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Abstract: In this work, we established, validated, and optimized a novel computational framework
for tracing arbitrarily oriented actin filaments in cryo-electron tomography maps. Our approach was
designed for highly complex intracellular architectures in which a long-range cytoskeleton network
extends throughout the cell bodies and protrusions. The irregular organization of the actin network,
as well as cryo-electron-tomography-specific noise, missing wedge artifacts, and map dimensions call
for a specialized implementation that is both robust and efficient. Our proposed solution, Struwwel
Tracer, accumulates densities along paths of a specific length in various directions, starting from
locally determined seed points. The highest-density paths originating from the seed points form
short linear candidate filament segments, which are further scrutinized and classified by users via
inspection of a novel pruning map, which visualizes the likelihood of being a part of longer filaments.
The pruned linear candidate filament segments are then iteratively fused into continuous, longer, and
curved filaments based on their relative orientations, gap spacings, and extendibility. When applied
to the simulated phantom tomograms of a Dictyostelium discoideum filopodium under experimental
conditions, Struwwel Tracer demonstrated high efficacy, with F1-scores ranging from 0.85 to 0.90,
depending on the noise level. Furthermore, when applied to a previously untraced experimental
tomogram of mouse fibroblast lamellipodia, the filaments predicted by Struwwel Tracer exhibited a
good visual agreement with the experimental map. The Struwwel Tracer framework is highly time
efficient and can complete the tracing process in just a few minutes. The source code is publicly
available with version 3.2 of the free and open-source Situs software package.

Keywords: cryo-electron tomography; segmentation; filament tracing

1. Introduction

Shape, motility, and transport within a eukaryotic cell are based on an extensive actin
cytoskeleton [1]. To visualize actin filaments in their native state, researchers commonly em-
ploy cryo-electron tomography (cryo-ET), a specialized imaging technique that enables 3D
insight into the internal cellular structure. Cryo-ET has recently shown that actin filaments
provide a “missing evolutionary link” between Archaea and complex eukaryotic life forms,
such as animals and plants [2]. The cryo-ET by Pilhofer’s lab at ETH Zurich supports an
emerging hypothesis that extensive cytoskeletal actin structures arose first in the Asgard
Archaea, before the appearance of the first eukaryotes on Earth, and could, therefore, have
contributed to the emergence of complex organisms [3]. Moreover, the observed cytoskele-
tal protrusions in the Archaea suggest a detailed mechanism for eukaryogenesis, in which
a primordial Asgard archaeon (the closest known relative of eukaryotes) interacts with the
predecessor of the bacterial endosymbiont by means of the actin-powered protrusions and
eventually endogenizes it [2,3].

Cryo-ET involves capturing a series of 2D images of a specimen at extremely low
temperatures, preserving its frozen state while maintaining its hydrated environment.
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This enables detailed imaging of actin filaments without disrupting their native structure.
These 2D projections are subsequently aligned using various computational techniques,
collectively referred to as 3D reconstruction, to generate the 3D tomogram. The 3–5 nm-
resolution tomograms obtained by cryo-ET typically present considerable noise, induced by
the limited electron dose used in the image acquisition, and they exhibit directional artifacts
from the absence of certain view directions (“missing wedge” in the Fourier space [4]),
caused by the limited tilt range of the specimen holder in the microscope.

Determining the organization of actin filaments is highly important as they are re-
sponsible for a variety of cellular processes, such as muscle contraction, transport, and cell
motility [1], and therefore, it can aid in characterizing experimental, dynamic, or pathologi-
cal changes in the cytoskeleton [5]. Actin filaments are thin and flexible. They assemble to
form diverse organizational patterns, from hexagonal closely packed bundles in the shaft of
hair cell stereocilia [6], to directionally biased semi-ordered strands in the stereocilium taper
region [4,7], to irregular, randomly oriented actin networks in filopodia [8]. The three types
of actin organization can be likened to the appearance of a person’s hair in various stages of
tidiness (brushed, windblown, unkempt), and each type requires specialized algorithms for
their computational interpretation. Our recent algorithm development was mainly focused
on ordered or semi-ordered patterns in stereocilia, where filaments form strands with
a mean direction that can be exploited in directional denoising or deconvolution [4,6,7].
In many cells, however, such as in the ancestral Archaea [2], the filaments are randomly
oriented and form highly irregular networks, which defy any directionally biased denoising
approaches. In this work, we present a novel approach, Struwwel Tracer, to quantitatively
organize such important disorganized actin networks. (The tool was named after Heinrich
Hoffmann’s famously shaggy Struwwelpeter character.)

