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Abstract: Microorganisms have a close relationship with humans, whether it is commensal, symbiotic,
or pathogenic. Recently, it has been documented that microorganisms may influence the response to
drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations
in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have
been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores
how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers
to modifications in the microbiome as a result of drug administration. In this context, we introduce
the concept of “drug-infection interaction” to describe the influence of pathogenic microorganisms
on drug response. This review analyzes the current state of knowledge regarding the relevance of
microorganisms in the host’s response to drugs. It also highlights promising areas for future research
and proposes the term “drug-infection interaction” as an extension of pharmacomicrobiomics.

Keywords: pharmacomicrobiomics; toxicomicrobiomics; pharmacoecology; drug–infection interaction;
microbiome

1. Introduction

A pharmacological interaction is a situation in which the activity of a medication
is affected because it is administered simultaneously with another drug, with certain
food, or due to extrinsic or intrinsic factors. Pharmacological interactions can lead to
the development of medical complications, mainly because they can reduce therapeutic
effectiveness or increase the toxicity of pharmacological treatment. According to the World
Health Organization, at least 60% of adverse drug reactions could be avoided. In this
context, drug interactions stand out as the primary cause of these adverse reactions [1,2].

There are several ways to classify drug interactions; however, the most common
approach is to classify them according to their mechanism of action: into pharmacokinetic
or pharmacodynamic interactions. The former refers to those that affect how a drug is
absorbed, distributed, metabolized, or eliminated in the body, while the latter refers to how
drugs interact directly with biological systems to produce therapeutic or side effects [1–4].

A pharmacological interaction is considered clinically relevant when it significantly
affects the therapeutic efficacy or safety of a medication to the extent that a dose adjustment
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or a complete treatment change is required. Different regulatory agencies, such as the U.S.
Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the
Japan Pharmaceutical and Medical Device Agency (PMDA), have developed guidelines for
determining the clinical relevance of pharmacological interactions. In general, these three
agencies attach great importance to cytochrome P450 (CYP) enzymes, and drug transport
proteins in drug interactions [3,5].

In current clinical practice, five main types of pharmacological interactions are pri-
marily considered: drug–drug interactions, which refer to how one drug can modify the
response of another drug; drug–disease interactions, which relate to how a health condition
can modify the response to a drug; drug–food interactions, which address the influence
of food on drug response; pharmacogenetics, which studies how a person’s genetic com-
position modifies the response to a drug; and drug–substance interactions, which include
interactions between drugs, medicinal herbs, supplements, and alcohol [2,3,6].

In the scientific community, the study of how microorganisms influence drug response
has been of increasing interest in recent years. Since 2010, when the term “pharmacomicro-
biomics” was coined to describe the effects of the microbiome on drug absorption, activity
and toxicity, numerous research studies have been conducted on this topic [7–9].

In the context of pharmacomicrobiomics, terms like “toxicomicrobiomics” and “phar-
macoecology” have emerged. The most recent term is “pharmacoecology”, which was
proposed in May 2023, with the purpose of complementing the concept of pharmacomicro-
biomics [10]. Initially, this term was proposed in 2008 by C. Flexner to refer to environmental
influences on drug disposition and response, although, with this definition, it was only used
in three publications [11–13]. Due to the limited use of the term and in an effort to provide
a more precise definition, Alya Heirali et al. proposed that the term “pharmacoecology”
be employed to conceptualize modifications in microbial taxa or specific functions of the
microbiome as a result of the administration of a microbicidal or pro-microbial drug [10,14].
On the other hand, “toxicomicrobiomics” specifically refers to the study of how variations
in the microbiome affect the metabolism and modify the toxicity of xenobiotics, including
drugs [15,16].

In general, pharmacomicrobiomics focuses on interactions between drugs and the
“microbiome”. The microbiome, and even dysbiosis, specifically refer to symbiotic or com-
mensal microorganisms. It is worth mentioning that, in this context, pharmacomicrobiomics
does not provide a specific definition for interactions between drugs and pathogenic mi-
croorganisms, because an infection is characterized by the invasion and proliferation of
pathogenic microorganisms in body tissues [9,17,18]. As far as we know, there is no spe-
cific term like “pharmaco-infection interaction” in the current literature. However, in this
document, we will use this term to refer to the effect of pathogenic microorganisms and
their influence on drug pharmacokinetics and/or pharmacodynamics. In Figure 1, the
distinction between pharmacomicrobiomics, pharmacoecology, toxicomicrobiomics, and
drug–infection interaction is made clear.

