Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Synthesis of Centellae asiaticae Extracts and Characteristion of Their Biological Activity
3.3.1. Plant Extraction Using a Design of Experiment (DoE)
3.3.2. Determination of Selected Active Component Content and Total Phenolic Content (TPC)
3.3.3. Determination of Biological Activity
Antioxidant Activity
Anti-Hyaluronidase Activity
Microbiological Activity
3.4. Preparation of Hydrogels Containing Centellae asiaticae Extracts
3.4.1. Hydrogel Preparation Using a Design of Experiment (DoE)
3.4.2. Release of Active Compounds
3.4.3. Penetration of Active Compounds
3.4.4. Bioadhesive Properties
3.4.5. Determination of Biological Activity
Wound Healing Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ongarora, B.G. Recent Technological Advances in the Management of Chronic Wounds: A Literature Review. Health Sci. Rep. 2022, 5, e641. [Google Scholar] [CrossRef] [PubMed]
- Holzer-Geissler, J.C.J.; Schwingenschuh, S.; Zacharias, M.; Einsiedler, J.; Kainz, S.; Reisenegger, P.; Holecek, C.; Hofmann, E.; Wolff-Winiski, B.; Fahrngruber, H.; et al. The Impact of Prolonged Inflammation on Wound Healing. Biomedicines 2022, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal Plants and Their Components for Wound Healing Applications. Future J. Pharm. Sci. 2021, 7, 53. [Google Scholar] [CrossRef]
- Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Review Paper Centella asiatica in Cosmetology. Adv. Dermatol. Allergol. 2013, 30, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Alonso, F.; Torralba-Ruiz, M.R.; García-Carrillo, N.; Lacal-Luján, J.; Martínez-Díaz, F.; Sánchez-Siles, M. Effects of Topical Applications of Porcine Acellular Urinary Bladder Matrix and Centella asiatica Extract on Oral Wound Healing in a Rat Model. Clin. Oral. Investig. 2019, 23, 2083–2095. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ying, K.; Wei, S.; Fang, Y.; Liu, Y.; Lin, H.; Ma, L.; Mao, Y. Asiaticoside Induction for Cell-Cycle Progression, Proliferation and Collagen Synthesis in Human Dermal Fibroblasts. Int. J. Dermatol. 2004, 43, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021, 9, 1235. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan Based Hydrogels: Characteristics and Pharmaceutical Applications. Res. Pharm. Sci. 2015, 10, 1–16. [Google Scholar]
- Rodrigues, S.; Dionísio, M.; Remuñán López, C.; Grenha, A. Biocompatibility of Chitosan Carriers with Application in Drug Delivery. J. Funct. Biomater. 2012, 3, 615–641. [Google Scholar] [CrossRef]
- Safdar, R.; Omar, A.A.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. Potential of Chitosan and Its Derivatives for Controlled Drug Release Applications—A Review. J. Drug Deliv. Sci. Technol. 2019, 49, 642–659. [Google Scholar] [CrossRef]
