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Abstract: Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human
homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative
to the upkeep of various physiological processes including vision, bone health, immunity, and
protection against oxidative stress. Current research highlights fat-soluble vitamins as potential
therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic
effects through multiple pathways, including regulation of matrix metalloproteinases’ (MMPs)
expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of
various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the
expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we
summarize the properties of fat-soluble vitamins and their potential as promising candidates capable
of effectively modulating MMPs through multiple pathways to treat human diseases.

Keywords: fat-soluble vitamin; matrix metalloproteinases; cancer

1. Introduction
1.1. Fat-Soluble Vitamins (A, D, E, K)

Fat-soluble vitamins are a group of vitamins that can dissolve in fats and be absorbed
along with dietary fats in the human digestive tract. There are four primary fat-soluble
vitamins, A, D, E, and K, and each has its own unique dietary sources. Unlike water-soluble
vitamins (e.g., vitamin B and C), which are not stored in large quantities in the human
body and are excreted in the urine when consumed in excess, fat-soluble vitamins can
be stored in fatty tissues and liver [1,2]. This indicates that the body can utilize these
stored vitamins during periods of inadequate dietary intake. Fat-soluble vitamins are
essential for maintaining physiological equilibrium within the human body, encompass-
ing the maintenance of bone health, vision, cell growth, immune functions, and acting
as a powerful antioxidant. Additionally, they act as cofactors or regulators for various
enzymes and biochemical processes in the body [2]. Vitamin A is necessary for regulating
visual cycles and the expression of various genes involved in cell growth, differentiation,
and development [3,4]. Vitamin D is involved in calcium homeostasis, immune system
regulating, cell proliferation and differentiation, and cytokine production [5,6]. Vitamin
E acts primarily as an antioxidant, protecting cellular components (i.e., DNA, proteins,
lipid, and enzyme like ribonucleases) from oxidative damage [7–9]. Vitamin K serves as a
cofactor for enzymes involved in the synthesis of clotting factors in the liver. It also plays

Int. J. Mol. Sci. 2023, 24, 17038. https://doi.org/10.3390/ijms242317038 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242317038
https://doi.org/10.3390/ijms242317038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0096-6692
https://orcid.org/0000-0002-8584-1823
https://orcid.org/0000-0001-8769-2967
https://doi.org/10.3390/ijms242317038
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242317038?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 17038 2 of 34

a role in bone metabolism by modifying proteins involved in calcium binding and bone
mineralization [10].

Contemporary studies underscore the potential of fat-soluble vitamins as promising
therapeutic agents for the treatment of human diseases, with a particular focus on their
efficacy in cancer treatment. They could ameliorate human diseases through various mech-
anistic pathways, with a notable emphasis on transcriptional regulation and signaling
modulation. Vitamin A and D act as cofactors in transcriptional regulation [11–13]. In
contrast, vitamin E and K could not serve as traditional cofactors. Vitamin E may in-
fluence signaling pathways by affecting the activity of kinases and phosphatases, while
vitamin K is generally associated with anti-inflammatory effects by modulating posttransla-
tional modifications [14–16]. Specifically, fat-soluble vitamins have been shown to regulate
the production of matrix metalloproteinases (MMPs) which are involved in the patho-
genesis of various diseases, including cancers, cardiovascular diseases, and neurological
disorders [17–21].

1.2. Matrix Metalloproteinases-2 and -9

MMPs are a family of zinc-dependent proteolytic enzymes that have different sub-
strates, but which share the similar structural characteristics. They are involved in the
breakdown and remodeling of the extracellular matrix (ECM) in various tissues of the body.
MMPs are produced by various cell types, including fibroblasts, immune cells, and endothe-
lial cells (Table 1) [22,23]. MMPs could facilitate tissue remodeling during embryogenesis,
tissue repair, and angiogenesis [24,25]. The dysregulation and/or overexpression of MMPs
results in the progression of various diseases including cancer invasion and metastasis,
arthritis, brain degenerative diseases, cardiovascular diseases, and tissue fibrosis [22,26,27].
Among MMPs, MMP-2 and MMP-9 are particularly prominent due to their involvement in
a wide range of human diseases. MMP-2 (gelatinase A, type IV collagenase) is expressed
ubiquitously as a 72 kDa proenzyme and is heavily glycosylated [28,29]. The expression
of MMP-2 is consistent and is not significantly increased by proinflammatory triggers, as
its gene lacks certain binding sites for proinflammatory transcription factors [28]. MMP-
9 (gelatinase B, type IV collagenase) is expressed as a 92 kDa proenzyme and requires
activation for its proteolytic activity [30,31]. The transcription of MMP-9 is regulated by
transcription factors such as nuclear factor kappa-B (NF-κB), specificity protein 1 (SP1),
and activator protein 1 (AP1), which respond significantly to inflammatory stimuli [32].