The aim of this study was to conduct a review of the available evidence of the impact
of microorganisms, whether pathogenic, commensal, or symbiotic, on the response to drug
treatment. In addition, we propose to incorporate the term “drug-infection interaction” to
distinguish interactions generated by the microbiome and pathogenic microorganisms in
response to a drug.
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Figure 1. Effect of microorganisms on the host response to drugs. This depiction illustrates the dis-
tinction between four key concepts: pharmacomicrobiomics, toxicomicrobiomics, pharmacoecol-
ogy, and drug–infection interaction. Pharmacomicrobiomics focuses on how variations in the mi-
crobiome affect drug disposition, action, and toxicity. Toxicomicrobiomics, meanwhile, explores the 
influence of the microbiome on drug metabolism and toxicity. Meanwhile, pharmacoecology fo-
cuses on the modifications in the microbiome that result from drug administration. Finally, drug–
infection interaction investigates the impact of pathogenic microorganisms on drug response. 
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Figure 1. Effect of microorganisms on the host response to drugs. This depiction illustrates the
distinction between four key concepts: pharmacomicrobiomics, toxicomicrobiomics, pharmacoe-
cology, and drug–infection interaction. Pharmacomicrobiomics focuses on how variations in the
microbiome affect drug disposition, action, and toxicity. Toxicomicrobiomics, meanwhile, explores the
influence of the microbiome on drug metabolism and toxicity. Meanwhile, pharmacoecology focuses
on the modifications in the microbiome that result from drug administration. Finally, drug–infection
interaction investigates the impact of pathogenic microorganisms on drug response.

2. Effect of the Microbiome on Drug Response: “Pharmacomicrobiomics”

To easily grasp the term “pharmacomicrobiomics”, it is essential to begin by defining
and clearly distinguishing between the concepts of microbiota and microbiome. Although
they are sometimes used interchangeably, they have significant differences. Microbiota
refers to the organisms that maintain a symbiotic relationship with humans, while the
microbiome encompasses both these organisms and their genetic composition, as well as
their interaction with the host’s genome [8,17].

Pharmacomicrobiomics is defined as the study of the effect of variations in the mi-
crobiome on the disposition, action, and toxicity of drugs. Although most of the research
related to pharmacomicrobiomics is centered on the intestinal microbiota, it is important
to note that there are five specific regions in the human body that host a resident micro-
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biota: the skin, oral cavity, respiratory tract, intestines, and urogenital tract [8]. In general,
there are two main reasons for why a significant portion of the research in the field of
pharmacomicrobiomics focuses on the intestinal microbiota. First, approximately 90%
of drugs consumed globally are administered orally. Second, the intestinal microbiota is
the most diverse of all, consisting of between 30 to 400 trillion microorganisms, and its
composition varies based on factors such as ethnicity, dietary intake, and environmental
influences [19,20].

Today, especially concerning the intestinal microbiota, it has been demonstrated to
play a highly relevant role in how pharmacological treatments are absorbed, distributed,
metabolized, excreted, and in their potential toxicity. This mainly occurs through two key
mechanisms: drug bioaccumulation and drug metabolism by the microbiota [21].

In the context of pharmacomicrobiomics, the term “drug bioaccumulation” is used to
describe the ability of bacteria to store a drug intracellularly without chemically modifying
it. This has two consequences: the first is a reduction in drug availability, and the second is
due to changes in the composition of the microbial community [22].

Recently, it has been proposed that bioaccumulation is the primary process through
which bacteria deplete drugs, even surpassing biotransformation. In a study examining
29 interactions between bacteria and drugs, it was found that 17 of these interactions were
related to bioaccumulation, while the remaining 12 were associated with biotransforma-
tion [22].

