowering mutants owing to their slow growth [17]. Conversely,
plants accumulating excess BRs display enlarged petioles and hypocotyls, resulting in
increased height [39].

4. BRs and Redox Homeostasis

A high-rate redox metabolic process like photosynthesis is sensitive to abrupt changes
in its input factors. ROS, including singlet oxygen, superoxide anion radicals, and H2O2, are
generated during photosynthesis because of quick fluctuations in photon capture, electron
fluxes, and redox potentials. As a result, the photosynthesizing chloroplast serves as a
conditional source of crucial redox and ROS that is used to adjust processes within the
chloroplast as well as in the cytosol and nucleus after retrograde release or processing.
However, signaling proteins may be directly oxidized and modulated by ROS. H2O2 and
the GSH:GSSG ratio did not significantly rise at very low BR concentrations. In cucumber
plants, there was a notable rise in both the H2O2 content and the GSH:GSSG ratio upon
increasing BR. According to Jiang et al. [40], there is a possibility that markedly increased
H2O2 will serve as a signal for a greater decrease in GSSG to GSH, most likely due to
increased GR activity. H2O2 concentrations rose in response to a rise in BR, which may
have led to oxidative stress. As a part of their cellular antioxidative reactions, plants
enhance their synthesis of glutathione in such circumstances, as seen by the elevated
GSH+GSSG concentration. Under high ROS concentrations, the ratio of GSH:GSSG also
dropped, most likely because of enhanced GSH oxidation for the scavenging of ROS or
other harmful chemicals. Because of this, the cellular redox state’s reaction to BR and H2O2
showed different phases and, as a result, the beneficial effects of both BR and H2O2 on CO2
assimilation were only shown in cucumbers at moderate concentrations [40].

5. BRs as Regulators of Abiotic Stress Responses

For many years, researchers have investigated the impact of abiotic stress on phyto-
hormone levels and their signaling status. These changes reveal that growth regulators
act as mediators of various upstream signals rather than as early transducers of stress
signals. With the aim of meeting the evolving needs of plants, this review explores the
effects of BRs, as a class of environmentally safe hormones, on crop responses. Using BRs
could facilitate a marked improvement in plants’ abilities to withstand stress, resulting in
improved quality and increased yield. Numerous studies conducted over several years
have suggested the involvement of BRs and related chemicals in plant responses to diverse
abiotic stresses. Table 1 summarizes the current findings regarding the role of BRs in
regulating such responses in plants.
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Table 1. Role of BRs in plant tolerance to abiotic stresses.

Abiotic Stress Plant Species Responses References

Cd Arabidopsis thaliana L.
Arabidopsis root system is protected from Cd-induced

stress by BRs, as they reverse its harmful morphogenic
effects on apices of all root types

[41]

Low temperatures Lycopersicon esculentum L. BR-mediated enhancement of the photosynthetic
apparatus and antioxidant system [42]

Drought Zea mays L.
BRs increase root and shoot growth as well as chlorophyll

content, in addition to compensating for harmful
drought-induced changes in maize genotypes

[43]

Water stress Raphanus sativus L.
Enhanced levels of free proline, SOD, CAT, and APX,

required to mitigate the repressive effects of water stress
on seedlings

[44]

Drought and salinity Pisum sativum L. Increased CAT, POX, and SOD activity, leading to
improved seedling growth

Cu Lycopersicon esculentum L. Enhanced photosynthesis-related attributes and
antioxidant capacity

Cr Capsicum annuum L.
EBL possesses distinct regulatory systems for mitigating
Cr stress, including interactions between plant hormones,

MAPK signaling, and ROS scavenging
[45]

High temperatures Triticum aestivum L. Increased CAT, POX, and SOD activity, resulting in
enhanced seedling growth [13]

Ni Brassica juncea L. Increased antioxidant enzyme activity, reducing
Ni-related stress [46]

Cu and NaCl Cucumis sativus L. Increased CAT, POX, and SOD activity, enhancing growth,
carbonic anhydrase activity, and photosynthetic efficiency [47]