The activity of MMP-2 and MMP-9 is tightly regulated by the endogenous tissue
inhibitors of metalloproteinases (TIMPs), through negative feedback acting on activation of
MMPs [33,34]. TIMP-2, TIMP-3, and TIMP-4 can regulate MMP-2 activity, while TIMP-1 and
TIMP-3 can regulate that of MMP-9 [22,35]. Under normal conditions, ECM homeostasis is
interdependent between MMP and TIMP activities. Under pathologic conditions, however,
MMPs are overexpressed or under controlled by TIMPs, resulting in the dysregulation
of tissue remodeling which can cause a variety of diseases [36]. MMP-2 and MMP-9
play a key role in cancer progression and metastasis by degrading ECM thus, they are
important predictive factors for various cancers. Overexpression of MMP-2 and MMP-
9 was linked to poor prognosis in oral cancer [37], lung cancer [38], breast cancer [39],
retinoblastoma [40], bladder cancer [41], and ovarian epithelial cancer [42]. Activated
MMP-2 and MMP-9 contribute to cell invasion by breaking down collagen type IV in the
basement membrane [43]. Tumor tissue analysis revealed significant levels of MMP-2 and
MMP-9 expression and their active forms [44]. The excessive presence of MMP-2 triggers
the activation of p38 MAPK/ML/SHP27 signaling, leading to actin polymerization that
supports cell migration [45]. Moreover, MMP-2 and MMP-9 participate in angiogenesis,
thereby enhancing tumor growth and development [46].
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Table 1. Expression and activation of MMP-2 and MMP-9 in different cell types.

MMP Location Substrate Cell Types Biological Function Ref.

MMP-2

ECM

Type IV Collagen, Gelatin,
Fibronectin,

Laminin, Aggrecan,
Versican, Elastin

-

Matrix remodeling,
angiogenesis,
inflammation,

invasion and metastasis

[28,47]

Cytoplasm
α-actinin, Tn1, Titin,
MLC-1, Troponin I Cardiomyocytes Contractile dysfunction [48,49]

GSK-3β Cardiomyoblast Apoptosis [50]
Talin Platelets Aggregation [51,52]

Mitochondria
Hsp60, Cx43 Retinal endothelial

cells Apoptosis [53–56]IκB-α Myoblastic cells
Nucleus PARP1, XRCC1 Neurons

MMP-9

ECM

Type IV Collagen,
Gelatin, Fibronectin,
Laminin, Aggrecan,
Versican, Nidogen,

Tenascin, CollagenX,
Collagen III, Elastin

-

Matrix remodeling,
angiogenesis,
inflammation,

invasion and metastasis

[28,47]

Cytoplasm AMPKα Leukocytes Innate immunity [57,58]
MHC Cardiomyocytes

Mitochondria Cx43, Hsp60, Hsp70 Cardiomyocytes,
Retinal cells Apoptosis [59,60]

Nucleus PARP1, XRCC1 Neurons Apoptosis [55,61]
Histone H3,

Citrate synthase
Osteoclast,

Cardiomyocytes

MMP-2 and MMP-9 are also associated with cardiovascular diseases (e.g., atheroscle-
rosis, myocardial infarction, and heart failure) [62]. They contribute to plaque instability
and rupture in atherosclerotic lesions, potentially leading to heart attacks or strokes [63].
MMP-2 and MMP-9 are linked to neuroinflammation and neurodegenerative diseases
such as Alzheimer’s disease (AD) and multiple sclerosis as well. Enhancement of MMP-2
could form neurofibrillary tangles in neurons suggesting that MMP-2 could stimulate tau
formation. Also, upregulation of MMP-9 levels and/or activity could contribute to the
breakdown of the blood–brain barrier (BBB) and promote inflammation [64,65]. Moreover,
MMP-2 and MMP-9 are involved in inflammatory joint diseases, including rheumatoid
arthritis, through degradation of cartilage and joint tissues. Particularly, the excessive activ-
ity of MMP-9 can contribute to joint damage and functional impairment [66]. Therefore,
inhibiting the enzymatic activity of MMP-2 and MMP-9 has been explored as a potential
target for various human diseases.