Currently, the mechanisms regulating bioaccumulation by intestinal bacteria are not
fully understood. Regarding the accumulation process, some studies have found that drugs
such as duloxetine and hydrochlorothiazide have the ability to bind to proteins present in
the intestinal microbiota bacteria. Therefore, the binding of drugs to bacterial proteins could
be a plausible explanation for accumulation [22,23]. Information about drug transport into
bacteria remains limited. However, based on the results of some research, hypotheses can
be formulated. For instance, it has been observed that metformin increases the presence of
Akkermansia muciniphila, a bacterium classified as Gram-negative. These microorganisms
possess transport proteins in their outer membrane, such as porins. Among these, the
Outer Membrane Protein A (OmpA), due to its nonspecific nature, facilitates the passive
transport of many small chemical substances, generally with a molecular weight less than
600 Da, such as metformin [24,25].

Studying the molecular basis related to the transport and accumulation of drugs that
are not intended to target intestinal bacteria is an underexplored field that deserves more
attention in future research. Research in this field will better enable the understanding of the
potential impact of the microbiota on the effectiveness of medical treatments. Additionally,
it will help clarify how certain medications can affect the composition and functioning of
the intestinal microbiota.

Regarding drug metabolism, the metabolic potential and influence of the microbiota
on drug metabolism have been known since 1968 [26]. Intestinal microorganisms can
metabolize drugs through processes such as oxidation, reduction, acetylation, deamination,
and hydrolysis, among others [27]. One of the most intriguing mechanisms through which
gut bacteria metabolize drugs is via CYP enzymes [28,29]. While the human body has
a total of 57 identified CYP, bacteria have been found to possess 2979. However, not all
bacteria possess these enzymes; for instance, bacteria like E. coli lack CYP [30]. Bacterial and
archaeal CYP enzymes are soluble and lack membrane-anchoring regions, unlike human
enzymes, which are membrane-bound via a transmembrane N-terminal alpha-helical
segment. Research on the role of bacterial CYP enzymes extends beyond their involvement
in phase I drug metabolism reactions. Experiments have been conducted to modify specific
enzymes, such as CYP102A1 (P450 BM3), aiming to alter their structure and potentially
affect drug activity. Hence, the study of bacterial CYP enzymes represents a promising
research field [31,32]. The differences between drug metabolism and microbial metabolism
are illustrated in Figure 2.
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Figure 2. Effects of the microbiome on drug response. In this figure, the processes of drug bioaccumu-
lation and metabolism are depicted. Bioaccumulation refers to the ability of bacteria to store certain
drugs intracellularly. Drug metabolism, on the other hand, indicates how the microbiome participates
in the metabolization of drugs. The arrow in the box corresponding to ‘drug biotransformation’
indicates that bacteria interact with the drug to metabolize it.

Currently, the scientific community is showing great interest in the relationship be-
tween drug response and the microbiome or microbiota. This growing attention is reflected
in the abundance of publications on this topic. As an example, some of the most recent
experimental studies in the field of pharmacomicrobiomics are presented in Table 1.

Table 1. Experimental studies in pharmacomicrobiomics across various models. The table presents
the most recent studies in pharmacomicrobiomics, encompassing investigations in humans, mice,
and in vitro. These studies examine the impact of the microbiome on drugs, either in terms of drug
bioaccumulation, metabolism, or both.

Drug Involved Affected Process Associated
Microorganisms Clinical Effect Condition for

Which Studied

Organism in
Which the Study
Was Conducted

Chemotherapy and/
or immunotherapy Not described L. mucosae and L. salivarius Favorable response

Metastatic/unresectable
HER2-negative

gastric/gastroesophageal
junction adenocarcinoma

Humans [33]

FOLFOX regimen Drug metabolism Akkermansia muciniphila Better therapeutic effect Colon Cancer Mice [34]

Hydrochlorothiazide Bioaccumulation Gram-negative
enterobacteriaceae

Impair glucose
tolerance Metabolic control Mice [23]
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Table 1. Cont.