The presence of noise, artifacts, and other structures, such as actin-binding proteins,
can obfuscate the filaments and make the tracing difficult. Distinguishing true filaments
from noise or other structures in tomograms requires careful examination and expertise,
which ultimately make manual tracing of actin filaments a labor-intensive task that requires
significant time and effort [8–10]. In addition, manual tracing is often subjective in nature
and relies heavily on the annotator’s interpretation. The reliability and reproducibility
of the annotation procedure are greatly compromised by factors such as low contrast,
various types of artifacts, and inherent uncertainty. This is particularly evident when the
procedure is applied directly to whole-cell tomograms (i.e., without any subtomogram
averaging) with typical resolutions below 2 nm and varying in orientation due to the
missing wedge effect. Moreover, when dealing with large datasets containing 2D image
stacks, the repetitive nature of the annotation task increases the chance of error, such as an
inadvertent skipping between neighboring filaments. To mitigate these potential errors and
to make the tracing objective and reproducible, it becomes necessary to develop automated
approaches that can be independently validated.

Over the years, a number of automatic methods have been developed to trace actin
filaments [4,8,10–13]; however, the existing methods have certain limitations:

1. A significant portion of these approaches can be ruled out for the present work
because they are only applicable to non-actin filaments such as microtubules [14] and
polysaccharides [15], or to actin filaments observed in relatively clean light or confocal
microscopy images [16,17].



Int. J. Mol. Sci. 2023, 24, 17183 3 of 15

2. Among the cryo-ET-related actin tracing methods, some are only applicable for the
tracing of well-ordered filaments [4,6,7]. Among these, one noteworthy tool is our
Spaghetti Tracer approach [7]. Spaghetti Tracer introduced a paradigm shift in the tracing
of semi-regular actin filaments because it is a dynamic-programming-based method at
the voxel level that does not require an expensive missing wedge correction, template
convolution, or deconvolution. Therefore, it yields a substantial improvement in time
efficiency over template convolution [8,10] or deconvolution methods [4], enabling
fast and accurate tracing of such filament arrangements. (The accuracy of Spaghetti
Tracer was validated in a rigorous statistical analysis, achieving F1-scores of 0.86–0.95
on phantom tomograms under experimental conditions.) The success of Spaghetti
Tracer motivated us to extend its capabilities to randomly oriented actin filaments in
the present work.

3. There are very few earlier algorithms that are agnostic of the relative orientations and
distances of the actin filaments, so that they can trace central lines of irregular filaments
individually without leveraging the information of adjacent filaments or requiring a
mean direction. Volume Tracer [8] utilized an expensive genetic-algorithm-based search
employing a population of cylindrical templates (combined with a bi-directional trac-
ing) to detect randomly oriented filaments in Dictyostelium discoideum filopodia. The
genetic algorithm was implemented as part of our group’s free, open-source Situs and
Sculptor packages, but it required extensive computational time on the order of sev-
eral days when applied to a complete tomogram, without guaranteeing convergence
(leading to false negatives when a user is impatient). Co-author Rigort also developed
a similar template-matching method independently [10]. This approach was imple-
mented in Amira, a commercial software requiring a paid license and limiting any
algorithmic modifications by third parties or end users.

4. Recently, a number of deep-learning-based approaches have been proposed for the
segmentation of diverse biological assemblies, including actin [18,19]. For example,
Chen et al. [18] presented a deep-learning-based segmentation approach for a voxel-
level classification of shapes of interest in the tomogram and integrated the approach
into the EMAN2 [20] package. However, these segmentation tools are generic in
nature and are not specifically designed for filamentous shape structures. Besides,
they require users to annotate training data and fine-tune the deep learning model,
which could be a laborious process. These segmentation approaches only provide a
voxel-level density segmentation, without any tracing of central lines. Recent studies
that used these segmentation methods subsequently required separate approaches,
such as the above template matching, for the additional tracing [11–13].

In summary, the current state-of-the-art of identifying actin filament networks in
cryo-ET has several drawbacks, including the fragmentation of tools and packages, the
prerequisite to buy commercial software (Amira), complex manual interventions (e.g.,
manual annotation for segmentation or the training of deep learning networks), and
computational expense. Our newly proposed approach, demonstrated in Section 2, can
address all these drawbacks. Struwwel Tracer is an efficient, accurate, free, open-source
tool for tracing randomly oriented filaments in actin networks (Figure 1). We describe
in in Section 3 how the framework first detects local seed points (Figure 1) in the map,
from which it generates short candidate filament segments (CFSs). Next, path densities are
accumulated by exploring all potential filament paths within 45◦ search pyramids from
the x, y, and z directions. After placing CFSs across the map based on the maxima of path
densities, we describe in Section 3 how a manual segmentation can be efficiently performed
by visualizing an intermediate “pruning map” in a third-party molecular graphics program.
Finally, the surviving CFSs are iteratively fused (Figure 1) into longer, curved filaments
based on their relative orientations and gap spacings after extension.
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Figure 1. Overall flow diagram of Struwwel Tracer as described in Section 3.