2. Vitamin A

The term vitamin A indicates any compound possessing the biological activity of
retinol (e.g., retinol, retinyl esters, retinal, retinoid acid, and oxidated and conjugated
forms of both retinol and retinal) [67]. Vitamin A is found in variety foods and exists in
two primary forms: (i) retinol and retinyl esters, which are the active form of vitamin
A and found in animal sources, and (ii) the carotenoids who function as provitamin A
and are found in vegetables [67,68]. Carotenoids can be metabolized to retinal and then
to retinols [69]. Vitamin A is essential to maintain various physiological functions in the
human body, including vision, immune system, and cell communication [70,71].

2.1. Transportation and Metabolism of Vitamin A

Different forms of vitamin A are solubilized into micelles in the intestinal lumen and
absorbed by duodenal mucosal cells. As presented in Figure 1, carotenoids are converted to
retinal and then reduced to retinol [72]. Retinol is then esterified with long-chain fatty acids
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into retinyl esters. Retinyl esters and intact carotenoids bind to the lipids (e.g., cholesterol,
cholesterol esters, and triglycerides) to form chylomicrons. These chylomicrons are trans-
ferred through the lymphatics to the bloodstream [73]. In the bloodstream, chylomicrons
are hydrolyzed into chylomicron remnants by lipoprotein lipase and apolipoprotein E. The
chylomicron remnants can deliver retinyl esters directly to target cells and/or be taken up
by hepatocytes [74]. In hepatocytes, retinyl esters are hydrolyzed to retinol. Retinol is then
stored in the liver or transported to the blood stream when it is necessary for biological
functions, such as regulation of the visual cycle, cell growth and differentiation. The liver
is the main storage site of vitamin A (approximately 70% to 80% of total body stores)
and is a central player in the homeostasis of vitamin A [75]. Smaller amounts of retinyl
esters, as well as carotenoids are also carried by chylomicrons and chylomicron remnants
to extrahepatic tissues for use and storage [76]. The hydrolyzed retinol in stellate cells is
believed to be transported back to hepatocytes, where it binds to retinol binding protein
(RBP), forming a retinol–RBP complex that enters circulation [77]. This complex combines
with transthyretin and effectively prevents the complex from being cleared by kidney [78].
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2.2. Cell Intake and Intracellular Activities

Different forms of vitamin A, such as retinol–RBP complex and retinyl esters/
carotenoids–chylomicrons, are taken up by peripheral cells in the plasma. There, carotenoids
and retinyl esters are metabolized to retinol [69]. Retinol is then oxidized to all-trans retinal,
and then oxidized to all-trans retinoic acid (ATRA) which is the most hormonally active
retinoid and is not reconverted to retinol in biological systems [67,79]. The cell metabolism
and various signaling pathways of retinoids require many different binding proteins and
receptors. The genomic effects of retinoids are mediated primarily by two families of
nuclear hormone receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs).
ATRA binds to RARs and RXRs, which act as ligand-activated transcription factors. These
receptor–ATRA complexes bind to retinoic acid response elements (RAREs) in the promoter
regions of target genes, leading to either activation or repression of gene transcription [80].
This activity regulates the transcription of a large number of genes, primarily involved in
cellular differentiation, proliferation, and apoptosis, such as Insulin-like Growth Factor-
Binding Protein 3 (IGFBP-3), BCL-2, HOXA and HOXB genes [81]. Additionally, ATRA also
binds to retinoid-related orphan receptors (RORs) to initiate transcription by activating
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specific ROR response elements (ROREs) in DNA [82]. Retinoids can have rapid nonge-
nomic/nonclassical actions, by inducing a rapid phosphorylation of the cAMP response
element binding protein (CREB). This process causes CREB to relocate to the nucleus and
activates genes containing cAMP response elements (CREs) in their promoters [83]. Thus,
ATRA could be considered as an effective signal molecule for regulating gene expression.
Numerous genes can be regulated by retinoids either directly or indirectly, including genes
related to MMPs, such as stromelysin-1, collagenases, and gelatinases [81,84]. The actual
number of retinoid-regulated genes, and regulatory pathways can vary depending on cell
type, tissue, developmental stage, and other contextual factors [11].