Drug Involved Affected Process Associated
Microorganisms Clinical Effect Condition for

Which Studied

Organism in
Which the Study
Was Conducted

Mycophenolate mofetil Drug metabolism

Bacteroides vulgatus,
Bacteroides stercoris

and Bacteroides
thetaiotaomicron

Graft-versus-host
disease risk reduction Transplantation Humans [35]

Simvastatin Drug metabolism and
bioaccumulation Probiotic bacteria

Alteration of
simvastatin

bioavailability and
therapeutic effect

Metabolic control in vitro [36]

Statins Drug metabolism Bacteroides Intense statin responses Metabolic control Humans [37]

The table above illustrates the breadth of applications of pharmacomicrobiomics,
covering both in vivo and in vitro studies, in animal models and in humans. These studies
cover a wide range of conditions, from metabolic disorders to organ transplantation.
Advances in next-generation sequencing, metabolomics, transcriptomics, and proteomics
suggest that, in the near future, healthcare is likely to experience significant benefits
through improved clinical practices, thanks to a better understanding and manipulation of
the microbiome for the benefit of the patient [38].

2.1. Drug Effect on Microbiome Diversity and Therapeutic Response

The relationship between the microbiome and drugs is two-way. This implies that
both the microbiome can influence the response to a drug, and the drug can alter the micro-
biome, which can result in enhanced—or, in some cases, potentially harmful—therapeutic
effects [39].

Although pharmacomicrobiomics was originally conceptualized to describe the me-
tabolizing or storage activity of drugs by the human microbiome, recent studies have
broadened the scope of this term to encompass the impact of drugs on the composition
of the gut microbiome, as well as its influence on therapeutic response and prognosis in
patients. This phenomenon has also been proposed to be called pharmacoecology [10,40,41].

In the medical and scientific community, the effect of medications on the composition
of the microbiota is widely recognized, with particular emphasis on the impact of antibiotics.
In this context, a well-studied example is the use of cephalosporins, penicillins, clindamycin,
and fluoroquinolones, which has been associated with a significant increase in the risk of
Clostridium difficile infection [42].

While it is understandable that antibiotics have a direct effect on the microbiome
due to their antibacterial activity, there are also other drugs that lack this activity but can
influence the diversity of the microbiome [43]. A plausible explanation for why drugs not
designed to target microorganisms can alter the composition of the microbiome is that
these microorganisms tend to accumulate the drug (bioaccumulation), which affects their
metabolism, which in turn influences their ability to proliferate [22].

The alteration of the microbiome by medications can have implications for health and
the development of diseases. It has been described that the products of metabolism by
intestinal microorganisms can influence overall health. An example of this is the ability of
antidepressants to modify the composition of the intestinal microbiota. This modification,
in turn, can significantly impact the course of the disease due to variations in certain
metabolites produced by specific intestinal microorganisms. This situation is particularly
interesting in the context of depression, as it provides new insights into how to approach
and treat this condition [44–48].

An example is the case of Candida albicans, which has the ability to produce acetalde-
hyde, which is transformed by the enzyme aldehyde dehydrogenase 2 into acetate, a
metabolite that can easily cross the blood–brain barrier (BBB) and influence brain neuro-
transmission. In this context, some antidepressants, such as sertraline, fluoxetine, doxepin,
imipramine, and nortriptyline, not only act through their already defined mechanism
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of action but also inhibit the growth of Candida albicans and modify the course of the
disease [40,49]. Figure 3 illustrates the effect of antidepressants on Candida albicans growth.
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Figure 3. Effect of antidepressants on Candida albicans. In the section labelled “1” in Figure 3, we
can see how Candida albicans, through its metabolic activity, can influence brain neurotransmission.
In section “2” of Figure 3, it is shown how antidepressants inhibit the growth of Candida albicans,
leading to a reduction in the production of its metabolic products and, as a result, modifying the
course of depression.

Although the previous example with Candida albicans simplifies the relationship be-
tween medications, microbiota, and therapeutic effect, the interaction between drugs and
microorganisms can be significantly more complex. A well-described case involves the
effect of metformin on the intestinal microbiota. This drug is widely used to control type
2 diabetes (T2D). The response to metformin differs based on the route of administration,
being more effective orally than intravenously. Metformin has a 50% bioavailability, result-
ing in concentrations 30 to 300 times higher in the jejunum compared to plasma, enabling its
interaction with intestinal bacteria. This interaction has been shown to cause changes in the
composition of the intestinal microbiota, characterized by an increase in the abundance of
Akkermansia muciniphila and short-chain fatty acid-producing bacteria following metformin
administration. These microbiota changes are associated with improvements in glycemic
control in T2D patients [24,50].

