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Abstract: “Heptil” (unsymmetrical dimethylhydrazine—UDMH) is extensively employed worldwide
as a propellant for rocket engines. However, UDMH constantly loses its properties as a result of
its continuous and uncontrolled absorption of moisture, which cannot be rectified. This situation
threatens its long-term usability. UDMH is an exceedingly toxic compound (Hazard Class 1), which
complicates its transportation and disposal. Incineration is currently the only method used for
its disposal, but this process generates oxidation by-products that are even more toxic than the
original UDMH. A more benign approach involves its immediate reaction with a formalin solution to
form 1,1–dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of
magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be
burned, yielding substantial amounts of nitrogen oxides. This review seeks to shift the focus of MDH
from incineration towards its application in the synthesis of relatively non-toxic and readily available
analogs of various pharmaceutical substances. We aim to bring the attention of the international
chemical community to the distinctive properties of MDH, as well as other hydrazones (such as
glyoxal, acrolein, crotonal, and meta-crolyl), wherein each structural fragment can initiate unique
transformations that have potential applications in molecular design, pharmaceutical research, and
medicinal chemistry.

Keywords: asymmetric dimethylhydrazine; methylendimethylhydrazone; glyoxal dimethylhydrazone;
acrolein dimethylhydrazone; crotonal dimethylhydrazone

1. Introduction

At normal temperature and pressure, asymmetric dimethylhydrazine (UDMH, 1,1-
Dimethylhydrazine, heptil) is a hygroscopic liquid that appears colorless or slightly yel-
lowish. It has the chemical formula (CH3)2N2H2, a relative molecular weight of 60.08,
and a density of 785 kg/m3. UDMH has a boiling point of +63 ◦C and a crystallization
temperature of −57 ◦C.

UDMH exhibits high solubility in water, alcohols, ammonia, amines, and organic
solvents while being insoluble in hydrocarbons. It is a potent reducing agent [1]. When
burned, UDMH produces highly toxic volatile nitro compounds [2] and releases a signif-
icant amount of energy. Due to these properties, it is widely utilized as a fuel in rocket
technology. It is employed in domestic intercontinental ballistic missiles such as R36M2
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“Voevoda”, as well as launch vehicles like “Cosmos”, “Cyclone”, and “Proton”. Addi-
tionally, UDMH is used in propulsion systems of manned spacecraft, automatic satellites,
orbital and interplanetary stations, as well as reusable spacecraft [3,4].

However, UDMH exhibits marked toxicity [5], teratogenicity, and the capacity to
absorb atmospheric moisture, leading to a loss of fuel characteristics [2–4]. Rectification
methods are unable to counteract the water absorption (up to 2% annually). Consequently,
aqueous heptil must be transported over long distances while implementing special pre-
cautions to processing facilities and then returned. Any incidents during UDMH transport
constitute environmental disasters, resulting in a significant increase in the cost of “re-
stored” UDMH. Therefore, it is more economical and safer to dispose of large quantities
(thousands of tons!) at designated storage locations. The current approach involves an
immediate exothermic reaction with formalin [6], yielding 1,1-dimethyl-2-methylene hy-
drazone (MDH) with reduced toxicity on an order of magnitude. Subsequently, MDH is
polymerized under acidic conditions, followed by incineration [4]. However, even this
relatively safe method imposes substantial harm on the environment due to the emission
of significant amounts of nitrogen oxides, considering the disposal of thousands of tons
of UDMH. From an ecological and economic perspective, locally processing the UDMH
presents itself as the optimal and sole viable solution to the existing problem.

This review aims to show the relatively few possibilities and alternative ways of
UDMH treatment [4] resulting in less toxic hydrazones (formaldehyde, glyoxal, acrolein
crotonal, metacrolein) and their chemical transformations into the building blocks of
UDMH-based bioactive organic compounds, using the literature from around the world up
to 2022.

Currently, a notable instance of utilizing unsymmetrical dimethylhydrazine (UDMH)
in the field of medicine is exemplified by the compound meldonium, which serves as an
active constituent within the pharmaceutical preparation known as “Mildronate” [7]. This
particular substance has gained significant recognition due to its association with doping
scandals in the realm of sports. Owing to the inherent toxicity and challenges associated
with handling UDMH within laboratory settings (where even the mere detection of UDMH
odor surpasses sixfold the maximum permissible concentration), we propose the adoption
of non-toxic derivatives of UDMH, namely, dimethyldrazones, such as glyoxal, acrolein,
metacrolein, and formaldehyde, for employment both within chemical laboratories and
industrial contexts.

2. Glyoxal Monodimethylhydrazone

Mono(dimethylhydrazon) glyoxal (DMHG, monohydrazon) is a compound of signif-
icant scientific interest in the field of organic chemistry due to its potential as a versatile
synthon for the synthesis of multifunctional and biologically active structures. DMHG
can be readily synthesized by combining unsymmetrical dimethylhydrazine (UDMH) and
glyoxal in an aqueous solution under magnetic stirring, followed by extraction of the
desired product using methylene chloride and subsequent vacuum distillation [8]. DMHG
is characterized as a slightly yellowish liquid with a boiling point of 90 ◦C at 16 Torr [8].

2.1. Stereoselectivity of DMHG

The stereoselectivity of DMHG, which is recognized as one of its significant advan-
tages, holds great importance in the field of medicine. This is because spatial isomers of
the same compound exhibit distinct properties and varying degrees of harmful effects on
pathogens and the human body. Utilizing DMHG as a starting material, optically pure
alpha-aminoaldehydes have been successfully synthesized [9,10].

This achievement is particularly challenging due to the racemic nature of alpha-
aminoaldehydes, which complicates their separation via chromatographic methods [11].
Consequently, DMHG has served as a valuable precursor for diverse compounds such
as interleukin-converting enzymes (an enzyme responsible for converting interleukin, a
mediator of the immune system, into a protein), calpains (a calcium-dependent cysteine
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protease that plays a role in protein degradation and cellular mobility) [12], amino alcohol
intermediates, peptide analogs [13], organometallic complexes [9,14,15] utilized in the
fabrication of thin optical films, and magnesium–copper alloys [15], among other important
derivatives.