2.3. Homeostasis of Vitamin A and Related Diseases

Vitamin A is one of the most versatile vitamins in the human body. It plays crucial
roles in various essential physiological processes (Table 2). The majority of the biological
functions are not directly performed by retinol itself but instead by its active metabolites
(retinal and retinoic acids). They are involved in different activities including vision,
immunity, cell differentiation, embryological development, cellular differentiation and
proliferation and antioxidant functions [4,85].

Table 2. Physiological functions of vitamin A and related diseases.

Function Activity Related Disease Ref.
Vision regulation Rhodopsin generation Night blindness [86]

Cell growth and development Regulation of gene expression Infectious diseases [87]

Immune
regulation

Promotion of the growth and differentiation
of cells for tissue repair

Promotion of immune cell differentiation

Acute promyelocytic leukemia [88–90]

Osteoporosis [91,92]

Cellular
communication

Inhibiting the production of
proinflammatory cytokines
Protection of immune cells

from oxidative stress

Cancer [17,18,93–95]

Obesity and insulin
resistance [96,97]

Reproduction

Assist the growth
and maturation of follicles

Regulation of the genes related to
spermatogenesis

Congenital
malformations [98]

Diabetes mellitus and
gestational diabetes [99]

MMP
regulation Regulation of MMP-2 and MMP-9 expression Cancers [11,17,18,94,95,

100,101]

For vision, rhodopsin, the light-sensitive pigment found in the eye rods, is formed
through the binding of 11-cis-retinal to opsin. Light absorption triggers a series of reactions
to all-trans-retinal and opsin, transmitting a visual signal. Night blindness can result from
vitamin A deficiency, reducing 11-cis-retinal and rhodopsin levels, leading to a weakened
response to low light at night [86]. For the immune system, vitamin A is essential for the
maintenance of skin health and mucous membranes, acting as a barrier against infections. It
is involved in the production of white blood cells and the activation of the immune response
by suppressing the production of proinflammatory cytokines [87]. Vitamin A deficiency can
increase the risk of infection [87]. The role of Vitamin A in regulating growth through cell
proliferation and differentiation has been acknowledged as well [102,103]. As mentioned
above, retinoic acids regulate the transcription of various genes which involve cellular
functions [104,105]. In addition, new biological functions related to insulin resistance, lipid
metabolism, energy balance, and redox signaling have been described [97]. Due to the
diverse activities, vitamin A has been studied for its therapeutic effects against various
human diseases, such as infectious diseases [87], APL [88–90], osteoporosis [91,92], obesity
and insulin resistance [96,97] and cancer [17,18,93–95].

In the absence of vitamin A, (1) proper stem cell differentiation does not occur; (2)
growth and development of embryos are altered; (3) epithelial cellular development is



Int. J. Mol. Sci. 2023, 24, 17038 6 of 34

deficient and the barrier to infection is decreased; (4) cells involved in innate and acquired
immune function are decreased; (5) xerophthalmia develops because of abnormalities in
corneal and conjunctiva development; and (6) normal bone growth and tooth development
do not occur [70,71,106]. Deficiency of vitamin A before and during pregnancy is believed to
be associated with an increased risk of congenital malformations and impaired vascularized
development [98,99].

2.4. Vitamin A in Cancer Treatment and MMP Regulation

Different forms of vitamin A have been studied for their role in cancer treatment
for many years. ATRA has been approved by the FDA in 1995 for the treatment of APL,
an aggressive blood cancer. It is believed that vitamin A is related to the production
and activity of MMP-2 and MMP-9 in cancer progression, metastasis, and other human
diseases [107]. Vitamin A could selectively regulate the expression and/or activity of MMP-
2 and MMP-9 within distinct cellular contexts. This selectivity is attributed to the different
roles of MMPs in various tissues and cell types, which lead to differences in RA signaling.
MMP-2 and MMP-9 production was upregulated upon treatment of RA in murine dendritic
cells [108], Sertoli cells [90], mesenchymal stem cells [109] and red deer antler stem cells
(ASCs) [110]. By contrast, the downregulation of MMP-2 and MMP-9 expression with the
addition of vitamin A was found in various cancer cell lines including breast cancer [111],
lung cancer [100], glioblastoma [93], and chondrosarcoma [112].