6. BRs and Drought

Drought, resulting from insufficient rain or water, drastically reduces crop yield, affect-
ing various physiological processes through absorption, extrusion, retention, and osmotic
stress, which disturb redox balance [48]. Drought resistance is associated with abscisic
acid (ABA) accumulation. Exogenous BR treatment elevates ABA levels, mitigating the
adverse effects of drought on plants. In challenging environments, BR dosage in tomatoes
promotes drought resistance by improving photosynthetic machinery, leaf hydration, and
antioxidant defense [49]. Khamsuk et al. [50] revealed that exogenous BRs enhance light use
and stimulation intensity in pepper seedlings during drought, thus increasing resistance to
drought-induced dehydration through foliar application [50]. The long-term consequences
of drought can be alleviated with BR interventions [51]. Despite drought inducing excessive
amounts of ROS, the presence of BRs significantly reduces ROS, malondialdehyde, and
lipid peroxidation levels [52].

Exogenous BR administration promotes drought resistance, as observed in mutants
with increased stress tolerance, including both BR-deficient and BR-insensitive mutants [53].
In tomatoes, increased BR levels, rather than BR signaling potency, enhance drought toler-
ance; whereas, BRI1 overexpression negatively impacts tomato drought tolerance, revealing
the dual role of the BR network in stress tolerance [54]. Furthermore, BRs and ABA are
involved in mostly antagonistic physiological processes [52,53]. BIN2 inhibits BR signaling,
whereas ABA-mediated stress responses are enhanced by SnRK2 phosphorylation, which
activates ABA-sensitive genes [55]. Exogenous BR inhibits ABA-induced transcriptional
activation of RD26, a transcriptional activator of stress-induced genes [56]. Reciprocal
antagonistic interactions between BR signaling and ABA-responsive transcription factors
in Arabidopsis contribute to plant development and drought tolerance. RD26 targets BES1,
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allowing for BR to suppress RD26 under drought conditions, modulating transcription of
BES1-controlled genes, consequently diminishing BR function [57].

Research suggests that autophagy pathways, interacting with BR signaling via BIN2,
regulate drought stress and malnutrition [58] (Figure 3). BIN2 activates a phosphorylated
DSK2 ubiquitin receptor protein, directing it to degrade BES1 through autophagy [58].
Collectively, these findings highlight the complexity of BR-mediated drought responses.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 17 
 

 

factors in Arabidopsis contribute to plant development and drought tolerance. RD26 tar-

gets BES1, allowing for BR to suppress RD26 under drought conditions, modulating tran-

scription of BES1-controlled genes, consequently diminishing BR function [57]. 

Research suggests that autophagy pathways, interacting with BR signaling via BIN2, 

regulate drought stress and malnutrition [58] (Figure 3). BIN2 activates a phosphorylated 

DSK2 ubiquitin receptor protein, directing it to degrade BES1 through autophagy [58]. 

Collectively, these findings highlight the complexity of BR-mediated drought responses. 

 

Figure 3. BRs control the plant development–stress response equilibrium. Depending on cellular 

and environmental se�ings, interactions between BR and stress signaling pathways can occur 

through their receptors, downstream kinases (such as BIN2), and/or transcription factors (such as 

BZR1/BES1). This figure was drawn using BioRender [h�ps://www.biorender.com accessed on 29 

September 2023)]. 

7. BRs in Plant Response to Extreme Temperature Stresses 

Chilling or freezing damage from low temperatures notably impedes the production 

of agricultural products worldwide, particularly affecting thermophilic plants [59]. Under 

cold stress, plants face mechanical constraints, membrane fluidity differences, macromol-

ecule interactions, and osmotic pressure changes. Cold exposure adversely impacts plant 

photosynthetic activity, leading to decreased CO2 assimilation, photoinhibition of PSI and 

PSII, and reduced enzyme activity [60]. 

Enhanced cold tolerance, induced by BRs, affects not only entire plants but also the 

quality of harvested products, such as fruit. Postharvest management requires compara-

tively larger amounts of BRs relative to those needed for stress responses across the entire 

plant. Cold stress compromises the integrity of tomato fruit, whereas mango fruit exhibits 

increased concentrations of protective proteins, including remorin and temperature-in-

duced lipocalin, which protect the fruit against cold-related damage [61]. Additionally, 

BRs reduce phase transition temperatures and increase fluidity under cold conditions by 

Figure 3. BRs control the plant development–stress response equilibrium. Depending on cellu-
lar and environmental settings, interactions between BR and stress signaling pathways can occur
through their receptors, downstream kinases (such as BIN2), and/or transcription factors (such as
BZR1/BES1). This figure was drawn using BioRender [https://www.biorender.com accessed on 29
September 2023)].