- Sh. Ahmed, A.; Taher, M.; Mandal, U.K.; Jaffri, J.M.; Susanti, D.; Mahmood, S.; Zakaria, Z.A. Pharmacological Properties of Centella asiatica Hydrogel in Accelerating Wound Healing in Rabbits. BMC Complement Altern. Med. 2019, 19, 213. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Shen, Y.; Liu, F.; Zhou, Y.; Wu, H.; Liu, Q.; Deng, B. Preparation of Centella asiatica Loaded Gelatin/Chitosan/Nonwoven Fabric Composite Hydrogel Wound Dressing with Antibacterial Property. Int. J. Biol. Macromol. 2021, 192, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Ryall, C.; Chen, S.; Duarah, S.; Wen, J. Chitosan-Based Microneedle Arrays for Dermal Delivery of Centella asiatica. Int. J. Pharm. 2022, 627, 122221. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-H.; Yeh, J.-Y.; Chen, Y.-S.; Li, M.-H.; Huang, C.-H. Wound-Healing Effect of Electrospun Gelatin Nanofibres Containing Centella asiatica Extract in a Rat Model. J. Tissue Eng. Regen. Med. 2017, 11, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Idris, F.N.; Mohd Nadzir, M. Comparative Studies on Different Extraction Methods of Centella asiatica and Extracts Bioactive Compounds Effects on Antimicrobial Activities. Antibiotics 2021, 10, 457. [Google Scholar] [CrossRef] [PubMed]
- Thong-on, W.; Pathomwichaiwat, T.; Boonsith, S.; Koo-amornpattana, W.; Prathanturarug, S. Green Extraction Optimization of Triterpenoid Glycoside-Enriched Extract from Centella asiatica (L.) Urban Using Response Surface Methodology (RSM). Sci. Rep. 2021, 11, 22026. [Google Scholar] [CrossRef] [PubMed]
- Phaisan, S.; Makkliang, F.; Putalun, W.; Sakamoto, S.; Yusakul, G. Development of a Colorless Centella asiatica (L.) Urb. Extract Using a Natural Deep Eutectic Solvent (NADES) and Microwave-Assisted Extraction (MAE) Optimized by Response Surface Methodology. RSC Adv. 2021, 11, 8741–8750. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-J.; Kim, J.; Veriansyah, B.; Kim, J.-D.; Lee, Y.-W.; Oh, S.-G.; Tjandrawinata, R.R. Extraction of Bioactive Components from Centella asiatica Using Subcritical Water. J. Supercrit. Fluids 2009, 48, 211–216. [Google Scholar] [CrossRef]
- Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0891584996003516 (accessed on 14 August 2023).
- Ratz-Łyko, A.; Arct, J.; Pytkowska, K. Moisturizing and Antiinflammatory Properties of Cosmetic Formulations Containing Centella asiatica Extract. Indian J. Pharm. Sci. 2016, 78, 27–33. [Google Scholar] [CrossRef]
- Chanaj-Kaczmarek, J.; Paczkowska, M.; Osmałek, T.; Kaproń, B.; Plech, T.; Szymanowska, D.; Karaźniewicz-Łada, M.; Kobus-Cisowska, J.; Cielecka-Piontek, J. Hydrogel Delivery System Containing Calendulae Flos Lyophilized Extract with Chitosan as a Supporting Strategy for Wound Healing Applications. Pharmaceutics 2020, 12, 634. [Google Scholar] [CrossRef]