Regarding cancer immunology, cancer exerts systemic impact on immune cell func-
tion via various mechanisms. Notably, a key mechanism used by tumors to suppress
the immune response is the sequestration of dendritic cells (DCs) within tumor tissues.
This sequestration inhibits the mobility of these immune cells, leading to immunosuppres-
sion [113,114]. MMPs have been shown to be essential for DC movement through basement
membranes and the ECM [115]. Therefore, improvement of DCs’ mobility via enhancing
the production of MMPs, especially MMP-9, was believed to be a potential strategy to
counteract the immunosuppression observed in tumors [115]. MMP-2 and MMP-9 mRNA
expression and production were increased by five-fold (along with the decrease in the
production of their inhibitors, TIMPs) upon treatment of ATRA in DCs [108]. The balance
of MMPs and their inhibitors was suggested to be beneficial for DC trafficking in the
tumor milieu, improving immune responses in cancer patients. This finding was confirmed
by later research that showed the upregulation of MMP-2 and MMP-9 expression and
activity upon treatment with ATRA, investigated in bone marrow-derived mesenchymal
stem cells [109].

On the other hand, MMP-2 and MMP-9 expression could be decreased in the presence
of vitamin A. β-carotene can inhibit neuroblastoma cell invasion via different pathways
(i.e., suppressing the expression and activity of MMP-2) [17]. In neuroblastoma cells (SK-
N-BE(2)-C cells), a decrease in MMP-2 expression and activity was observed with the
treatment of β-carotene. Also, β-carotene could downregulate the expression of HIF-1α, a
factor that activates the transcription of many genes, including vascular endothelial growth
factor (VEGF) which is involved in the upregulation of MMP-2 and MMP-9 expression and
activity. The decrease in MMP-2 and MMP-9 expression and activity was also observed in
Lewis lung carcinoma cells upon addition of β-carotene [95]. In gastric cancer cells, AGS
and SGC-7901, the level of both MMP-2 and MMP-9 was significantly decreased upon β-
cryptoxanthin (a pro-vitamin A, β-carotene subclass) addition [101]. Expression of MMP-9
and NF-κB were also reported to be decreased in colorectal cancer cells and paclitaxel-
resistant colorectal cancer cell lines (HCT116, LoVo and CT26) with ATRA treatment [94].

In addition, ATRA could suppress colorectal cancer cells’ (RKO) migration via down-
regulating ERK/MAPK [18]. An earlier study also proposed that RA suppressed the
expression of MMP-2 in rat lung fibroblasts (LFs) through decreasing Jun N-terminal ki-
nase (JNK) and p38 activation in hyperoxia. Moreover, RA could inhibit MMP-2 secretion
in T-98G cells and decrease SF2 levels in HL-60 cells [91,116]. SF2 is a proto-oncogene
which is involved in the alternative splicing of Mcl-1, a protein that inhibits apoptosis, and
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plays a role in regulating VEGF. Considering that VEGF is believed to be implicated in the
regulation of MMP expression [117,118], it is plausible that RA treatment could lead to a
reduction in MMP expression.

3. Vitamin D

Vitamin D is another fat-soluble vitamin that can be obtained through two major
sources; natural dietary sources and synthesis by skin when it is exposed to UVB rays from
sunlight [119]. The two main forms of vitamin D, crucial for human body, are ergocalciferol
(vitamin D2) and cholecalciferol (vitamin D3). Vitamin D2 can be obtained from plant-
based sources, while vitamin D3 is mainly synthesized by skin or gained from animal
sources [119,120]. The structures of vitamins D2 and D3 differ in the side chain; D2 contains
a double bond (C22–23) and an additional methyl group on C24 (Figure 2). The production of
vitamin D3 in the epidermis is initiated by the action of UVB rays on 7-dehydrocholesterol.
The UVB rays break the B ring of the cholesterol structure to form previtamin D3, then
undergoes a thermal induced rearrangement to form vitamin D3 [121].
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3.1. Transportation and Metabolism of Vitamin Ds