2. Results and Discussion

To evaluate the performance of Struwwel Tracer, a comprehensive statistical F1-score
analysis was performed on simulated tomograms of a Dictyostelium discoideum filopodium
with a known ground truth. Different levels of noise were added to simulate realistic
imaging conditions. Additionally, the effectiveness of Struwwel Tracer was demonstrated
on an experimental tomogram of a mouse fibroblast lamellipodium that was interpreted
for the first time by filament tracing. Finally, we report the implementation details and
computation times of our software.

2.1. Statistical Evaluation of Tracing Accuracy in Simulated Tomograms

In earlier work [7], we established a rigorous statistical evaluation protocol [5] for
testing the accuracy of filament-tracing approaches. This protocol is based on simulated
phantom tomograms that we generated from known filament traces under realistic con-
ditions that matched the noise profile and missing wedge properties of an experimental
tomogram (see Section 3.1). To evaluate Struwwel Tracer, we computed the precision, recall,
and F1-scores based on the observed agreement.

The ground truth filament voxels of simulated Dictyostelium discoideum filopodium
maps (see Section 3.1) were compared with the filament voxels predicted by the tracing.
Due to the inherent high noise levels present in cryo-ET images, previous studies [5] have
highlighted the limitations of conducting one-to-one voxel-level comparisons between the
ground truth and predictions. Therefore, here, we used a more-pragmatic approach; rather
than direct voxel-level comparison, we performed the comparison based on a neighborhood
range [5,7] of three voxels. The true positive (TP), false positive (FP), and false negative
(FN) voxels were then computed in the following way:

True positive: If a ground truth filament voxel is found within a 3× 3× 3-voxel neigh-
borhood of a predicted voxel, it is considered a TP.

False positive: If no ground truth voxel is found within a 3× 3× 3-voxel neighborhood
of a predicted voxel, it is considered an FP.

False negative: If no predicted voxel is found within a 3× 3× 3-voxel neighborhood of
the ground truth voxel, it is considered an FN.

The recall (R), precision (P), and their harmonic mean (F1) are then computed accord-
ing to

R =
TP

TP + FN
, (1)

P =
TP

TP + FP
, (2)

F1 =
2 ∗ R ∗ P

R + P
. (3)
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Table 1 presents the precision, recall, and F1-scores obtained by Struwwel Tracer in
simulated tomograms with varied levels of noise (see Section 3.1). Struwwel Tracer achieved
a high F1-score of 0.90 when applied to the lowest-noise map we tested. The high precision
score of 0.97 indicated that the framework recognized mostly true filaments in the simulated
tomogram (FP predictions were negligible). As the noise level increased, the performance
degraded a bit due to the slightly lower recall values (i.e., a small number of true filaments
were missed); however, the obtained F1-scores still remained above 0.8. Given the inherent
noise in the tomogram, the recall scores ranged slightly below the precision scores since
missing filaments’ densities resulted in FNs.

Nevertheless, the observed F1-scores ranging from 0.85 to 0.90 (illustrated in Figure 2
for noise levels of 0.35 to 0.95) presented a remarkable level of accuracy for a density-based
structure prediction. For comparison, we achieved much lower F1-scores of 0.72 for alpha
helices and 0.65 for beta sheets in a recent state-of-the-art deep learning prediction of sec-
ondary structure features in cryo-electron microscopy maps [21]. The high Struwwel Tracer
F1-scores were only slightly below those observed earlier with Spaghetti Tracer (0.86–0.95)
on much-more-ordered actin filaments [7].

Table 1. A performance comparison of the proposed Struwwel Tracer approach for simulated tomograms
of a Dictyostelium discoideum filopodium (see Section 3.1) at various noise levels.

Noise Level Precision Recall F1-Score

0.35 0.97 0.85 0.90

0.50 0.97 0.81 0.88

0.65 0.96 0.84 0.89

0.80 0.95 0.79 0.87

0.95 0.95 0.78 0.85

Figure 2. The simulated tomograms (top row) used in this study (isocontour level: mean + 1.5 ×
standard deviation) and the corresponding Struwwel Tracer predictions (bottom row). The simulated
tomograms are shown at the following noise levels (see Section 3.1): (A) 0.35, (B) 0.50, (C) 0.65,
(D) 0.80, and (E) 0.95. All molecular graphics in this work were created with UCSF Chimera [22].