7. BRs in Plant Response to Extreme Temperature Stresses

Chilling or freezing damage from low temperatures notably impedes the produc-
tion of agricultural products worldwide, particularly affecting thermophilic plants [59].
Under cold stress, plants face mechanical constraints, membrane fluidity differences, macro-
molecule interactions, and osmotic pressure changes. Cold exposure adversely impacts
plant photosynthetic activity, leading to decreased CO2 assimilation, photoinhibition of PSI
and PSII, and reduced enzyme activity [60].

Enhanced cold tolerance, induced by BRs, affects not only entire plants but also the
quality of harvested products, such as fruit. Postharvest management requires compar-
atively larger amounts of BRs relative to those needed for stress responses across the
entire plant. Cold stress compromises the integrity of tomato fruit, whereas mango fruit
exhibits increased concentrations of protective proteins, including remorin and temperature-
induced lipocalin, which protect the fruit against cold-related damage [61]. Additionally,
BRs reduce phase transition temperatures and increase fluidity under cold conditions
by augmenting unsaturated fatty acids in the phospholipids of the mango fruit plasma

https://www.biorender.com
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membranes [61]. Various BR levels influence the freshness of peppers at low temperatures.
Raza et al. [62] found that BRs effectively mitigated chilling damage in green sweet peppers,
enhancing antioxidant activity, photosynthetic pigments, and L-ascorbic acid levels. It
was hypothesized that this would lessen oxidative damage and electrolyte leakage during
cold stress.

Regarding heat stress, in terms of physiological activity, the photosynthetic apparatus
is particularly sensitive. Moreover, high temperatures markedly affect the connection be-
tween PSII and photochemical activities, resulting in decreased net photosynthetic rates [63].
BR pretreatment in tomato plants reduces heat-induced losses in photosynthesis by enhanc-
ing antioxidant enzyme activity, thereby mitigating oxidative damage under stress. Intrigu-
ingly, BRs play a role in regulating thermotolerance in both heat-tolerant and heat-sensitive
plant cultivars [64]. For instance, BR pretreatment significantly enhances photosynthetic
rate, net CO2 absorption rate, stomatal closure, PSI photodegradation activity, and wa-
ter use efficiency in both heat-tolerant and heat-sensitive melons [62]. In eggplant, BRs
boost antioxidant capacity, reducing ROS accumulation and alleviating heat stress [65]. BR
signaling also regulates plant growth under high-temperature stress (Figure 4). BZR1 accu-
mulation in the nucleus during an increase in temperature regulates thermomorphogenesis
by inducing gene expression that promotes growth or binding to PIF4 promoters [66].
High temperatures lead to active PIF4 accumulation, favoring BES1–PIF heterodimers in
nuclear protein complexes rather than BES1 homodimers [67]. This reduces the available
active BES1 homodimers, depressing BR biosynthesis and inhibiting BR signaling. High
concentrations of BES1–PIF4 centers activate thermomorphogenesis-related genes [67].
Moreover, the kinase-defective BRI1 protein from bri1-301 mutants exhibits decreased sta-
bility and biochemical activity under high temperature, suggesting temperature-enhanced
misfolding and degradation of this protein in the mutant [68]. Thus, these studies reveal
the involvement of BR receptors and downstream signaling elements in regulating growth
responses to temperature changes.
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Figure 4. BR signaling amid high-temperature stress and growth responses. BZR1 accumulation
in the nucleus during an increase in temperature regulates thermomorphogenesis by inducing
gene expression that promotes growth or binding to PIF4 promoters. High temperatures lead to
active PIF4 accumulation, favouring BES1–PIF heterodimers in nuclear protein complexes rather
than BES1 homodimers. High concentrations of BES1–PIF4 centres activate thermomorphogenesis-
related genes. This figure was drawn using BioRender [(https://www.biorender.com (accessed on 15
September 2023)].
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8. Interaction of BRs with Other Hormonal Pathways

Plants respond to various environmental cues and developmental signals through
crosstalk between the BR pathway and other hormonal pathways. Both plant hormones and
BRs play pivotal roles in regulating plant development, growth, and stress responses. In
the following sections, examples illustrating the crosstalk between BRs and other hormonal
pathways are provided.