Likewise, the compound based on dimethylhexahydroxyflavylium (DMHG) [16] was
employed to synthesize optically pure polymetinnitrile dyes, which hold potential as
photosensitizers for antimicrobial photodynamic therapy.

Furthermore, the publication [17] explores the directed synthesis of a chiral auxiliary
reagent based on DMHG. The aim is to obtain an optically pure, biologically active deriva-
tive of camphor. Figures 1 and 2 in the publication outline the synthetic pathways. In their
work, the authors performed condensation of DMHG with camphor 1 [17] (Figure 1). To
facilitate this reaction, lithium diisopropylamide (LDA) was utilized for several reasons:
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Figure 1. Annealing of camphor with pyrrole heterocycle (method 1). The red cross indicates that
ammonium acetate is an incorrect reagent for the cyclization of compound 5 into pyrrole 6.

LDA, being a strong base, stabilizes the lithium enolate formed during the reaction.
The α-position in camphor experiences steric hindrance. The reaction was carried out at the
maximum temperature acceptable for the process involving LDA in tetrahydrofuran (THF),
which was 0 ◦C [18]. It has been observed that the interaction between DMHG and enolate
2 is temperature-dependent. At −78 ◦C, the equilibrium shifts towards lithium alcoholates,
while at +50 ◦C, it favors the formation of the desired isomers 3(E) and 4(Z). The racemic
mixture of isomers 3/4 could be reduced to 1,4-dicarbonyl compound 5 using titanium
chloride, eliminating the need for isomer separation. However, attempts to cyclize 5 with
ammonium acetate resulted in the decomposition of the original compound (Figure 1).

In search of an alternative cyclization method (Figure 2), the authors of [17] selectively
reduced the keto group to hydroxyl using a mixture of 3/4 sodium borohydride. This
facilitated the elimination of p-toluenesulfonic acid (tosylic acid) as an easily detachable
leaving group [19], subsequently leading to the closure of the pyrrole ring. The results
demonstrated that only one isomer, specifically the Z-isomer, participated in the cyclization
process, resulting in compound 4. The N-N bond cleavage of the pyrrole ring (compound 11)
was accomplished by reacting it with sodium in liquid ammonia under stirring conditions
in an autoclave at room temperature. This reaction pathway ultimately yielded the desired
product, compound 6 (Figure 2).
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2.2. DMHG in the Directed Synthesis of Biologically Active Analogues of Natural Compounds and
Potential Drugs

DMHG is also promising in the creation of bioactive heterocycles (pyrroles, pyrazoles,
isoxazoles) that contribute to many drugs [20–36] and alkaloids [37–39]. The authors of
the publication [40] have also developed a strategy for cyclizing UDMH and its glyoxal
derivative DMHG into biologically active pyrrole-2-ylpyridines (Figure 3). Among them,
α-pyrrolylpyridine inhibits pyrrole-4-hydroxylase [40,41], which affects biosynthesis and
collagen stability [41], while β-pyrrolylpyridine exhibits neuroprotective activity [42].

Thus, to obtain a pyrrole ring, the authors of [40] utilized intramolecular condensation
employing the Knorr method. Initially, dimethylhydrazone 13 was subjected to metalliza-
tion to yield compound 14, which was subsequently converted into acetal 15. Subsequently,
hydrolysis of the acetal group in the presence of trifluoroacetic acid (TFA) took place. The
elimination of water from compound 17 was followed by its intramolecular cyclization,
resulting in the formation of the desired compound 18. This method proved suitable for
synthesizing pyrrole-pyridines II and III. However, in the case of pyrrole-pyridine I, which
acts as a propyl-hydroxylase-I inhibitor, complications arose during the alkylation stage,
leading to a reduction in yield. Consequently, the authors were motivated to explore an
alternative pathway. A method was devised for the synthesis of α-analogues by condensing
2-acetylpyridine I with DMHG in the presence of potassium tert-butylate [43]. The latter
acts as a potent base, effectively activating a “critical” terminal methyl group on ketone
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I. The resulting condensation product 19 was subsequently cyclized into pyrrole 21 with
concurrent cleavage of the N-N bond [40], employing a safer alternative reagent, sodium
dithionite, in comparison to the previously described method involving flammable sodium
in an ammonia solution [17]. The authors of [40] reported successful and rapid preparation
of compound 19. However, during the subsequent step, a portion of the desired product 21
was lost due to its high volatility, resulting in a modest yield of only 17% (Figure 3).
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Additionally, DMHG and its derivatives [44,45] have been extensively utilized in
the synthesis of multicomponent alkaloids [37–39]. Among these, Isostemopholin [37]
possesses insecticidal properties [46]. Furthermore, marine alkaloids such as Benz[c][2,7]
naphthyridine, Amphimedine, Cystoditines, and Pyrido[4,3,2-mn]acridone [38] exhibit
diverse and significant biological activities, including calcium ion release, antiviral effects,
antimicrobial properties, and cytotoxicity against mouse leukemia cells (L1210) [38]. More-
over, inhibitory activity has been observed against lymphoma (assessed using the L1210
cell line, IC50 = 9.7 µg/mL), carcinoma (evaluated on the KB cell line, IC50 > 10 µg/mL),
and cholinesterase [39].