Vitamin D2 and D3 obtained from food are soluble in micelles in the small intestine,
where they are mainly absorbed by the apical membrane of enterocytes [122]. After ab-
sorption, they bind to other lipids to form chylomicrons, which can enter the bloodstream
(Figure 3). In the bloodstream, chylomicrons–D2/D3 and cutaneous vitamin D3 bind to vi-
tamin D binding protein (DBP) and are transported to various tissues and organs, including
the liver [123,124]. Vitamin D2 and D3 are metabolized to 25(OH)D2 and 25(OH)D3, respec-
tively, through the actions of several cytochrome P450s (CYP) exhibiting 25-hydroxylase
activity, such as CYP2R1 and CYP27A1. The major and the most stable vitamin D metabo-
lites are 25(OH)Ds with a serum circulation half-life of 15 days [120]. This hydroxylation
takes place primarily in the liver, but also in other tissues (i.e., skin, adipose tissue, immune
cells and osteoblasts). These vitamin D metabolites, 25(OH)Ds, are stored in the cytoplasm
of hepatocytes in a limited amount at about 10 nmol/kg body weight under normal condi-
tions. Additionally, 25(OH)Ds circulate in the bloodstream, in a bound form with DBP at a
concentration of 45.25 nmol/kg. The 25(OH)Ds are also taken up by fat tissues and stored
in fat cells at 5 nmol/kg [125]. The 25(OH)Ds are also transported to the kidneys where they
are further metabolized to the more biologically active forms, 1,25(OH)2Ds (Calcitriol). This
process is achieved by the enzyme 25OHD-1α hydroxylase (CYP27B1) [112,113]. Although
CYP27B1 is mostly expressed in epidermal keratinocytes, it is found in the renal tubules of
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the kidney, as well as in various other tissues and organs, such as the brain, placenta, testes,
intestine, lung, breast, macrophages, lymphocytes, parathyroid gland, osteoblasts, and
chondrocytes [126–129]. Under normal conditions, the kidney is typically recognized as the
primary contributor to circulate 1,25(OH)2Ds. However, in certain pathological situations,
extra renal CYP27B1 activities in other tissues can play a role in generating 1,25(OH)2Ds,
leading to elevated levels of this active vitamin D and calcium [126]. In kidney, 25(OH)Ds
are also metabolized by 25OHD-24 hydroxylase (CYP24A1) into 24,25(OH)2Ds, which are
the second most important and inactive metabolites of 25(OH)Ds. CYP24A1 also catabo-
lizes 1,25(OH)2Ds to their inactive forms (1,24,25(OH)3D or 1,23,25(OH)3D) in cases where
vitamin D is overactive [130,131]. Thus, CYP24A1 plays a crucial role in regulating the
body level of 1,25(OH)2Ds.
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The 25(OH)Ds and 1,25(OH)2Ds are circulated in the bloodstream in a primarily bound
form with DBP and are subsequently transported to target tissues. In pathological condi-
tions such as liver disease and nephrotic syndrome, reduced levels of DBP and albumin
can lead to lower total levels of 25(OH)Ds and 1,25(OH)2Ds, but the concentrations of these
labile metabolites are not affected [132]. Similarly, DBP levels are reduced during acute
illness, potentially obscuring the interpretation of total 25(OH)D levels [133]. Thus, DBP–
vitamin D complexes play an important role in transporting vitamin D and its metabolites
to target organs and tissues. However, the level of 25(OH)D and 1,25(OH)2D in tissues
were reported to be unchanged without DBP [134–136]. This suggests that DBP-unbound
vitamin D metabolites may be more crucial than the bound-form and can be taken up
immediately into cells because DBP is not available to most cells [127–129].

3.2. Cell Uptake and Intracellular Functions of Vitamin D

After entering target cells, 1,25(OH)2Ds act as transcriptional regulators by binding
with nuclear vitamin D receptors (VDRn) in the ligand binding region. The VDRn then
pairs with the RXR and binds to the vitamin D response element in the promoter region of
the gene. Coactivator proteins, including vitamin D receptor-interacting protein (DRIP) and
steroid receptor coactivator (SRC) could form the complex with VDRn/RXR. This complex
facilitates the transcription of the gene to produce mRNA, which is then translated into
the corresponding protein. More than 200 genes (almost 3% of human genome) are up
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or downregulated by vitamin D [13]. Flanking gene sequences and tissue specific factors
influence the regulation of gene expression by 1,25(OH)2Ds [137].