2.2. Measuring Filament Center Lines in a Previously Untraced Experimental Tomogram

We applied Struwwel Tracer to an experimental tomogram of a mouse fibroblast lamel-
lipodium [23], which was deposited by the authors in the Electron Microscopy Data Bank
(EMDB) [24] as EMD-11870. This specific map has not been computationally traced due to
their focus on Arp2/3 protein branch junctions in [23], so a measurement of actin center
lines could provide complementary information to the paper. (Tracings were shown for
similar lamellipodia tomograms in [11], but only EMD-11870 is publicly available.)

Since this was a previously untraced map and we did not have any ground truth
(i.e., no annotated model), we provide in Figure 3 a visual comparison to demonstrate the
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excellent agreement between the density and the predicted filament center lines. EMD-
11870 [23] is a larger tomogram that contains randomly oriented and branched actin
filaments. For our demonstration in Figure 3A, we selected a 312 × 320 × 20 sub-region
of the tomogram in which filamentous patterns of actin can be clearly appreciated. The
Struwwel Tracer prediction results are illustrated in Figure 3B,C.

Figure 3. (A) A 312 × 320 × 20 subtomogram cropped from EMD-11870 [23] map indices i = 100–411,
j = 200–519, and k = 74–93. The isocontour level in the rendering is 0.4518 (mean + 1.5 × standard
deviation). (B) The map density in (A) overlayed by the Struwwel Tracer-predicted filament center
lines (blue). (C) The 3D perspective rendering of the map density in (A) (yellow) overlayed by the
Struwwel Tracer-predicted filament center lines (green).

2.3. Computation Time and Manual Intervention

In terms of computational efficiency, Struwwel Tracer demonstrated outstanding per-
formance, surpassing the earlier tracing method [8] (which took days of computational
time) by several orders of magnitude in speed. On an Apple MacBook Pro equipped
with a 2.6-GHz Intel Core i7 processor, we observed that, for a simulated tomogram of
size 200 × 200 × 71 voxels, Struwwel Tracer took approximately three minutes of runtime.
Given the ongoing developments in cryo-ET, it is expected that hundreds of tomograms
can soon be acquired within a few days [11]. Struwwel Tracer would be able to match this
processing speed.

In addition, the proposed method does not require extensive manual intervention,
which is the case for interactive and deep-learning-based tools for which users either need
to tune many parameters or label training data and train the model for prediction. For the
Struwwel Tracer approach, user intervention is needed only once in the CFS segmentation
step to select an approximate value of the threshold in the pruning map. This requires
opening the pruning map in visualization software and takes at most a few minutes.

2.4. Software Implementation and Dissemination

The newly developed Struwwel Tracer approach is set to be seamlessly integrated
into version 3.2 of Situs,a widely used, open-source software package for biological image
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interpretation (see the Data Availability Statement). Struwwel Tracer will be disseminated
with Situs Version 3.2 as a new command line tool named strwtrc (following the seven-letter
naming convention). To ensure full compatibility with Situs, strwtrc was implemented
using C/C++, the primary language of Situs. A notable advantage of strwtrc is that it
does not rely on any third-party libraries, making it self-contained and efficient. Moreover,
strwtrc is fully compatible with both the Linux and MacOS operating systems.

In addition, strwtrc was designed to be user friendly and accessible, requiring minimal
programming language proficiency and no prior coding experience. We intentionally kept
the number of user-defined parameters to a minimum (Table 2), making it easier for users
to operate the software. The default parameters were designed to work well for most cases;
however, it is important to note that they may not be optimal for every possible dataset. A
summary of all parameters is shown in Table 2. A comprehensive user manual and tutorial
will be included with the Situs package to guide users through the individual stages of
the approach.

Table 2. Command line parameters of the strwtrc program implemented in Situs [8] and corresponding
stages of the approach (see Sections 3.2–3.5 and the Data Availability Statement).

Parameter Name strwtrc
Argument Description Default Value Program Stages

Required Parameter

Threshold -thr Threshold for partitioning the CFS by
the normalized path density.

N/A (user-defined based
on the pruning map) CFS segmentation

Optional Parameters

Length -len

Length (infinity norm) of the CFS in
voxel units. Internally, this also

defines the spacing of the cubic grid
for placing seed points (half this value;
see the text) and the extension length

of the CFS (same value).