Publication [38] describes the DMHG-based synthesis of the marine alkaloid
Pyrido[4,3,2-mn]acridone. A monohydrazone fragment is introduced into the pyridine ring
using LDA (lithium diisopropylamide). The synthesis was conducted in tetrahydrofuran
(THF) at −70 ◦C to maintain kinetic control and prevent the decomposition of LDA, as it
deprotonates the target product rapidly [18]. Lithiation of pyridine 22 finally occurred at the
β-position instead of γ-position. The authors of [38] explain it refering to the rearrangement
of pyrazoles (“dancerearrangement”) in publication [47].
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The transition from intermediate 23 to 24 proceeded through multiple stages (Figure 4).
Due to its high basicity, lithium derivative 23 interacted with the starting reagent 24 through
an ion exchange mechanism, leading to the formation of 3-lithium-2-chloropyridine 23a
and 3,4-diiodo-2-chloropyridine 23b. The interaction between these compounds resulted
in the rearranged product 24 and the simultaneous regeneration of the initial compound
22, which then reentered the cyclic process until complete conversion to the intermediate
compound 24. The lithiated derivatives directly interacted with the iodide ion, which
exhibited higher reactivity compared to the chloride ion (Figure 4).
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According to the authors of [38], pyridine lithiation (Figure 5) occurred at the γ-position,
followed by the transformation of intermediate 23 into a more stable form, 24.
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Compound 24 and DMHG, upon interaction, yielded alcohol 26. This product was
subsequently oxidized to acetylpyridine 27 using either manganese dioxide or pyridinium
chlorochromate (PCC), resulting in a 77% yield [38] (Figure 5). Following this, the authors
of [38] employed a cross-coupling reaction. In contrast to the conventional Suzuki condi-
tions involving potassium carbonate and diglim (bis-2-methoxyethyl ether) [48], the authors
utilized barium hydroxide and dimethoxyethyl (DME) as a more basic system. This modi-
fication allowed for an increased yield of the desired product 31 (87%) obtained through
the cross-coupling of acetylpyridine 27 with boronic acid 28, followed by intramolecular
cyclization of amide 29 and elimination of tert-butyl carboxylic acid 30 (Figure 5).

Attempts have been made to synthesize inhibitors of p38 MAP kinases (mitogen-
activated protein kinases) based on DMHG [49–51], aiming to reduce the production of
pro-inflammatory cytokines, which contribute to tissue destruction in diseases such as
rheumatoid arthritis, an inflammatory joint disease. In one method [49] (Figure 6), the
authors propose a DMHG-based condensation in an alkaline medium, alcohol solution,
without the use of organometallic reagents. This approach is chosen because the original
aldehydes 32a,b do not hinder enolization due to the arrangement of atoms. The authors
of [49,50] performed cyclization of hydrazones 33a,b followed by N-N bond cleavage using
a sodium dithionite aqueous alcohol solution, similar to the method described above [40]
(Figure 6).
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The resulting heterocycle 35a, when interacting with bromosuccinimide (NBS), under-
went further chemical transformations (Figure 6) into 2-bromopyrrole 36. The halogena-
tion was followed by lithiation providing 2-lithiumpyrrole 38. Its condensation with N-
methylpiperidone 39 led to the product 40 with a yield of 57%. However, the organometallic
agent BuLi has well-defined basic properties and, therefore, interacts with an acidic het-
eroatom. In order to avoid adverse reactions, the authors of [49] introduced SEM-protection
((2-(chlorometoxy)ethyl)trimethylsilane) followed by pyrrole 37 lithiation and its condensa-
tion with N-methylpiperidine 39. Tretbutylammonium fluoride (TBAF) [52] when allowing
mild conditions of the reaction and providing a good yield of the target product 41, was
selected in order to remove SEM-protection of compound 40.

In the case of 4-[5-(4-fluorophenyl)-4-pyridine-4-yl-1H-pyrrol-2-yl]-1-methyl-piperidine-
4-ol 41 [49], biological activity was confirmed with an IC50 value of 0.13 µM. However,
1H-8-oxa-1-aza-dibenzo[e,h]azulen1H-dibenzo[2,3:6,7]azepino[4,5-b]pyrrol [51,53] was not
detected (IC50 > 10 µmol dm−3), indicating a lack of inhibitory activity. Table S1 in the
Supplementary Materials presents data collected by the authors of the article [49] on
the inhibitory activity of 4-[5-(4-fluorophenyl)-4-pyridine-4-yl-1H-pyrrol-2-yl]-1-methyl-
piperidine-4-ol derivatives, including DMHG, along with other heterocycles of similar
structures. According to [49], the five compounds exhibit significant inhibition of p38α
kinase, with IC50 values in the range of 10−6 M. Among these compounds, the pyrrole
synthesized based on DMHG demonstrates the second highest inhibitory activity after
imidazole (see Table S1 in the Supplementary Materials).

The investigated compound (DMHG) was utilized in the synthesis of lesser-known
thiobazidalin antibiotic derivatives [54] (Figure 7). In the initial step, the authors of pub-
lication [54] performed the condensation of thiolactone 42, derived from tetronic acid,
with DMHG in the presence of piperidine. Subsequently, hydrazone 43 reacted with di-
azomethane in cooled THF to prevent diazomethane ignition. Consequently, methoxy
groups 44a,c were converted into amino groups 45a,c (refer to substituents in Table 1) by
adding ammonia or methylamine to an EtOAc:hexane (1:1) solution at −10 ◦C. The desired
compound 46c was obtained by hydrolyzing hydrazone 45c in a concentrated hydrochloric
acid medium. Acid 45b was obtained through the hydrolysis of ester 45a in a dry acetoni-
trile solution under a nitrogen atmosphere. The authors likely chose DMHG as a reagent
for two reasons: it possesses a protective group, and the electron saturation induced by
the carbonyl nitrogen in hydrazone 45a,b,c enhances the reactivity of the aldehyde group
(Figure 7).
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The authors of the publication [54] tested the compounds’ activity against various 
bacteria, such as Bacillus subtilis (“Hay bacillus”, involved in microbiocenoses of soil and 
human and mammalian intestines and found in water and in the air) and Bacillus brevis 
(bacteria found in water, air, soil, and decomposing organisms), and fungi, such as Mu-
cor miehei (a type of fungus commercially used to produce renin (“rennet enzyme”) for 
milk production), Paecilomyces varioti (mold formed in rotting wood, soil and causing a 
number of infectious diseases in humans, such as ostiomyelitis—bone infection; sinusi-
tis—mucous membranes inflammation; peritonitis—inflammation of stomach inner wall; 
onychomycosis—shingles; etc.), Penicillinium notatum (a genus of fungi whose repre-
sentatives are found in soil, on plants in the air, indoors, in the seas), and Nematospora 
coryli (a genus of fungi that causes sigmatonicosis—a disease affecting cotton, soybeans, 
pecans, pomegranates, citrus, and pistachio families). 