8.1. BRs and Ethylene

BRs and ethylene, as vital plant hormones, orchestrate various aspects of plant devel-
opment and responses to environmental signals. Despite primarily using distinct signaling
pathways, evidence suggests that crosstalk between these two hormone pathways co-
ordinates plant responses and optimizes growth under changing conditions. Ethylene,
a fundamental gaseous plant hormone produced by nearly all plant tissues, influences
critical physiological processes and stress responses. A previous study showed that BRs
impede stem elongation, increase lateral expansion, and exacerbate the apical hook curve
in Pisum sativum L. seedlings exposed to BRs [69]. Additionally, BRs were found to boost
endogenous ethylene synthesis, with ethylene mediating BRs’ inhibitory impact [69]. In
Solanum lycopersicum L., the fruit of SlCYP90B3-OE transgenic lines exhibited higher ethy-
lene content compared with control fruit, demonstrating increased ethylene production
through the upregulation of ethylene biosynthesis genes (SlACS2, SlACS4, and SlACO1)
and signaling genes (SIETR3 and SICTR1) [70].

BRs contribute to the ethylene biosynthetic pathway by controlling signaling and
ethylene biosynthesis-related genes, For example, the expression of ACO2 and endogenous
ethylene levels in Arabidopsis thaliana L. are controlled through the BR transcriptional compo-
nent BES1 [71]. Alternative oxidase (AOX) may be employed to protect photosystems from
BL-mediated ROS accumulation in Nicotiana benthamiana L., enhancing the plants’ ability to
withstand abiotic stress [72]. BL, a BR, increases ethylene production and AOX expression
in Cucumis sativus L. seedlings subjected to dehydration, salt, and freezing stresses [73].
Ethylene was shown to restore BL-induced negative effects; however, pretreatment with
aminooxy acetic acid, which inhibits ethylene biosynthesis, markedly reduced seedling
resistance to BL-induced photooxidation [73]. BR pretreatment increases ethylene produc-
tion and signaling during salt stress by enhancing 1-aminocyclopropane-1-carboxylate
synthase activity, an enzyme implicated in ethylene synthesis [74]. However, limiting
ethylene production and/or signaling elements reduces salt sensitivity and antioxidant
enzyme activity produced by BR [74].

BRI1, a membrane-bound BR signaling center, may play a role in regulating salt stress
tolerance, as indicated by Bri1-9 mutants’ partial recovery from salt hypersensitivity when
their endoplasmic reticulum-associated protein degradation pathway is suppressed [75].
Bin2-1 mutants, characterized by the activation of fewer stress-responsive genes, exhibit
heightened sensitivity to salt stress [76]. High salinity promotes root growth quiescence by
preventing BZR1 nuclear accumulation and subsequent BR signaling functions [77].