A large number of experiments have now shown that different drugs can modify
the composition of the microbiota and the response to the drug. Table 2 below shows
some of the experimental studies published in 2023, showing the drug and the effect on
the microbiota.
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Table 2. Impact of different drugs on intestinal microbiota diversity. This table presents experimental
studies on different non-antimicrobial medications that affect the composition of intestinal microbiota.
Unlike Table 1, specific processes affected are not detailed here, as all cases show an impact on
microbiota composition. * A herbal product used mainly in traditional or alternative medicine.

Drug Involved Condition for
Which Studied Microbiome Effects Clinical Effect Organism in Which the

Study Was Conducted

5-aminosalicylic
acid

Inflammatory bowel
disease

Higher abundance of
Firmicutes and lower

abundance of Bacteroidetes

Not affecting intestinal
morphology Mice [51]

Dapagliflozin Heart failure Decreased the ratio of
Firmicutes/Bacteroidetes

Reduction in inflammation,
infarct area, and cardiac fibrosis Mice [52]

Lactulose Acute pancreatitis Bifidobacterium enriched
Reduction in serum levels of

proinflammatory cytokines and
intestinal permeability index.

Humans [53]

Roxadustat Renal anemia Increase in short-chain fatty
acid-producing bacteria Relief of renal anemia Humans [54]

Sinomenine * Arthritis Increase in Lactobacillus spp. Relief of arthritis symptoms Rat [55]

2.2. Pharmacomicrobiomics Challenges

An interesting publication from 2018 regarding the microbiome mentions, “The field
of microbiome research is currently approaching a transition from infancy to toddlerhood.
Our means of exploration are changing from crawling to walking, but still require much
more growth to acquire fine motor and cognitive skills to make sense of the world around
us” [56]. Since 2018, publications using the term “microbiome” have exponentially in-
creased according to PubMed data. Only a small fraction of these publications corresponds
to pharmacomicrobiomics.

A well-known proverb states, “When you see your neighbor’s beard on fire, get your
water ready”. This could be applied to pharmacomicrobiomics if we use pharmacogenetics
as an example. When comparing these two sciences, we find that the term pharmacomi-
crobiomics was first introduced in 2010. In that same year, according to PubMed data,
1048 articles were published that used the term pharmacogenetics [8]. Today, pharma-
cogenetics is already applied in clinical practice, as demonstrated by the inclusion of
pharmacogenetic information in the labels of over 250 medications by the Food and Drug
Administration (FDA). This achievement resulted from numerous studies that spanned
from pharmacokinetics; therapeutic drug monitoring; and observational studies, such as
cross-sectional studies, case–control studies, and cohort studies, to randomized clinical
trials [57].

The challenges facing pharmacomicrobiomics are likely to be greater than those faced
by pharmacogenetics before it was incorporated into clinical practice. Unlike the genome,
the microbiome can be influenced by factors such as diet, social stress, medications, host
genotype, age, lifestyle, habits including smoking and sports, and even urbanization [58].

Finally, it is crucial to consider that various meta-omic techniques can be employed
in pharmacomicrobiomics. The most common technique in studying the intestinal micro-
biome is metagenomics, which focuses on analyzing the genetic material of the microbial
community residing in the digestive tract. However, metagenomics has the limitation
of exclusively focusing on genes, which hinders a complete understanding of temporal
dynamics and functional activities of microbial populations [59].