- Lazaridou, M.; Nanaki, S.; Zamboulis, A.; Papoulia, C.; Chrissafis, K.; Klonos, P.A.; Kyritsis, A.; Vergkizi-Nikolakaki, S.; Kostoglou, M.; Bikiaris, D.N. Super Absorbent Chitosan-Based Hydrogel Sponges as Carriers for Caspofungin Antifungal Drug. Int. J. Pharm. 2021, 606, 120925. [Google Scholar] [CrossRef] [PubMed]
- Sondari, D.; Harmami, S.B.; Ghozali, M.; Randy, A.; Amanda, S.A.; Irawan, Y. Determination of The Active Asiaticoside Content in Centella asiatica as Anti-Cellulite Agent. Indones J. Cancer Chemoprevent. 2011, 2, 222. [Google Scholar] [CrossRef]
- Zheng, X.-F.; Lu, X.-Y. Measurement and Correlation of Solubilities of Asiaticoside in Water, Methanol, Ethanol, n-Propanol, n-Butanol, and a Methanol + Water Mixture from (278.15 to 343.15) K. J. Chem. Eng. Data 2011, 56, 674–677. [Google Scholar] [CrossRef]
- Dubey, J.; Verma, A.; Verma, N. Evaluation of Chitosan Based Polymeric Matrices for Sustained Stomach Specific Delivery of Propranolol Hydrochloride. Indian J. Mater. Sci. 2015, 2015, e312934. [Google Scholar] [CrossRef]
- Nanaki, S.G.; Christodoulou, E.; Bikiaris, N.D.; Kapourani, A.; Kontogiannopoulos, K.N.; Vergkizi-Nikolakaki, S.; Barmpalexis, P. Leflunomide Sustained Skin Delivery Based on Sulfobetaine-Modified Chitosan Nanoparticles Embedded in Biodegradable Polyesters Films. Polymers 2021, 13, 960. [Google Scholar] [CrossRef] [PubMed]
- Sip, S.; Paczkowska-Walendowska, M.; Rosiak, N.; Miklaszewski, A.; Grabańska-Martyńska, K.; Samarzewska, K.; Cielecka-Piontek, J. Chitosan as Valuable Excipient for Oral and Topical Carvedilol Delivery Systems. Pharmaceuticals 2021, 14, 712. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, P.B.R.; dos Souza, B.S.; Andrade, L.M.; dos Anjos, J.L.V.; Mendanha, S.A.; Alonso, A.; Marreto, R.N.; Taveira, S.F. Enhanced Asiaticoside Skin Permeation by Centella asiatica-Loaded Lipid Nanoparticles: Effects of Extract Type and Study of Stratum Corneum Lipid Dynamics. J. Drug Deliv. Sci. Technol. 2019, 50, 305–312. [Google Scholar] [CrossRef]
- Duchěne, D.; Touchard, F.; Peppas, N.A. Pharmaceutical and Medical Aspects of Bioadhesive Systems for Drug Administration. Drug Dev. Ind. Pharm. 1988, 14, 283–318. [Google Scholar] [CrossRef]
- Chattopadhyay, D.P.; Inamdar, M.S. Aqueous Behaviour of Chitosan. Int. J. Polym. Sci. 2011, 2010, e939536. [Google Scholar] [CrossRef]
- Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E.; King, M.W. Chitosan Based Bioadhesives for Biomedical Applications: A Review. Carbohydr. Polym. 2022, 282, 119100. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Soman, D.; Payanam, U.; Laurent, A.; Labarre, D.; Jayakrishnan, A. A Novel Injectable Tissue Adhesive Based on Oxidized Dextran and Chitosan. Acta Biomater. 2017, 53, 343–354. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Yang, Z.; Duan, H.; Wang, Z.; Cheng, Z.; Song, Z.; Wu, X. Study on the Interaction of Hyaluronidase with Certain Flavonoids. J. Mol. Struct. 2021, 1241, 130686. [Google Scholar] [CrossRef]