The authors provide data on the inhibitory zone diameter of the compounds on a 
paper disk of 6 cm, inoculated (modified) by bacteria or fungi diffusion in agar of 50 mi-
crograms per disk. Among all the tested structures, DMHG-based thiobazidalin analog 
46c has all types of fungi [54] and the greatest antimicrobial activity against Bacillus 
brevis (see Tables S2 and S3 in the Supplementary Materials). 

8-Methylthieno[2,3-g]quinoline-4,9-dione, possessing antifungal activity, was syn-
thesized from DMHG [55]. The synthesis involved two stages: the first stage comprised 
the Wittig reaction, followed by the second stage involving the Diels–Alder reaction 
(Figure 8). The Wittig reaction (Figure 8) was conducted in dichloromethane at a tem-
perature of 40 °C. The desired product was obtained with a yield of 85.2% and subse-
quently purified using column chromatography with a diethyl ether:ethyl acetate mix-
ture (5:1) as the eluent. 

Tert-butylate 49 was also reacted with bromobenzothiophenedione 51 (Figure 8) at 0 
°C to prevent its decomposition [56]. The synthesis was conducted in anhydrous ethanol 
solvent, in the presence of sodium carbonate, to eliminate hydrogen bromide and dime-
thylamine and to reduce the carboxyl group of intermediate 52. This yielded the desired 
product, 5-methylthieno[3,2-g]quinoline-4,9-dione 53 (Figure 8). 
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The authors of the publication [54] tested the compounds’ activity against various

bacteria, such as Bacillus subtilis (“Hay bacillus”, involved in microbiocenoses of soil
and human and mammalian intestines and found in water and in the air) and Bacillus
brevis (bacteria found in water, air, soil, and decomposing organisms), and fungi, such as
Mucor miehei (a type of fungus commercially used to produce renin (“rennet enzyme”)
for milk production), Paecilomyces varioti (mold formed in rotting wood, soil and caus-
ing a number of infectious diseases in humans, such as ostiomyelitis—bone infection;
sinusitis—mucous membranes inflammation; peritonitis—inflammation of stomach inner
wall; onychomycosis—shingles; etc.), Penicillinium notatum (a genus of fungi whose repre-
sentatives are found in soil, on plants in the air, indoors, in the seas), and Nematospora coryli
(a genus of fungi that causes sigmatonicosis—a disease affecting cotton, soybeans, pecans,
pomegranates, citrus, and pistachio families).

The authors provide data on the inhibitory zone diameter of the compounds on a paper
disk of 6 cm, inoculated (modified) by bacteria or fungi diffusion in agar of 50 micrograms
per disk. Among all the tested structures, DMHG-based thiobazidalin analog 46c has
all types of fungi [54] and the greatest antimicrobial activity against Bacillus brevis (see
Tables S2 and S3 in the Supplementary Materials).

8-Methylthieno[2,3-g]quinoline-4,9-dione, possessing antifungal activity, was synthe-
sized from DMHG [55]. The synthesis involved two stages: the first stage comprised the
Wittig reaction, followed by the second stage involving the Diels–Alder reaction (Figure 8).
The Wittig reaction (Figure 8) was conducted in dichloromethane at a temperature of 40 ◦C.
The desired product was obtained with a yield of 85.2% and subsequently purified using
column chromatography with a diethyl ether:ethyl acetate mixture (5:1) as the eluent.

Tert-butylate 49 was also reacted with bromobenzothiophenedione 51 (Figure 8) at
0 ◦C to prevent its decomposition [56]. The synthesis was conducted in anhydrous ethanol
solvent, in the presence of sodium carbonate, to eliminate hydrogen bromide and dimethy-
lamine and to reduce the carboxyl group of intermediate 52. This yielded the desired
product, 5-methylthieno[3,2-g]quinoline-4,9-dione 53 (Figure 8).
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from trifluoroacetic anhydride (Figure 10). 
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DMHG [57] and its derivatives [58], which are applicable in the synthesis of fluori-
nated pyrazoles, are of interest in the pharmaceutical and agrochemical industries [59]. In
the first case [57], the heterocycle was synthesized using ruthenium catalysis on a tribro-
mofluoromethane basis (Figure 9), while in the second case [58], it was synthesized from
trifluoroacetic anhydride (Figure 10).
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The discussed derivatives can contribute to the trend in modern organic chemistry–
cross-coupling reactions. Thus, in 2017 [57], a ruthenium-catalyzed synthesis of fluorinated
pyrazole was proposed, as described in Figure 9. The authors suggested that the first stage
of the chemical process involves the capture of the Ru(II) halide ion from CBr3F, resulting
in the formation of a Ru(III) complex and a halide radical, CBr2F. The latter then interacts
with DMHG, forming an aminyl radical 54. Subsequently, Ru(III) transfers the halide ion
to intermediate 54, reducing to Ru(II) and forming diazene 55. The basicity of diazene
55 catalyzes the elimination of hydrobromic acid, leading to the formation of compound
56. Compound 56 then enolizes into imine ion 57, which undergoes cyclization to form
pyrazoline 58. Finally, subsequent elimination of hydrogen bromide yields the desired
product 59 (Figure 9).

The authors of publication [58] synthesized a fluorinated pyrazole through the reaction
between a trifluoromethyl-containing DMHG derivative and trifluoroacetic anhydride in
the presence of pyridine in chloroform at room temperature (Figure 10). The proposed
cyclization pathway to form pyrazole 63 is as follows: Initially, trifluoroacetyl was attached
to the carbonyl oxygen, resulting in the formation of salt 60. Subsequently, methylide 61
underwent cyclization to form hydropyrazole 62. Finally, the elimination of trifluoroacetic
acid (TFA) led to the desired product 63 (Figure 10).