10

Automatic seed
selection, CFS

generation, and
CFS fusion

Gap Spacing -gap Maximum gap spacing, in voxels,
tolerated while fusing adjacent CFSs. 10 CFS fusion

Fusion Angle -ang Maximum angle, in degrees, tolerated
while fusing adjacent CFSs. 30 CFS fusion

3. Materials and Methods

Filaments in an irregular actin network, such as those found in filopodia, lamellipodia,
or stress fibers, are particularly challenging to trace due to their arbitrary orientation and
potential overlap or branching with other filaments. We report in the following how
simulated phantom tomograms were generated from ground truth traces to provide a
controlled basis for our method development and validation. Subsequently, we describe
the stages of the proposed tracing framework, shown in Figure 1, to address such challenges
in the tracing of actin filaments with arbitrary orientations.

3.1. Simulated Phantom Tomograms

In our previous work [25], we introduced TomoSim, a tomogram simulation approach
that leverages pre-existing filament traces to generate authentic phantom tomograms,
whose noise color, strength, and missing wedge were matched to experimental tomograms.
In this study, we extended our simulation method to address the random orientations of
the filaments.

To establish a reliable benchmark for validating Struwwel Tracer, we utilized actin
traces of a Dictyostelium discoideum filopodium. A spline interpolated from the filament
trace in Supplementary Data 5 from Rusu et al. [8] was volumized using a Gaussian filter
with a full width at half maximum of 9 nm with a voxel spacing of 1.912 nm.
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As elaborated in our previous work [25], the simulation of a tomogram aims to
replicate the noise and missing wedge artifacts typically encountered in experimental maps.
The simulated tomogram does not incorporate non-filamentous biological features, such as
membranes. Consequently, the simulated tomogram serves as a well-defined ground truth
specifically tailored to assess the accuracy of any filament-tracing framework. We used
an experimental tomogram obtained from Supplementary Data 2 from Rusu et al. [8] for
noise–color modeling and signal-to-noise ratio (SNR) calibration. A wedge was masked in
the frequency domain to emulate a tilt range of ±45◦.

Using the color-matched noise profile, we matched the signal strength to the experi-
mental tomogram’s SNR. We used this as the basis for testing our tracing against a range of
noise levels. Noise levels were quantified as the noise intensity ratio relative to the exper-
imental tomogram. For example, a noise level of 0.5 would have half the noise intensity
of the experimental tomogram and twice the SNR. The experimental map we used for the
calibration was the raw tomogram prior to any denoising or local normalization (which
is typically performed on a tomogram prior to tracing [8]). Therefore, a noise level of 1.0
is a worst-case scenario that is not encountered in tracing practice. To simulate the effect
of the missing denoising step, we generated a range of five equally spaced noise levels
from 0.35 to 0.95, as normalized by the worst-case level. (We did not calibrate our noise
on the processed tomogram [8] to avoid any subjective bias from that study and, instead,
used a range of reduced noise levels as calibrated from the raw tomogram.) Note that the
absolute noise scale in simulated tomograms is not strictly defined anyway because of the
hidden misalignment of unknown true filament densities with the prescribed ground truth
traces [25]. (So, the relative noise strengths are more relevant than the absolute scale).

3.2. Automatic Seed Selection

The detection of filaments in cellular tomograms is initiated from suitably chosen
high-density seed points. Manual filament tracing relies on user-provided seed points,
which were considered as the ground truth in previous work [6]. However, due to the
labor-intensive tagging, such manual seed point selection is relatively sparse and introduces
uncertainty and a subjective bias, which we wished to avoid. An automated approach is
less concerned with the expense of the selection and can consider a denser oversampling
of potential seed points, but it might introduce false positives. Therefore, instead of
considering seed points as the definitive ground truth, we utilized them solely as starting
points for the CFSs, which will be screened and refined later.

For an automatic seed point selection on a 3D grid, we identified high-density voxels
within a local neighborhood. To achieve this, the tomogram was sub-partitioned into non-
overlapping 3D cubes along each axis. The voxel with the highest density value within each
cube was then designated as a seed voxel. In semi-regular filaments [7], the cube side length
was chosen to be identical to the CFS length l in the CFS creation stage (below), which
provides a natural length scale for the coarse-grained seed placement. However, in irregular
actin networks, we expected the final seeds to be more irregularly distributed in the search
cubes, so a denser sampling with a grid spacing of l/2 was implemented in Struwwel Tracer.
For this research, we used a CFS length of l = 10 voxels, resulting in seed search cubes of
dimensions 5× 5× 5 voxels. (At a voxel spacing of 1.912 nm in the phantom tomograms
above, five voxels correspond approximately to the 9 nm actin filament diameter, so the
seed point density should afford a complete detection of filaments.)