Overall, ethylene-BR crosstalk fine-tunes plant development and responses to di-
verse environmental inputs; however, the molecular mechanisms underlying this crosstalk
are complex and remain the subjects of ongoing research. Various interactions can af-
fect the plant, its growth stage, and its environment. BRs promote the expression of 1-
aminocyclopropane-1-carboxylic acid oxidase and 1-aminocyclopropane-1-carboxylic acid
to synthesize ethylene (Figure 5). BRs control the transcriptional and post-transcriptional
regulation of ethylene production by lengthening the half-life of the ACS5 protein [78].
Ethylene biosynthesis is either negatively or positively controlled by BR, depending on
the dose [21]. Exogenous BR application accelerates banana ripening by regulating the ex-
pression of genes associated with ethylene production, including MaACS1, MaACO13, and
MaACO14 [79]. In tomato plants, BR increases the post-transcriptional expression of ACS2
and ACS4 [80]. In addition to ACS6, ACS9, and ACS5, BR stabilizes other ACS proteins
by degrading 26S proteasomes [78]. Indirect evidence suggests that BR increases ethy-
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lene synthesis by regulating the ROT3/CYP90C1 gene, which in turn controls hyponastic
growth [81].
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Figure 5. Interactions of BRs with other hormonal pathways. ET: BRs promote the expression of
1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocyclopropane-1-carboxylic acid
synthase (ACS) to synthesize ethylene. BRs control the transcriptional and post-transcriptional
regulation of ethylene production by lengthening the half-life of the ACS protein. Ethylene biosyn-
thesis is either negatively or positively controlled by BR, depending on the dose. BR accelerates the
expression of genes associated with ethylene production, including ACS. Moreover, BR stabilizes
ACS proteins by breaking down 26S proteasomes and promotes the post-transcriptional production
of ACS. ABA: By encouraging the phosphorylation and activation of SnRKs, ABA is recognized
by PYR/PYL/RCAR receptors and releases SnRKs from PP2C-mediated repression. Subsequently,
SnRKs phosphorylate downstream transcription factors, like ABI1/2, which control the transcription
of several genes that respond to stress. In addition to directly phosphorylating and activating SnRKs
and ABI1/2, BIN2, a negative regulator of BR signalling, can also be inactivated by PP2C BZR1
and also directly targets ABI, suppressing its transcription to adversely affect the expression of
stress-responsive genes. H2O2: BR-encouraged H2O2 levels were initiated by an NADPH-dependent
pathway. When BR binds to receptor kinase BRI1, it not only raises the cellular level of H2O2, which
oxidizes BZR1 at a conserved cysteine residue, but also suppresses the kinase activity of BIN2 to
induce dephosphorylation of BZR1. The transcriptional activity of BZR1 is enhanced by this oxida-
tion. ET= ethylene; ABA= abscisic acid; H2O2 = hydrogen peroxide, PP2C = protein phosphatase
2C; ABI = abscisic acid-insensitive; SNRK = SNF1-regulated protein kinase; ABRE = abscisic acid
responsive element. This figure was drawn using BioRender [(https://www.biorender.com (accessed
on 26 August 2023)].

8.2. BRs and Hydrogen Peroxide

The interplay between BRs and hydrogen peroxide (H2O2) is essential for numerous
physiological processes and responses to environmental stimuli. Investigating this crosstalk
offers valuable insights into plant growth, development, and stress responses. H2O2, an
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ROS, serves as a signaling molecule in plants [82]. It is produced in response to various en-
vironmental cues and stresses, such as pathogen attacks, drought, high light intensity, and
mechanical damage. Serving as a secondary messenger, H2O2 regulates crucial processes,
including the cell cycle, apoptosis, and stress adaptation. A previous study revealed that
introducing H2O2 to tomato plants during drought stress increased root respiration, chloro-
phyll levels, and yield [83]. Although high concentrations of H2O2 can lead to an oxidative
burst that damages protein structures and impairs cell signaling, low concentrations may
enhance plant tolerance to stress induced by high temperature [13], low temperature [12],
copper exposure, and heavy metal toxicity [84]. A study on Cucumis sativus L. revealed
interactions between BRs and H2O2 in relation to sugar uptake and the Calvin cycle, in-
dicating that H2O2 controls photosynthesis via BRs [40]. Another study demonstrated
that BR treatment significantly elevated H2O2 levels in A. thaliana L. seedlings through an
NADPH-dependent mechanism, thereby influencing seedling development [85]. The study
also showed that diphenylene iodonium treatment significantly reduced the effects of BRs
on hypocotyl elongation and significantly lowered H2O2 levels.

By affecting BRs and H2O2, when combined, they show promising effects in enhanc-
ing crop productivity through their impact on photosynthesis and sugar metabolism. In
response to cold stress, Lycopersicon esculentum L. exhibited increased SPAD chlorophyll
levels, net photosynthetic rate, carbonic anhydrase activity, and other antioxidant enzyme
activities [12]. Nazir et al. [14] explored the possibility of reducing Cu toxicity in Lycopersi-
con esculentum L. through combined BR and H2O2 treatment, finding that this combination
considerably improved chlorophyll levels and the Fv/Fm ratio compared with individual
treatments. BRs and H2O2 reduced electrolyte leakage while increasing net photosynthetic
rate and associated attributes. The interaction also impacted total protein content, antioxi-
dant enzyme activities, and carbonic anhydrase activity as well as chloroplast ultrastructure
and stomatal performance in Cu-treated tomato seedlings. Therefore, the BR–H2O2 interac-
tion may improve total protein content and photosynthetic capacity while sustaining the
antioxidant system and plasma membrane, thereby enhancing plants’ ability to withstand
abiotic stress. Additionally, the BR–H2O2 interaction has been shown to elevate lycopene
and β-carotene levels in fruit [12]. Furthermore, BRs and/or H2O2 have been shown to
improve cell water relations, e.g., membrane stability and leaf water potential, and reduce
electrolyte leakage, contributing to the maintenance of normal cellular metabolism [12,86].
Tian et al. [85] demonstrated that BR treatment dramatically increased the H2O2 content
in Arabidopsis thaliana L. seedlings, and that BR-encouraged H2O2 levels were initiated by
an NADPH-dependent pathway (Figure 5). Then, they looked at any potential involve-
ment of H2O2 in BR-facilitated seedling growth. They demonstrated that treatment with
diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, reduced H2O2 levels and
hypocotyl elongation was greatly reduced by BRs. High DPI concentrations, however,
made Arabidopsis thaliana L. seedlings less sensitive to BRs [85].