DMHG, upon reaction with hippuric acid 64, undergoes a transformation leading to
the formation of an isoxazole ring 66 [60]. In accordance with Lipinski’s rules [61], it exhibits
similarities to pharmaceutical compounds. Its logP (logarithm of partition coefficient) value
is 1.996, indicating unhindered penetration of isoxazole through both aqueous and lipid
barriers toward the biological target.

The synthesis of isoxazole [60] (Figure 11) was carried out in the presence of the
chlorinating agent POCl3 in a mixture of acetic anhydride and a sodium acetate solution.
DMHG was condensed with hippuric acid 64, resulting in the formation of chlorohydrin
65, which ultimately led to the desired isoxazole compound 66 (Figure 11).

Interesting chemical transformations (Figure 12) are presented in publication [62],
which explores solvent-free and pipyridine-catalyzed reactions under microwave irradi-
ation (MWI), an effective method for dry organic syntheses [63–72]. Phenylhydrazone
(HGa) and dimethylhydrazone (HGb) react with acetoacetic ether in a 1:1 ratio to form
conjugated compounds 68a and 68b. Furthermore, the phenyl hydrazone derivative 68a
undergoes cyclization via methyl alcohol elimination under MWI catalysis, resulting in the
formation of N-phenylpyridazine 69a.
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The reactions of condensation products 68a and 68b with acetoacetic ether 67 proceed
differently. In the initial stage, both compounds share a common step where the enol form
67 adds to the double C-C bond of compounds 68a and 68b.

Subsequently, dimethylhydrazone 70b forms an intermediate cyclohexanone 74b,
while the phenylhydrazone derivative 70a undergoes an articulated furopyrrol 73 formation
through the Robinson reaction [73].

The authors of [62] discovered that the cyclohexanone derivative 74b, when left at
room temperature for 7 days, underwent conversion into N-dimethylaminopyrrole 80b.
In the initial step, compound 74b likely decomposes into the starting reagents 67 and 68b
through the opening of the cyclohexanone ring, followed by cleavage of the hydrazone
bond 75b. Subsequently, acetoacetic ether 67 adds to the C-N bond of compound 68b,
resulting in the formation of ether-ketone 76b. The latter undergoes cyclization to form
dihydropyrrole 77b, while structure 78b undergoes 1,3-hydride transfer followed by water
elimination. This leads to the formation of pyrrole 79b and enol compound 80b, which
exist in a tautomeric equilibrium.

However, in a counter-synthesis approach, microwave radiation of the original com-
pound 74b under conditions of 300 W and 160 ◦C for 30 min (equivalent to 7 days at room
temperature) resulted in different outcomes. Instead of the expected product 80b, a com-
pletely new benzopyrrole 84b was formed. The transformations involved the elimination
of methanol from cyclohexanone 74b, followed by enolization of ketone 81b and carbinol
elimination from methyl ester 82b. Eventually, a 1-3-hydride transfer in lactone 83b led to
the formation of an aromatic articulated heterocycle 84b (Figure 12).

3. Dimethylhydrazones of Acrolein and Crotonal

Methylenedimethylhydrazones of acrolein DMHA (a colorless oil [74]) and crotonal
DMHC (a colorless oil, 55–58 ◦C/15 Torr [75]) are building blocks for various nitrogen-
and oxygen-containing heterocycles. DMHA and DMHC chemistry (namely, electron
saturation [75]) allows them to be widely used in cycloaddition reactions [75–77].

3.1. DMHA and DMHC in Cycloaddition Reactions

DMHA was utilized in the synthesis of dihydro- [75] and tetrahydropyrane struc-
tures [78], which constitute components of diverse natural products [75,79]. These include
cyclic saccharides obtained from coconut [79], irciniastatins (cytotoxins that induce necrosis
within malignant neoplasm cells) isolated from sea sponges, exhibiting potential as anti-
cancer agents [80], as well as a variety of marine products possessing a broad spectrum of
biological activities such as antitumor, immunostimulatory, and analgesic properties [81].

In the contemporary scientific literature, the hydrazone methylene derivative (DMHA)
has gained significant prominence as a fundamental component for constructing hetero-
cyclic structures. In publication [75], this reagent was employed as a dienophile in the
Diels–Alder reaction. The classical version of this reaction presents two primary challenges
concerning α,β-unsaturated carbonyl compounds: (1) a substantial energy barrier between
the diene and dienophile; (2) a lack of regioselectivity in the chemical process.

The former is explained by the energy sublevel discrepancy at the boundaries of
molecular orbitals, which complicates the reaction between the reagents. The latter is
caused by the fact that the highest occupied molecular orbital (HOMO) is occupied by
electrons at the α and β positions. The electron arrangement facilitates cycloaddition
simultaneously in two directions, leading to by-products.

The authors of [75] proposed an enhancement to the Diels–Alder reaction technique
by employing dimethylhydrazone of acrolein (DMHA) (Figure 13) as a dienophile. The
DMHA imine’s electron-donating effect contributes to system saturation, thereby reducing
the energy barrier between the reagents. To activate diene 74, rare-earth metal salts were
utilized as catalysts. The most favorable outcome was observed with heptafluorobutanol
europium campherate (condition a), which is a widely employed catalyst in enantioselective
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Diels–Alder reactions. The reaction was carried out in toluene at room temperature for
15 h, resulting in the target product 77 with a quantitative yield (Figure 13).
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A method has been developed for the one-step synthesis of piperidino-indoloquinolines,
which are challenging to access. These compounds are key components of marine alkaloid
discorhabdin C analogs, specifically hydrogenated Diels–Alder adducts 79 and 80 [78]
(Figure 14). In this method, the DMHA-based Diels–Alder reaction with indoloquinone
78 was accompanied by a simultaneous selective reduction catalyzed by palladium under
a hydrogen atmosphere in an alcoholic solution at a pressure of 10 bar overnight. The
resulting reaction mixture was purified using chromatography with aluminum oxide as the
sorbent. The desired products of this reaction were obtained as blue crystals, with yields of
64% for compound 79 and 3% for compound 80 (Figure 14).
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The Diels–Alder reaction with DMHA as a diene was previously investigated ([82],
1992). It has been observed that acrylonitrile 81 participates in the DMHA-based diene
synthesis not only through [4+2] cycloaddition but also through [2+2] cycloaddition. Con-
sequently, bicyclooctane 83 was obtained in acetonitrile at a temperature of 140 ◦C with a
yield of 11%. A similar reaction was conducted in benzene in the presence of hydroquinone
at 120 ◦C, resulting in the formation of a six-membered product of diene synthesis 82 with
a yield of 67% (Figure 15).