We assumed that seed points with local high density are necessary, but not sufficient
prerequisites for true filaments. Identifying true seed voxels (that are part of a true filament)
is difficult at this stage. This difficulty arises from the low SNR and the presence of missing
wedge artifacts or other structures in tomograms. The determination of whether a density
segment that originates in a seed belongs to a filament or not is performed in a later stage
of the approach. Consequently, we refer to the short filament segments originating from a
seed voxel not as predicted filament segments, but as candidate filament segments (CFSs).
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3.3. CFS Creation

This stage of the approach (Figure 1) comprises two sub-steps, CFS generation and
CFS refinement.

3.3.1. CFS Generation

A CFS originates in the seed voxel (i, j, k) and terminates in the end voxel (i′, j′, k′),
which is determined for each seed (i, j, k) by the following equations. The length l of the
CFS in this study is user defined and is equivalent to the infinity norm of the resulting CFS
vector, l = max{i′ − i, j′ − j, k′ − k}. As mentioned previously, we used a value of l = 10
voxels in this paper.

On a cubic grid, let the local density at each voxel D be globally normalized to a range
of 0 to 1. Three separate path densities, denoted as PDx,y,z, are initialized at the seed voxel
(i, j, k) for the three Cartesian x, y, and z axes:

PDx,y,z(i, j, k) = D(i, j, k) (4)

These path densities are then accumulated for each Cartesian axis over l voxels in the
forward (positive) direction within the search pyramids that have the seed (i, j, k) as the
vertex and can deviate by up to 45◦ from the corresponding axis. The search pyramids,
shown in green (x), red (y), and blue (z) in Figure 4, will be formally defined below. The
pyramidal search approach was inspired by the Spaghetti Tracer algorithm [7]. However,
unlike the earlier method, which was focused on a single dominant direction, we made no
assumption about CFS directionality in the present work. Therefore, three Cartesian search
pyramids will be combined in the following, to cover all possible orientations.

At each intermediate voxel (i′′, j′′, k′′) within a search pyramid, the corresponding
path density (initialized in Equation (4)) is then accumulated from up to nine contributing
neighbor voxels from a previous cross-section. To illustrate this, when tracing in the
y direction (red in Figure 4), the path density PDy(i′′, j′′, k′′) is accumulated from the
preceding y-slice, j′′ − 1 by mathematical induction. The accumulation scheme is applied
to all intermediate voxels within the search pyramids:

PDy(i′′, j′′, k′′) = D(i′′, j′′, k′′) +

max
m,n∈{−1,0,1}

(if contributing)

PDy(i′′ + m, j′′ − 1, k′′ + n). (5)

Note that only neighbors m, n ∈ {−1, 0, 1} within the search pyramid are consid-
ered. Therefore, as described in [7], the accumulation zone from the seed (i, j, k) to the
final endpoint (i′, j′, k′) is actually an intersection of two overlapping pyramids, i.e., path
densities are accumulated only in a relatively localized region. Similarly, PDx(i′′, j′′, k′′)
and PDz(i′′, j′′, k′′) are accumulated in their respective directions, with indices permuted
accordingly:

PDx(i′′, j′′, k′′) = D(i′′, j′′, k′′) +

max
m,n∈{−1,0,1}

(if contributing)

PDx(i′′ − 1, j′′ + m, k′′ + n), (6)

PDz(i′′, j′′, k′′) = D(i′′, j′′, k′′) +

max
m,n∈{−1,0,1}

(if contributing)

PDz(i′′ −m, j′′ + n, k′′ − 1). (7)
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The final forward path densities for the green (x), red (y), and blue (z) search pyramids
in Figure 4 are then computed on the forward-facing square bases of the pyramids:

FPDx(i, j, k; l) = max
j−l≤j′≤j+l
k−l≤k′≤k+l

PDx(i + l, j′, k′), (8)

FPDy(i, j, k; l) = max
i−l≤i′≤i+l
k−l≤k′≤k+l

PDy(i′, j + l, k′), (9)

FPDz(i, j, k; l) = max
i−l≤i′≤i+l
j−l≤j′≤j+l

PDz(i′, j′, k + l). (10)

The FPD{x,y,z}(i, j, k; l) values in Equations (8)–(10) range from 0 to l + 1 (number of
voxels in the CFS). For the segmentation in the next stage of the algorithm, we divided
the maximum between the three FPD values by l + 1 to obtain a single normalized NPD
value, which ranges from 0 to 1:

NPD(i, j, k; l) =
max

u∈{x,y,z}
FPDu(i, j, k; l)

l + 1
. (11)

The combined 3D search region (roughly a hemisphere of directions comprising the
three search pyramids in Figure 4) accounts for all possible (unsigned) filament orienta-
tions. The final endpoint (i′, j′, k′) of the CFS is then defined as the point that exhibits
the maximum FPDu, according to the winning u axis that defines the NPD(i, j, k; l) in
Equation (11).