In summary, the complex crosstalk between BRs and H2O2 in plants integrates hor-
monal and oxidative signals to regulate diverse physiological processes. This interaction
serves as a mechanism for plants to optimize growth, development, and responses to
environmental stresses, ultimately enhancing their adaptability and survival.

8.3. BRs and Abscisic Acid

Plants use abscisic acid (ABA) as a stress sensor to combat abiotic stresses [87]. In
response to salt stress, plants regulate ABA levels to mitigate its effects. Rapid ABA
accumulation leads to swift closure of stomata, reducing transpirational water loss [88].
Leaf tissues with elevated ABA concentrations facilitate salt adaptation by modulating
stomatal activity, adjusting osmotic levels, and increasing stress protein production [88].
ABA significantly improves freezing, chilling, drought, and salt tolerance in a various
plants [89]. Heavy metals, such as aluminum, zinc, cadmium, and nickel, have been shown
to elevate ABA levels in plants [90]. Among these, Cd, a hazardous divalent heavy metal, is
rapidly absorbed by bacteria, inducing detrimental symptoms, such as stunted growth. [91].
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Cd also adversely affects plant photosynthesis by lowering chlorophyll levels and inhibiting
stomatal opening [92]. In Phragmites and Typha plants, Cd-induced ABA accumulates in
roots but not shoots [90].

Although ABA and BRs generally have distinct functions, evidence suggests that they
can interact and crosstalk in specific physiological processes. ABA slows seed sprouting
and improves seed dormancy through embryo development, whereas BR accelerates seed
sprouting [93]. Furthermore, BR and ABA play contrasting roles in modulating seed
germination and post-germinative development [92]. Hussain et al. [94] found that the
exogenous administration of ABA, BRs, and ABA + BRs enhanced agronomic indicators and
photosynthetic qualities in rice plants exposed to varying levels of salt stress. Additionally,
exogenous hormone treatment improved pollen viability, spikelet source-to-sink capacity,
and leaf area as well as net photosynthetic rate and SPAD values, in rice flag leaves.
Additionally, the joint application of BRs and ABA increased grain weight under salt stress
in rice [94].

The interaction between BR and ABA involves gene expression regulation and protein
activity modulation. In the presence of BR, a complex involving topless (TPL/TPR), BRI1-
EMS suppressor 1, and histone deacetylase 19 suppresses the expression of the gene ABI3
through its effects on the E-box promoter. BZR1 transcription factor binding to the ABI5
G-Box promoter regions suppresses ABI3 and ABI5 gene expression, mitigating the stress
response (Figure 5). At low BR levels, BIN2 increases SnRK2/3 activation, triggering stress
responses. BIN2 phosphorylates the ABI5 transcription factor, upregulating the expression
of genes associated with ABA [93]. In some studies, the autostimulation of ABA-associated
SnRK2s genes and kinase activity was observed [95,96]. Researchers are actively exploring
the molecular mechanisms underlying this crosstalk to deepen our understanding of how
plants integrate diverse hormonal signals for optimized growth and adaptive responses to
changing environments.