Int. J. Mol. Sci. 2023, 24, 17196 15 of 28

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 15 of 28 
 

 

A method has been developed for the one-step synthesis of piperidi-
no-indoloquinolines, which are challenging to access. These compounds are key com-
ponents of marine alkaloid discorhabdin C analogs, specifically hydrogenated Diels–
Alder adducts 79 and 80 [78] (Figure 14). In this method, the DMHA-based Diels–Alder 
reaction with indoloquinone 78 was accompanied by a simultaneous selective reduction 
catalyzed by palladium under a hydrogen atmosphere in an alcoholic solution at a 
pressure of 10 bar overnight. The resulting reaction mixture was purified using chroma-
tography with aluminum oxide as the sorbent. The desired products of this reaction were 
obtained as blue crystals, with yields of 64% for compound 79 and 3% for compound 80 
(Figure 14). 

 
Figure 14. Diels–Alder reaction followed by hydrogenation. 

The Diels–Alder reaction with DMHA as a diene was previously investigated ([82], 
1992). It has been observed that acrylonitrile 81 participates in the DMHA-based diene 
synthesis not only through [4+2] cycloaddition but also through [2+2] cycloaddition. 
Consequently, bicyclooctane 83 was obtained in acetonitrile at a temperature of 140 °C 
with a yield of 11%. A similar reaction was conducted in benzene in the presence of hy-
droquinone at 120 °C, resulting in the formation of a six-membered product of diene 
synthesis 82 with a yield of 67% (Figure 15). 

 
Figure 15. Bicyclic structure of diene synthesis. 

However, the diene and dienophile cycloaddition reactions may exhibit different 
reaction pathways. Therefore, the authors of publication [76] investigated the interaction 
between quinonmonoimide 84 and dimethylhydrazadiene DMHC in ethanol at 0 °C. It 
was discovered that the reaction proceeded in two directions (Figure 16). One direction 
involved a [2+3]-cycloaddition, resulting in the formation of adduct 87. The other direc-
tion involved a [2+4]-cycloaddition, yielding compound 88. Upon reacting with a second 
molecule of quinon-imine 84, the Diels–Alder adduct 88 produced a tetracyclic product 
89. The latter underwent slow isomerization to form aromatic aminophenol 90 in a deu-
terated chloroform solvent and was even slower in polar solvents such as acetone and 
ethyl acetate [76] (Figure 16). 
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However, the diene and dienophile cycloaddition reactions may exhibit different
reaction pathways. Therefore, the authors of publication [76] investigated the interaction
between quinonmonoimide 84 and dimethylhydrazadiene DMHC in ethanol at 0 ◦C. It
was discovered that the reaction proceeded in two directions (Figure 16). One direction
involved a [2+3]-cycloaddition, resulting in the formation of adduct 87. The other direction
involved a [2+4]-cycloaddition, yielding compound 88. Upon reacting with a second
molecule of quinon-imine 84, the Diels–Alder adduct 88 produced a tetracyclic product 89.
The latter underwent slow isomerization to form aromatic aminophenol 90 in a deuterated
chloroform solvent and was even slower in polar solvents such as acetone and ethyl
acetate [76] (Figure 16).
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3.2. DMHA and DMHC in Multicomponent Synthesis of Marine Alkaloids

DMHA-based literature describes various methods for obtaining pyridine structures
that are marine alkaloids and their structural analogs with antitumor activity [77,78,83–85].
These include ascididemine [77,83] and tetrahydroascidemine [84].

The synthesis of the latter compound 102 is described in publication [84] (Figure 17).
The authors of [84] achieved the synthesis of compound 102 by reducing the nitro group
of the initial ketone 91 to the corresponding amine 92 with a yield of 99% in the presence
of iron in acetic acid and catalytic amounts of hydrogen chloride. Subsequently, amine 92
underwent halogenation in a mixture of ethyl ether and chloroform with a slight excess
of bromine (1:0.9), resulting in the formation of target compound 93 with a yield of 62%.
Brominated adduct 93 was then subjected to Friedlander’s reaction [86] with cyclohexanone
94, leading to the formation of tricyclic product 95 with a yield of 100%. Compound 95
was further oxidized to quinone 97 using cerium ammonium nitrate (CAN) due to its
ability to selectively affect ether functional groups, specifically the methoxy group, in this
case [87]. The oxidation reaction was carried out in an aqueous acetonitrile medium, and
compound 97 was obtained with a yield of 98%. Dienophile 97 was also employed in a
hetero-Diels–Alder reaction with DMHA, yielding adduct 98 with a yield of 79%. Adduct
98 served as a methylene-active linker in the subsequent Mannich reaction, leading to the
formation of the target compound 101 with a yield of 14% (Figure 17).
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The article [84] presents data on the antitumor activity of synthesized derivatives
98 and 101 in comparison to the known alkaloid ascididemine [84] against four cell lines
(Table S5). The compounds exhibited an inhibitory concentration of 50% in cell lines at
approximately 10−6 M [84] (see Table S4 in the Supplementary Materials).