To complement metagenomics, other techniques such as metatranscriptomics and
metaproteomics have been introduced. These allow for the study of interactions between
bacterial communities and the host at the gene expression level, considering both transcrip-
tion and proteins, respectively [59]. Figure 4 presents a chart proposing the integration of
various omic techniques that could be used in pharmacomicrobiomics.
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Figure 4. Multiple levels of meta-omics that can be used in pharmacomicrobiomics studies. In phar-
macomicrobiomics, various meta-omic techniques can be applied. Firstly, metagenomics is crucial for
identifying the microbial genome. This technique can be complemented with metatranscriptomics
and metaproteomics, enabling the understanding of expression levels and the proteins that the micro-
biome produces in the presence of drugs. An analysis of protein expression provides insights into the
proteins used by microorganisms to metabolize, transport, and accumulate drugs. Additionally, it
helps clarify how the microbiota interacts with its environment, including other microorganisms. The
image does not overlook factors that could influence the independent variable, which, in this case,
corresponds to drug administration. In pharmacomicrobiomic studies, monitoring and controlling
variables that could alter the microbiota are essential. This allows for a more precise attribution of
any changes in the microbial community to the effect of the drug.

3. Effect of an Infection on Drug Response
3.1. Difference between Pharmacomicrobiomics and Drug–Infection Interaction

There are two fundamental differences between pharmacomicrobiomics and drug–
infection interaction. The first one lies in the type of microorganism that influences the
drug response. In pharmacomicrobiomics, the microbiome is the protagonist, whereas in
drug–infection interaction, it involves a pathogenic microorganism [20,41,60].

Pathogenic microorganisms are those capable of causing diseases, as they are trans-
missible and, in some cases, have developed the ability to evade cellular defenses. Only
a small percentage of microbes are inherently pathogenic. Pathogenic microorganisms
include some viruses, bacteria, prions, fungi, protozoa, and parasites [60].

The second difference is that, unlike pharmacomicrobiomics, which modifies the drug
response through bioaccumulation or metabolism, infections can alter the drug response
mainly through inflammation and the regulation of CYP enzymes [21,61,62].

3.2. Inflammation as a Result of Infection Modifies Drug Response

Inflammation is a response to aggression, whether of endogenous or exogenous origin,
and can manifest acutely or chronically. It plays a prominent role in numerous diseases,
including infections [63]. While inflammation is a complex and highly coordinated process
involving multiple cell types and molecules operating in a cascading network, cytokines
play a particularly relevant role in this process [64]. For several years, it has been proven
that inflammation has a significant impact on drug metabolism. This is partly because
elevated levels of proinflammatory cytokines lead to a negative regulation of CYP enzymes,
which play a fundamental role in drug metabolism [61,65,66].

CYP enzymes are polymorphic proteins associated with a heme molecule and are
capable of absorbing light at a wavelength of approximately 450 nm when exposed to
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carbon monoxide. These enzymes play an essential role in the biosynthesis of compounds
such as steroids, prostacyclin, and thromboxane A2. While CYP enzymes are found in a
wide variety of tissues, their expression is most prominent in the liver and small intestine.
Regarding drug metabolism, a specific group of CYP enzymes, including CYP 1A2, 2B6,
2D6, 2C8, 2C9, 2C19, and 3A4, are responsible for metabolizing most drugs [5,61].

CYP enzymes during inflammation can be repressed by different mechanisms. These
include the transcriptional downregulation of transcription factors, interference with nu-
clear transcription factor dimerization and translocation, alteration of C/EBP-enriched
signaling in the liver, direct regulation by NF-κB, and various post-transcriptional mech-
anisms [66]. It has recently been proposed that the reduction in CYP enzyme activity
during inflammation, in the context of an infection, is due to a physiological response. This
response involves a shift from a metabolic mode to a defensive mode, allowing the cell to
concentrate its resources on fighting the infection [67].

Regardless of the physiological cause, infections impact CYP enzyme activity due to
the inflammatory process they trigger [63,68,69]. A prominent example of this is the disease
caused by SARS-CoV-2, known as COVID-19. This disease follows a progression divided
into three stages: the viral invasion phase, the pulmonary immunoinflammatory phase,
and the hyperinflammatory phase. Inflammation is its distinguishing feature, marked
by increased NF-κB signaling, which in turn induces the production of proinflammatory
cytokines such as IL-6, IL-2, TNF-α, and IFN-γ [70].

In this context, it has been documented that the increased proinflammatory cytokines
induced by COVID-19 impact drug metabolism as they interfere with the regulation of
CYP enzymes and drug transporter expression [68,71,72]. In humans, it has been observed
that inflammation caused by COVID-19 reduces CYP3A activity, which, in turn, affects the
metabolism of midazolam. Furthermore, two independent studies consistently reported
abnormally elevated levels of lopinavir and ritonavir in COVID-19 patients, suggesting
that this could be due to the negative regulation of CYP3A [73–75].