- Chanaj-Kaczmarek, J.; Rosiak, N.; Szymanowska, D.; Rajewski, M.; Wender-Ozegowska, E.; Cielecka-Piontek, J. The Chitosan-Based System with Scutellariae Baicalensis Radix Extract for the Local Treatment of Vaginal Infections. Pharmaceutics 2022, 14, 740. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry Leaves as New Functional Food? Screening Antioxidant, Anti-Inflammatory and Microbiological Activities in Correlation with Phytochemical Analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Szymanowska, D.; Skalicka-Woźniak, K.; Cielecka-Piontek, J. Hot Melt Extrusion as an Effective Process in the Development of Mucoadhesive Tablets Containing Scutellariae Baicalensis Radix Extract and Chitosan Dedicated to the Treatment of Oral Infections. Int. J. Mol. Sci. 2023, 24, 5834. [Google Scholar] [CrossRef]
No. | Active Components Content (mg/1 g Plant Material) | TPC | Antioxidant Activity | Anti-Inflammatory Activity | |||
---|---|---|---|---|---|---|---|
Asiaticoside (AS) | Asiatic Acid (AA) | Madecassic Acid (MA) | Sum | (mg GAE/1 g Plant Material) | IC50 (µg/mL) | IC50 (mg/mL) | |
E1 | 10.48 ± 0.09 | 0.04 ± 0.01 | 0.02 ± 0.01 | 10.54 ± 0.10 | 14.56 ± 0.52 | 481.48 ± 22.89 | 137.19 ± 4.11 |
E2 | 9.54 ± 0.42 | 5.96 ± 0.01 | 1.44 ± 0.01 | 16.93 ± 0.42 | 12.16 ± 0.53 | 774.11 ± 14.10 | 194.95 ± 6.02 |
E3 | 8.59 ± 0.03 | 0.40 ± 0.01 | 0.11 ± 0.01 | 9.09 ± 0.03 | 18.66 ± 0.60 | 307.05 ± 19.53 | 70.39 ± 2.18 |
E4 | 10.78 ± 0.01 | 0.07 ± 0.01 | 0.02 ± 0.01 | 10.87 ± 0.01 | 15.97 ± 0.46 | 534.53 ± 23.06 | 91.53 ± 3.84 |
E5 | 8.98 ± 0.02 | 0.04 ± 0.01 | 0.01 ± 0.01 | 9.03 ± 0.02 | 13.87 ± 0.62 | 584.64 ± 21.21 | 103.40 ± 4.17 |
E6 | 9.74 ± 0.17 | 6.15 ± 0.01 | 1.54 ± 0.01 | 17.44 ± 0.18 | 14.81 ± 0.72 | 893.77 ± 34.00 | 127.39 ± 4.92 |
E7 | 9.68 ± 0.01 | 0.06 ± 0.01 | 0.01 ± 0.01 | 9.75 ± 0.02 | 17.21 ± 0.67 | 513.86 ± 22.87 | 91.60 ± 3.89 |
E8 | 10.85 ± 0.01 | 0.43 ± 0.01 | 0.11 ± 0.01 | 11.39 ± 0.01 | 15.90 ± 0.52 | 742.75 ± 36.33 | 98.54 ± 4.61 |
E9 | 9.63 ± 0.03 | 0.83 ± 0.01 | 0.23 ± 0.01 | 10.69 ± 0.01 | 14.26 ± 0.53 | 378.79 ± 16.00 | 91.37 ± 2.61 |
E10 | 11.35 ± 0.09 | 5.10 ± 0.01 | 1.35 ± 0.01 | 17.80 ± 0.09 | 16.88 ± 0.64 | 482.94 ± 7.69 | 88.12 ± 0.35 |
E11 | 11.47 ± 0.01 | 4.47 ± 0.01 | 1.12 ± 0.01 | 17.05 ± 0.02 | 15.61 ± 0.68 | 372.37 ± 4.29 | 87.15 ± 2.57 |
E12 | 11.51 ± 0.09 | 5.18 ± 0.01 | 1.36 ± 0.01 | 18.05 ± 0.09 | 16.45 ± 0.56 | 383.05 ± 16.97 | 75.46 ± 3.53 |
E13 | 12.12 ± 0.05 | 3.09 ± 0.01 | 0.90 ± 0.01 | 16.11 ± 0.02 | 17.64 ± 0.61 | 373.61 ± 8.24 | 82.16 ± 2.09 |
E14 | 12.24 ± 0.06 | 3.19 ± 0.01 | 0.93 ± 0.01 | 16.36 ± 0.03 | 16.88 ± 0.73 | 343.77 ± 9.32 | 90.89 ± 2.63 |
E15 | 12.32 ± 0.01 | 3.21 ± 0.01 | 0.95 ± 0.01 | 16.48 ± 0.01 | 17.60 ± 0.59 | 358.69 ± 10.55 | 65.38 ± 2.49 |
Growth Inhibition Zone (mm) | |
---|---|
Enterococcus faecalis ATTC 29212 | 11.0 ± 2.0 |
Staphylococcus aureus ATCC 25923 | 10.0 ± 2.0 |