9. BR Signaling Pathway

The molecular and metabolic aspects of BR signaling in plants have been extensively
investigated. The importance of the BR hormone signalling pathway in growth control and
the regulation of many genes related to the cell wall are highlighted, as is the discovery of a
receptor-like protein (RLP44) that is essential for triggering BR signalling through direct
interaction with the BR coreceptor BAK1. This interplay combines hormone signalling
and cell wall surveillance to maintain cell wall integrity and homeostasis, which in turn
affects plant development [97]. However, the BR signal transduction pathway in Arabidopsis
thaliana L. starts with ligand detection on the cell membrane and ends with gene expression
in the nucleus. Upon BR binding to the plasma membrane-anchored leucine rich repeat
receptor-like kinase (BRI1) receptor, a signal cascade activates the expression of genes
through nuclear and cytosolic transcription kinases and phosphatases [98]. BRI1 enhances
its kinase activity through successive transphosphorylation with BAK1 and autophospho-
rylating multiple times upon BR detection. In this process, BRI1 promptly releases BKI1, a
negative regulator at the C-terminus [99]. BKI1 improves BRs signaling by degrading 14-3-3
proteins, which maintain the cytoplasmic retention of two master transcription factors:
BZR1 and BES1 [100,101]. BRI1 activation induces the activation of BSU1 phosphatase
through the phosphorylation of BSKs. Activated BSU1, in turn, dephosphorylates BIN2,
rendering it inactive [102].

The master transcription factors BZR1 and BES1 are released from suppression due
to BIN2 inactivation. Activated BZR1 and BES1 translocate into the nucleus to directly
control the expression of BR-related genes or interact with other transcription factors [103].
BKI1 maintains BRI1 in an inactive state when BRs are absent [101,104]. Both BZR1 and
BZR2/BES1 are nuclear transcription factors that are phosphorylated by the GSK3 kinase
repressor protein BIN2, present throughout the nucleus, cytoplasm, and plasma membrane.
Consequently, the activity of these two transcription factors is restricted. BIN2 prevents
BZR1 and BZR2/BES1 from becoming functional transcription factors by impeding their
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interaction with other proteins or transcription factors [105]. Figure 6 depicts the BR
signaling scheme.
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Figure 6. BR signalling pathway. The perception of BR begins at the plasma membrane. The BR
receptor complex consists of the receptor kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and
its co-receptor BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). When BRs bind to the BRI1
receptor, they induce a conformational change in the receptor, leading to the activation of its kinase
domain. Activated BRI1 phosphorylates itself and phosphorylates BAK1. The activated BRI1-BAK1
complex initiates a phosphorylation cascade involving several downstream components, including
BR-SIGNALING KINASE 1 (BSK1), CONSTITUTIVE DIFFERENTIAL GROWTH 1 (CDG1), and
others. BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a GSK3-like kinase, is a negative regulator of
the BR signalling pathway. Activated BRI1 inhibits BIN2 through phosphorylation. Inhibition of BIN2
leads to the stabilization and nuclear translocation of BZR1 (BRASSINAZOLE-RESISTANT 1) and
BES1 (BRI1-EMS-SUPPRESSOR 1), which are transcription factors that regulate the expression of BR-
responsive genes. BZR1 and BES1 bind to specific DNA sequences in the promoters of target genes,
regulating their expression. This figure was drawn using BioRender [https://www.biorender.com
(accessed on 28 August 2023)].

10. Conclusions

BRs are considered pivotal in abiotic stress responses as they regulate a specific set
of genes to mediate abiotic stress tolerance responses. BRs regulate the transcription of
these genes, encoding essential proteins and enzymes, thereby safeguarding plants and pre-
venting them from succumbing to stress. Notably, BRs and related compounds have been
implicated in stabilizing responses to various abiotic stimuli, including drought and tem-
perature fluctuations. The exploration of BRs will undoubtedly reach new levels once the
fundamental mechanisms of homeostasis and their crosstalk with diverse phytohormones
are understood. A complex regulatory network is formed by the interactions between ABA,
ethylene, H2O2, and BR signaling pathways and this network affects critical processes, such
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as seed germination, root growth, stomatal closure, and stem elongation. These interactions
enhance plant resilience to abiotic stressors, such as drought and temperature variations.
Previous research has explored the mechanisms underlying BR signaling transduction
pathways and the roles played by BZR1/BES1 transcription factors in response to stressful
conditions. Thus, the intricate pathway involving the activation of transcription factors
BZR1/BES1 emerges as a key determinant in BR-mediated enhancement of plant tolerance
to abiotic stressors.
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