Regarding COVID-19, the response to treatment is not solely related to the disease
itself. In 2021 and 2022, two cases were reported, in which increased levels and adverse
effects of clozapine were observed in patients who had been vaccinated against COVID-19.
These specific vaccines were Moderna’s Spikevax and Pfizer-BioNTech’s vaccine. In both
cases, the adverse reaction was associated with inflammation and CYP1A2 activity. It is
important to note that this adverse reaction was short lived [76,77].

In the case of the human immunodeficiency virus (HIV), it has been described to affect
CYP enzyme levels. People infected with HIV have shown a reduction in hepatic CYP3A4
and CYP2D6 enzyme activity compared to uninfected individuals [78,79]. However, the
interpretation of these findings is not entirely conclusive, as other research has not found
changes in drug metabolism in HIV patients, and, in other studies, an increase in CYP3A4
expression has even been observed in HIV patients receiving antiretroviral therapy [80,81].

For HIV patients, future research aimed at determining the impact of infection-
generated cytokines on the pharmacokinetics of antiretroviral drugs should address various
variables. This includes individual gene expression, the possible co-infection of HIV with
hepatitis B, the presence of liver disease, the anti-inflammatory effects of drug therapy,
and study design, among other factors. A consideration of these elements is crucial for
obtaining clearer and more accurate results in this area of research [61,80].

As evidence continues to accumulate, it is likely that closer medical monitoring may
be needed in the future for patients with an infection who are also being treated with drugs
metabolized by CYP enzymes to prevent possible overdoses and toxicity.

3.3. Other Mechanisms by Which Infections May Affect Drug Response
3.3.1. Alterations in Gastrointestinal Motility and Drug Absorption

It has been proposed that gastrointestinal infections may affect the availability of
certain drugs due to various factors, such as changes in intestinal transit speed or the pH of
gastrointestinal fluids; however, information is limited [82,83]. In the context of alterations
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in intestinal transit caused by an infection, it is important to consider infectious diarrhea.
While this condition can influence the absorption of a medication, its specific impact can
vary considerably, depending on several factors, including the severity of the diarrhea,
its duration, the overall health of the individual, and the underlying infectious agent, as
infectious diarrhea can be caused by viral, bacterial, or parasitic infections [84].

Overall, the evidence supporting the impact of an infection that causes diarrhea on
drug absorption is limited. As a result of this research, very few studies directly addressed
the impact of infectious diarrhea on drug absorption. In one study, it was investigated
whether the absorption of proguanil and chloroquine, used for malaria prevention, was
affected by traveler’s diarrhea. The results indicated that patients with traveler’s diarrhea
had significantly lower maximum concentrations and absorption coefficients for proguanil
compared to subjects without diarrhea [85]. In HIV patients, it has been observed that
diarrhea reduces the absorption of tuberculosis drugs [86,87]. Another study evaluated the
bioavailability of ciprofloxacin in patients with infectious diarrhea and concluded that the
drug was well absorbed in patients with acute diarrhea, with adequate blood levels despite
the presence of diarrhea [88].

The lack of research directly addressing the mechanisms by which infectious diarrhea
affects drug absorption is largely due to the fact that most patients with acute diarrhea
typically present mild and transient symptoms. Additionally, in severe cases of diarrhea,
the priority is to immediately address the clinical condition rather than evaluating whether
diarrhea might modify the absorption of a prescribed medication [89]. Further research is
needed to fully understand the impact of infectious diarrhea on drug absorption and its
implications in clinical practice.

3.3.2. Pharmacological Effect Mimicry

A poorly described mechanism by which an infection might modify the response to
a drug is through mimicry of the drug effect. An example of this is human adenovirus
36 (HAdV-36), which has been associated with obesity and changes in glucose and lipid
metabolism, with long-term effects, such as the irreversible expansion of adipose tissue,
even after the resolution of the acute phase of infection [90]. HAdV-36 increases peroxisome
proliferator-activated receptor-γ (PPAR-γ) expression in the same way as thiazolidine-
diones, which are used to increase insulin sensitization in patients with type 2 diabetes
mellitus [91–93]. This virus could potentially influence the response to drugs used in lipid
or glucose control, although there is no evidence so far that HAdV-36 modifies the response
to drugs such as metformin [94]. To our knowledge, there is no other virus that can mimic
the effect of a drug.