Moreover, Ascididemine derivatives with enhanced efficacy against oncology were
synthesized [85] (Figure 18). In the initial step, a [4+2]-cycloaddition reaction was per-
formed using dienes DMHA and DMHC as well as dienophiles 102a, 102b, and 102c.
Subsequent elimination reactions via acetic anhydrid and manganese dioxide [88] yielded
adducts 103a, 103b, and 103c. Among these, adduct 103a was specifically chosen for the
synthesis of its dimethylamino derivative 104a’. This was achieved by employing dimethy-
lamine in hydrochloride form (due to the gaseous nature of the amine), followed by an
alkali treatment to neutralize the reaction medium. A solvent mixture of water and tetrahy-
drofuran was utilized, where water facilitated the dissolution of hydrochloride and alkali,
while nonpolar tetrahydrofuran prevented undesired side reactions such as pyridinium salt
formation. Compounds 104a’, 103a, 103b, and 103c were subsequently employed in further
chemical transformations [85]. The subsequent stage involved elements of the Bracher
method [85,89]. A combination of polar and basic solvents, namely dimethylformamide
(DMF) and diethanolamine (DEA), was used to promote the condensation of compounds
103a, 103b, 103c, and 104a’ with DMF under an inert nitrogen atmosphere. This led to the
formation of intermediates 104a, 104b, 104c, and 105a’. These intermediates then under-
went cyclization to yield the desired products 105a, 105c, 106a’, and 106b (Figure 18). The
bromine atom of phenanthroline-7-one derivative 106b [85] was substituted with various
amino groups (Figure 18). Dimethylamino and N-piperidino groups were introduced in an
aqueous THF solution under basic conditions, resulting in the formation of compounds
107b and 109b, respectively. Amine 108b was obtained from sodium azide. Subsequent
chemical transformations of compound 108b were carried out using aldehydes and acetals
in the presence of sodium boron anhydride and TFA, yielding compounds 110, 111, and
112. Chlorine (compound 108) was incorporated into structure 105c through the use of
phosphoric acid chlorohydride. Hydroxyl and butyl groups (structures 106 and 108, re-
spectively) were introduced by reacting with butyl alcohol in the presence of ammonium
chloride [85] (Figure 18).

The synthesized marine alkaloid analogs were tested on 12 cancer cell lines [87].
The IC50 value of these compounds on 12 cell lines made 10−6 M. (see Table S5 in the
Supplementary Materials).
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3.3. Unusual DMHA Reaction (Elongation of the Hydrocarbon Chain)

The DMHA chain lengthening described in publication [90] (Figure 19) is also of
interest in organic synthesis. N,N-dimethylformiminium hydrochloride 114 in absolute
dimethylformamide (DMF) was used as the electrophile. The authors of [90] proposed
that DMHA adds to N,N-dimethylformiminium 114 (Figure 19) through its tautomeric
form 113, with the hydrogen being replaced by the methylene group of intermediate 115
located at the dimethylamino group. When one equivalent of N,N-dimethylformiminium
116 was added to DMHA, salt 117 was formed. Crystallization of salt 117 was achieved by
adding DMF*HCl, resulting in the formation of dihydrochloride product 117. However,
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when twice the amount of the same reagent 114a was added, compound 118 crystallized
independently without salting out (Figure 19).
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4. Methacrolein Dimethylhydrazone

Dimethylhydrazone methacrolein (DMHM) (colorless oil, b.p. 40–42 ◦C/20 Torr [91])
is also applicable in the synthesis of the tetrahydroquinoline ring [92,93], which is a
part of various natural products. These include benzostatins that prevent lipid perox-
idation, thereby reducing the likelihood of patagenesis [94] and reducing the toxicity of
glutamate [95], of cusparin and allocusparin having anti–tuberculosis activity [96], and
martellinic acid activity against conjunctivitis [97].

In 2021, the authors of publication [92] reported the potential enhancement of ben-
zostatin derivatives 119 yield (90%) through the utilization of a 20 Hz vibrating ball mill
and appropriate catalyst selection in the Povarov reaction (Figure 20). Initially, Schiff base
121 was synthesized by reacting p-anisidine 119 with phenylglyoxal 120. Subsequently, the
reaction with methylacrolein DMHM was catalyzed by tosylic acid (p-TsOH). The catalytic
process likely proceeded as follows: firstly, the proton p-TsOH was localized at the imine
121, resulting in the formation of tosylate 122. Secondly, the addition of DMHM led to
electron density and proton migration from the phenyl ring 123. Consequently, tosylic
acid was regenerated, followed by the cyclization of aryl 123 to tetrahydroquinoline 124
(Figure 20).
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The synthetic capabilities of DMHM (dimethylhydrazone methacrolein) in the Po-
varov reaction were previously described in 2012. In their publication [93], the authors
investigated the pathways for two-component and three-component syntheses (Figure 21).
In the first case, tetrahydroquinoline 128 was synthesized through the indium (III) chloride-
catalyzed reaction of DMHM with Schiff base 125 in acetonitrile at room temperature. In
the second case, the authors of [90] elucidated the formation of a tricyclic structure 132
from arylamine 135. This was explained by a cascade process involving several steps.
Firstly, compound 129 was added to the double C-C and C-N bonds of compound 127.
Subsequently, an intramolecular cyclization of the amino group occurred via the double
bond of hydrazone 130, leading to simultaneous catalyst regeneration. Following this,
product 131 underwent cyclization with the elimination of asymmetric dimethylhydrazine
(UDMH). The UDMH then underwent transamination with the original compound 133,
resulting in the formation of dimethylhydrazon 134 (Figure 21).

To enhance the yield of the tricyclic derivative 132, the researchers of [93] utilized
the BF3*Et2O/CHCl3 catalyst/solvent system, resulting in a 93% yield of the desired
compound. In certain instances, minor quantities of transamination products and tetrahy-
droquinoline were also obtained (Figure 22). Conducting the synthesis in a concentrated
solution of the same system, as anticipated, increased the yield of condensate 132 but led
to the formation of diastereomers. The excess arylamine contributed to transamination
reactions rather than cyclization towards the desired compound 132 [93] (Figure 22).

The structure 132 bears a resemblance to ethyl 7-fluoro-3,4-dihydropyrrolo[3,4-b]indoles,
which exhibit neuroleptic activity [98], and 3,4-dihydropyrrolo[3,4-b]indol-1(2H)-ones,
known as serotonin receptor agonists [99,100]. DMHM finds utility in the synthesis of
anthracycline structures, which hold significant significance in oncology treatment [101].