The path-based density accumulation addresses the challenge posed by the substantial
noise levels in the tomogram. Rather than solely focusing on the density of individual
voxels or on density measurements along predetermined axes, the algorithm aims to
detect an elongated high-density path with a specific infinity norm l and an orientation
determined by the maximum attainable path density.

Figure 4. Pyramidal density search regions along different axes based on Equation (8) (green),
Equation (9) (red), and Equation (10) (blue), starting from the seed voxel (black) at position (i,j,k).
For a clearer illustration, we used a CFS length (infinity norm) l = 4 voxels for the search pyramid
dimensions, whereas l = 10 was used elsewhere in this paper.

3.3.2. CFS Refinement

The forward CFSs were subjected to an additional screening step based on backward
tracing. From the end point (i′, j′, k′) of each forward CFS, a backward CFS with new end
points (i∗, j∗, k∗) was constructed by applying the above tracing algorithm in reverse. It
was expected that, for a high-density CFS that is part of a true filament, the backward
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tracing will follow a comparable path in the reverse. Conversely, forward and backward
CFS characterized by low density or noise, which are unlikely to be part of any filament,
would diverge from each other. To determine the similarity of paths between forward
and backward tracing, the angle between the points (i, j, k), (i′, j′, k′), and (i∗, j∗, k∗) was
calculated, and a fixed angle threshold of 20◦ was employed to screen out inconsistent
forward and backward CFSs. An example of the intermediate results after the refinement
stage is shown in Figure 5. The surviving CFSs (Figure 5B) exhibited the preferred orienta-
tion of filaments in the actin-rich interior of the cell, whereas the exterior of the cell (lower
left) yielded unstructured CFS patterns, which were not true filaments and will need to be
filtered out in the following.

Figure 5. (A) Density map of the simulated Dictyostelium discoideum filopodium tomogram at a noise
level of 0.50 (shown at an isocontour level of mean + 1.5 × standard deviation). Note that the cell
membrane was not simulated. (B) Filament segments of length l = 10 voxels, generated by applying
the forward-path-based density accumulation and followed by backward tracing refinement.

3.4. CFS Segmentation

Figure 5B illustrates the segmentation problem in the irregular actin networks, which
are the focus of this work. In earlier work on ordered actin filament bundles (with a
dominant orientation), we found that it was possible to screen out spurious CFSs (such as
in the lower left corner) using an automated binning method that finds a suitable NPD
threshold above which the CFSs remain contained in the true filament region. CFSs with
NPD values below this threshold were then eliminated automatically. We propose here
to use a similar NPD threshold segmentation. However, irregular actin network CFSs
exhibit low NPD contrast (there was no separate directional denoising stage as in regular
filaments [7]), and we did not assume that irregular networks are localized in a specific
region. Therefore, it would be desirable to fine-tune the threshold as a continuous parameter
instead of prescribing discrete bin values. We implemented a novel way to allow users
to perform such a continuous thresholding quickly and conveniently with a third-party
molecular graphics program such as VMD [26], Sculptor [8] or UCSF Chimera [22]. Our
approach outputs a so-called “pruning map”, which contains the NPD values masked by
the CFS locations. Voxels in close proximity (i.e., one voxel) to the CFSs are assigned the
NPD value (Equation (11)) of the CFS. When a voxel can draw NPD values from multiple
CFSs, the highest value is retained.

In Figure 6, the pruning map returned by Struwwel Tracer is shown at different isocon-
tour levels. By adjusting the level in the histogram window, users can visually determine
the threshold in the pruning map (i.e., the threshold NPD) that represents likely filament
segments. An overly low threshold would result in numerous false positives (Figure 6A),
whereas an overly high threshold would lead to a significant number of false negatives
(Figure 6E). Visual examination indicates that the isocontour values within the range
depicted in Figure 6C,D are likely to represent the filaments accurately. Note that the
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subsequent steps of the algorithm are not very sensitive to the selected threshold value
because of the screening and gap filling that still follow. The main purpose of the visual
segmentation was to suppress spurious filaments, as is shown in Figure 6A, so a reasonable
guess of the threshold parameter suffices in practice.

Figure 6. Pruning map of the simulated tomogram in Figure 5A (noise level: 0.50) at different
isocontour levels: (A) 0.40, (B) 0.45, (C) 0.50, (D) 0.55, and (E) 0.60.