3.3.3. Unknown Mechanisms: The Case of Helicobacter pylori and Levodopa

Helicobacter pylori (HP) has been documented to cause inflammation at the intestinal
level, delay gastric emptying, and possibly affect the absorption of drugs, such as Lev-
odopa [95]. In this context, it has been observed that people with Parkinson’s disease who
have HP infection show a poor response to Levodopa and experience increased severity
of motor symptoms [96]. However, the elimination of HP has been reported to improve
tremor, although it does not change the bioavailability of the drug [97]. All this informa-
tion underscores the need for further research to understand how HP influences drug
interactions with drugs, such as Levodopa, and other potential drugs.

4. Materials and Methods

This review was carried out with the aim of exploring the influence of the microbiome
and infections on the response to a drug. To this end, an in-depth search of the scientific
literature was conducted in the PubMed and Web of Science databases. A specific search
strategy was designed that included a series of key terms and Boolean operators. The key
terms used in the search strategy were: “Pharmacomicrobiomics”, “microbiome”, “micro-
biota”, “infection”, “medication response”, “impact medication effectiveness”, “influence
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drug response”, “alter medication outcome”, “affect drug efficacy”, “change medication
reaction”, “modify drug response”, “influence medication effectiveness”, and “impact drug
outcome”. A combination of “AND” and “OR” operators was used to ensure the inclusion
of relevant studies addressing pharmacomicrobiomics and the relationship between infec-
tions and medication response. We searched for articles published up to the cut-off date
of this review (July 2023), restricting the search for articles to those published in English
or Spanish.

To achieve an even more precise search, we turned to the EvidenceHunt Chat (avail-
able on the http://evidencehunt.com website (accessed on 21 August 2023)), an artificial
intelligence-powered tool for searching clinical evidence. In this process, we formulated
specific questions related to the various topics addressed in this article and then reviewed
the articles upon which EvidenceHunt based its answers.

The selection of articles was initially based on the relevance of titles and abstracts,
excluding those that did not align with the aim of this review. Only studies directly
addressing the term “pharmacomicrobiomics” or specifically discussing the impact of
infections caused by bacteria, viruses, or other microorganisms on the response to any
drug were included in this review. The information obtained from the selected studies was
analyzed and synthesized to provide an overview of the relationship between infections
and medication response.

5. Conclusions

Humans have maintained an intimate relationship with the microbial world through-
out history. Many microorganisms work in symbiosis and are essential for human health
and well-being. The study of this relationship between microorganisms and humans has
generated great interest in the scientific community. Recently, it has been documented that
microorganisms have the ability to influence the response to drug therapy.

Pharmacomicrobiomics is an emerging field that seeks to understand how variations
in the microbiome affect the distribution, action, and potential toxicity of drugs. Bacteria
within the microbiome primarily interact with drugs through two processes: bioaccumula-
tion and biotransformation. Bioaccumulation refers to the bacteria’s ability to store drugs
within their cells, which can reduce drug availability and alter the microbial community
composition; this phenomenon has been proposed as “pharmacoecology”. On the other
hand, biotransformation describes how the microbiome metabolizes drugs, producing
metabolites that can influence drug responses, including the formation of toxic metabolites,
known as “toxicomicrobiomics”.

Although pharmacomicrobiomics focuses on the microbiome, it does not include
pathogenic microorganisms, which, unlike the microbiome, can regulate the host’s CYP en-
zyme expression and modify drug responses. We propose introducing the term “pharmaco-
infection” to describe the influence of pathogenic microorganisms on drug responses. With
this proposal, we seek to identify and unify the disciplines that contribute to the study of
the interaction between microorganisms and the response to drugs by the host. This will
not only allow for better organization and understanding of the knowledge in this field,
but will also promote specialization, promote the adoption of a common language and
specific terminology, and facilitate the evaluation of research progress.
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