Int. J. Mol. Sci. 2023, 24, 17196 21 of 28Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 21. Directions of reaction according to Povarov type. 

To enhance the yield of the tricyclic derivative 132, the researchers of [93] utilized 
the BF3*Et2O/CHCl3 catalyst/solvent system, resulting in a 93% yield of the desired com-
pound. In certain instances, minor quantities of transamination products and tetrahy-
droquinoline were also obtained (Figure 22). Conducting the synthesis in a concentrated 
solution of the same system, as anticipated, increased the yield of condensate 132 but led 

Figure 21. Directions of reaction according to Povarov type.



Int. J. Mol. Sci. 2023, 24, 17196 22 of 28

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 22 of 28 
 

 

to the formation of diastereomers. The excess arylamine contributed to transamination 
reactions rather than cyclization towards the desired compound 132 [93] (Figure 22). 

 
Figure 22. Tricyclic derivative 132 yields Amination of N,N-dimethylaminforminium chloride. 

The structure 132 bears a resemblance to ethyl 
7-fluoro-3,4-dihydropyrrolo[3,4-b]indoles, which exhibit neuroleptic activity [98], and 
3,4-dihydropyrrolo[3,4-b]indol-1(2H)-ones, known as serotonin receptor agonists 
[99,100]. DMHM finds utility in the synthesis of anthracycline structures, which hold 
significant significance in oncology treatment [101]. 

5. Formaldehyde Dimethylhydrazone 
Formaldehyde Dimethylhydrazone (MDH) is also of interest in creating valuable 

organic compounds. Thus, on this basis, a beta-lactam scaffold obtained [102] is widely 
used in medicine as an antibacterial agent [103] and as an inhibitor of serine protease 
[104], human leukocyte elastase [105], cytomegalovirus protease [106], thrombin [107], 
prostate-specific antigen [108], cholesterol absorption [109], and tryptases [110]. Some 
β-lactams also showed antitumor activity [111]. 

The synthesis of the hard-to-reach azetidine cycle [101] (Figure 23) was accom-
plished via hydrochloric acid elimination, followed by MDH addition to the ketene 136 
C=O bond. The electron density in intermediate 137 facilitated intramolecular cyclization 
to form azetidine 138 (Figure 23). 

 
Figure 23. Four-membered heterocycle formation. 

TCNE (tetracyanoethylene) undergoes a reaction with the mobile hydrogen of the 
MDH (methylene active link) moiety, as depicted in Figure 24. Simultaneously, tricya-
nohydrazone derivatives are formed, which are recognized as promising antimicrobial 
dyes and photosensitizers [15] (Figure 24). 

Figure 22. Tricyclic derivative 132 yields Amination of N,N-dimethylaminforminium chloride.

5. Formaldehyde Dimethylhydrazone

Formaldehyde Dimethylhydrazone (MDH) is also of interest in creating valuable
organic compounds. Thus, on this basis, a beta-lactam scaffold obtained [102] is widely
used in medicine as an antibacterial agent [103] and as an inhibitor of serine protease [104],
human leukocyte elastase [105], cytomegalovirus protease [106], thrombin [107], prostate-
specific antigen [108], cholesterol absorption [109], and tryptases [110]. Some β-lactams
also showed antitumor activity [111].

The synthesis of the hard-to-reach azetidine cycle [101] (Figure 23) was accomplished
via hydrochloric acid elimination, followed by MDH addition to the ketene 136 C=O bond.
The electron density in intermediate 137 facilitated intramolecular cyclization to form
azetidine 138 (Figure 23).
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Figure 23. Four-membered heterocycle formation.

TCNE (tetracyanoethylene) undergoes a reaction with the mobile hydrogen of the
MDH (methylene active link) moiety, as depicted in Figure 24. Simultaneously, tricyanohy-
drazone derivatives are formed, which are recognized as promising antimicrobial dyes and
photosensitizers [15] (Figure 24).
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MDH is capable of undergoing [4+2]-cycloaddition reactions, specifically Alder–
Rickett-type reactions (Figure 25), with a tetrazene derivative 140. This reaction leads
to the formation of a bicyclic structure 141, which can be cleaved to release nitrogen and
subsequently form triazinamine 142 [112] (Figure 25).
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6. Conclusions

Thus, hydrazones of dimethylhydrazine carbonyl derivatives hold promise in the
creation of various natural structure analogs (alkaloids, enzymes, antibacterial, antitumor
drugs), as well as serving as a tool for molecular design in organic synthesis.

The treatment of substandard rocket fuel through the formation of hydrazones of
carbonyl compounds offers several advantages:

1. Negative cost of the original unsymmetrical dimethylhydrazine (UDMH);
2. Reduced toxicity and less pungent odor of carbonyl derivatives (compared to UDMH

itself), facilitating their use in large-scale and multi-stage synthesis;
3. The possibility of conducting stereoselective reactions and obtaining optically pure

compounds;
4. The electron-rich nitrogen–carbon double bond enables various cycloaddition reac-

tions (4+2, 3+2, 2+2) and the synthesis of heterocyclic derivatives with high yields.
5. Many heterocyclic compounds based on dimethylhydrazone have demonstrated

high antitumor activity (phenanthroline-7-ones), antifungal activity, and antibacterial
activity (thiobazidalin derivatives);

6. In numerous reactions, target products with quantitative yields have been obtained.
For example, dihydropyran, a component of irciniastatins (marine products), can be
synthesized via the Diels–Alder reaction with a 100% yield (Eu(hfc)3, room tempera-
ture, 15 h). The Povarov reaction can provide a tetrahydroquinoline ring, which is a
constituent of benzostatins. However, one of the main drawbacks of using DMH car-
bonyl derivatives in organic synthesis is the requirement for hard-to-access reagents
(LDA, Bu-Li, t-BuOK, InCl2, AcOAc, Eu(hfc)3) for the transformation into target
compounds.
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