3.5. CFS Fusion

In the filament-fusion stage, we employed multiple geometric strategies to combine
short, linear CFSs (Figure 5B) into curved, longer filaments. To account for the irregular
organization of actin networks, the following fusion steps were specifically designed for
Struwwel Tracer and were different from the collinearity test we developed earlier for
oriented filaments [7].

3.5.1. Fusion Based on Physical Proximity

The initial fusion step considers the relative spacing and orientation of neighboring
CFSs. Adjacent filaments that exhibit similar orientations (default angle tolerance of CFS
center lines: 30◦) will be connected. We determined if two adjacent CFSs overlap or
touch each other based on their spacing along the center lines of the CFSs (the default
gap tolerance was 10 voxels). CFSs that meet the criteria are combined by connecting the
end point of a CFS to the starting point of the successive CFS. Since it is not required that
two CFSs exhibit perfectly matched orientations and positions before they are merged, we
smoothed the center line of the fused CFSs by sampling, interpolation, and the removal of
redundant points.

3.5.2. Fusion by Extension

In addition to the proximity fusion of short CFSs, we tested whether a one-time
extension of CFSs by a length l can extrapolate CFSs such that they make contact with
another CFS using the same angle and spacing criteria. The extension step aimed to fill
up any noise-induced gaps present in the filaments. Due to the high noise levels and
missing wedge artifacts in the tomograms, it is possible that true filaments exhibit regions
of density at the level of the noise, which may be excluded by a high threshold during
the visual inspection of the pruning map (Figure 6). We, therefore, examined whether the
one-time extension by a length l can help to fuse more CFSs. Similar to the previous step,
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we smoothed the center lines of fused CFSs by sampling, interpolation, and the removal of
redundant points.

4. Conclusions

The release of Struwwel Tracer is the capstone of several years of development effort on
actin filament tracing that extends and completes our set of efficient solutions for hexagonal,
closely packed bundles (BundleTrac [6]) and semi-regular bundles with a dominant direction
(Spaghetti Tracer [7]) to irregular networks of randomly oriented actin filaments. Struwwel
Tracer also completes the paradigm shift we began with Spaghetti Tracer, when we first
used a dynamic-programming-based method at the voxel level that does not require an
expensive missing wedge correction, template convolution, or deconvolution. Therefore,
both Spaghetti Tracer and Struwwel Tracer yield a substantial improvement in time efficiency
over earlier template convolution or deconvolution approaches. This development was
guided by a rigorous optimization of the performance using a statistical F1-score analysis
enabled by simulated phantom tomograms.

The proposed framework incorporates a directional path search in all three Cartesian
directions (x, y, and z) to ensure a comprehensive coverage of filament orientations. The
algorithm identifies the path with the highest density, generating short filament segments,
which are subsequently combined to form the final filament traces. The evaluation using
F1-scores on simulated tomograms proved the algorithm’s high efficacy in filament tracing.
Visual inspection of the results further confirmed its agreement with experimental tomo-
grams. Our approach is robust and fast, works with simple parameter settings, and can
deliver a comprehensive performance on simulated and experimental datasets. Moreover,
in contrast to deep-learning-based approaches that rely on substantial processing power,
such as dedicated GPUs, the implementation in the Situs package does not necessitate such
resources. It can seamlessly operate on any conventional laptop or desktop computer with
a standard CPU.

In addition to the high efficacy in tracing, the proposed framework is also robust as it
is, in principle, capable of tracing various types of filaments, whether they are randomly
oriented networks or regular (with a dominant direction). We note, however, that our
earlier tools (Volume Tracer [8], BundleTrac [6], ConDe [4], and Spaghetti Tracer [7]) have
unique features that were optimized for their specific applications (e.g., an additional
capability to detect alpha helices in Volume Tracer, the use of hexagonal bundle templates
in BundleTrac, the ability to prescribe diverse shape templates in ConDe, and an integrated
directional denoising that takes advantage of an ordered filament arrangement in Spaghetti
Tracer). A comprehensive F1-score comparison of various tools and conditions could be
performed in a future review.

As the study of the actin cytoskeleton is of increasing importance in biology, the pro-
posed tool will become useful to structural biologists in need of free, open-source software
solutions. Although this manuscript focused primarily on the computational aspects of
actin filament tracing, the developed framework can be applied by any experimental lab
to newly acquired experimental tomograms of the actin cytoskeleton. Functionality for
measuring actin filament length distributions and the angles between filaments, and for
labeling branch junctions [10,23], can be included in future work.
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