Staphylococcus pyrogenes ATCC 19615 | 12.0 ± 2.0 |
Escherichia coli ATCC 25922 | 11.0 ± 2.0 |
Pseudomonas aeruginosa ATCC 15442 | 8.0 ± 1.0 |
Streptococcus mutans ATCC 25175 | 11.0 ± 2.0 |
Staphylococcus epidermidis ATCC 25175 | 13.0 ± 2.0 |
Enterobacter aerogenes ATCC 13048 | 12.0 ± 1.0 |
3% CS | Hydrogel H12 | |
---|---|---|
Growth Inhibition Zone (mm) | ||
Enterococcus faecalis ATTC 29212 | 5.0 ± 1.0 | 1.0 ±1.0 |
Staphylococcus aureus ATCC 25923 | 5.0 ± 1.0 | 1.0 ± 1.0 |
Staphylococcus pyrogenes ATCC 19615 | 6.0 ± 1.0 | 2.0 ± 1.0 |
Escherichia coli ATCC 25922 | 5.0 ± 1.0 | 1.0 ± 1.0 |
Pseudomonas aeruginosa ATCC 15442 | 6.0 ± 1.0 | 1.0 ± 1.0 |
Streptococcus mutans ATCC 25175 | 5.0 ± 1.0 | 1.0 ± 1.0 |
Staphylococcus epidermidis ATCC 25175 | 7.0 ± 1.0 | 2.0 ± 1.0 |
Enterobacter aerogenes ATCC 13048 | 6.0 ± 1.0 | 1.0 ± 1.0 |
Control | Ex. | 3% CS MMW | H12 | |
---|---|---|---|---|
0 h | ||||
24 h | ||||
48 h |
No. | % Methanol in the Extraction Mixture | Temperature | Time (min) |
---|---|---|---|
E1 | 50 | 30 | 60 |
E2 | 90 | 30 | 60 |
E3 | 50 | 70 | 60 |
E4 | 90 | 70 | 60 |
E5 | 50 | 50 | 30 |
E6 | 90 | 50 | 30 |
E7 | 50 | 50 | 90 |
E8 | 90 | 50 | 90 |
E9 | 70 | 30 | 30 |
E10 | 70 | 70 | 30 |
E11 | 70 | 30 | 90 |
E12 | 70 | 70 | 90 |
E13 | 70 | 50 | 60 |
E14 | 70 | 50 | 60 |
E15 | 70 | 50 | 60 |
No. | Chitosan MW | Chitosan Concentration | Extract Concentration |
---|---|---|---|
H1 | 100 | 1 | 2 |
H2 | 1100 | 1 | 2 |
H3 | 100 | 3 | 2 |
H4 | 1100 | 3 | 2 |
H5 | 100 | 2 | 1 |
H6 | 1100 | 2 | 1 |
H7 | 100 | 2 | 3 |
H8 | 1100 | 2 | 3 |
H9 | 600 | 1 | 1 |
H10 | 600 | 3 | 1 |
H11 | 600 | 1 | 3 |
H12 | 600 | 3 | 3 |
H13 | 600 | 2 | 2 |
H14 | 600 | 2 | 2 |
H15 | 600 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkowska, K.; Paczkowska-Walendowska, M.; Plech, T.; Szymanowska, D.; Michniak-Kohn, B.; Cielecka-Piontek, J. Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential. Int. J. Mol. Sci. 2023, 24, 17229. https://doi.org/10.3390/ijms242417229
Witkowska K, Paczkowska-Walendowska M, Plech T, Szymanowska D, Michniak-Kohn B, Cielecka-Piontek J. Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential. International Journal of Molecular Sciences. 2023; 24(24):17229. https://doi.org/10.3390/ijms242417229
Chicago/Turabian StyleWitkowska, Katarzyna, Magdalena Paczkowska-Walendowska, Tomasz Plech, Daria Szymanowska, Bożena Michniak-Kohn, and Judyta Cielecka-Piontek. 2023. "Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential" International Journal of Molecular Sciences 24, no. 24: 17229. https://doi.org/10.3390/ijms242417229
APA StyleWitkowska, K., Paczkowska-Walendowska, M., Plech, T., Szymanowska, D., Michniak-Kohn, B., & Cielecka-Piontek, J. (2023). Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential. International Journal of Molecular Sciences, 24(24), 17229. https://doi.org/10.3390/ijms242417229