Moreover, 1,25(OH)2Ds are also involved in non-genomic actions via their binding
forms with a distinct putative plasma membrane vitamin D receptor (VDRm) [138]. The
phenomenon of rapid calcium flux induced by 1,25(OH)2Ds in the intestine, known as tran-
scaltachia, has been extensively studied. This process requires complicated and specific sig-
naling pathways involving voltage-gated L type channels and protein kinase C [139–141].
The 1,25(OH)2D–VDRm complex also promotes the activation of several intracellular
second messengers, controlling the activity of different kinases such as PKA, PKB, and
MAPK [142]. Once 1,25(OH)2Ds interact with intracellular signaling molecules or tran-
scription factors through VDRm, expression of various genes is influenced, leading to the
modulatory effects of 1,25(OH)2-D on immunity, antiviral responses, and cell survival.
Protein–protein interactions between VDRm and target proteins, such as inhibitor of nu-
clear factor kappa-B kinase subunit β (IKKβ) [143], Stat1 [138], RunX1 [144], β-catenin [145],
cAMP [146], are involved in this process. IKKβ is one of the upstream regulators of the
canonical NF-κB pathway, a transcription factor that regulates various genes, including
MMP-9 [147].

3.3. Functions of Vitamin D in the Human Body and Related Diseases

Vitamin D plays an important role in maintaining calcium homeostasis. Vitamin D can
enhance calcium absorption from the intestines by stimulating the synthesis of calbindin
9K, a calcium binding protein, and by inducing two major calcium transporters, TRPV5
and TRPV6, in the intestinal mucosa [6]. For calcium mobilization from bone, vitamin D
and parathyroid hormone (PTH) work synergistically. Both vitamin D and PTH impact
osteoblasts by reacting with VDR, leading to an increase in the expression of genes encoding
bone matrix proteins like osteocalcin and osteopontin [148]. Both 1,25(OH)2Ds and PTH
stimulate the synthesis of receptor activator of nuclear factor κ-B (RANK) ligand, which
binds to RANK on osteoclasts, promoting their differentiation and activity, leading to bone
resorption [5,149]. Additionally, 1,25(OH)2Ds and PTH increase calcium reabsorption in
the kidney’s distal convoluted tubules, reducing renal calcium excretion.

Moreover, as summarized in Table 3, vitamin D is involved in maintaining various
physiological conditions, including: (i) modulating the immune system against infections
and the risk of autoimmune diseases and (ii) regulating cell growth, differentiation, and
apoptosis, which are essential for maintaining healthy tissues and preventing the devel-
opment of cancer. Investigation of cell cycle controlling systems has reported vitamin
D’s participation in cell cycle arrest through controlling expression of different regulatory
molecules such as HIF1a, p53, MYC, Ras, MAPK, BRCA1, and GADD45 [150]. Alteration
of vitamin D metabolism can be observed in various pathological conditions such as rick-
ets, osteomalacia, renal dystrophy, essential hypertension, multiple sclerosis, rheumatoid
arthritis, and different cancers [151].

Vitamin D deficiency is associated with the risk of many other extra-skeletal diseases,
including cancers [152,153]. Vitamin D intoxication can increase the degree of saturation
sufficiently to increase the free concentrations of 1,25(OH)2Ds and so cause hypercalcemia
without necessarily raising the total concentrations [154]. The high levels of vitamin D can
cause hypercalcemia, which is a condition where the blood calcium levels are too high [155].
Hypercalcemia has various clinical manifestations that affect multiple organ systems [156].

Although vitamin D2 and D3 share structural similarity, the functional equivalence
for human health has been debated in recent years. Multiple studies suggest that they
have equal effectiveness in raising circulating serum 25(OH)D concentration, while some
other studies provide evidence that vitamin D3 is more efficient compared to vitamin
D2 [157–159]. The comparison of their effects showed that vitamin D2 is less effective
than D3 in raising circulating serum 25(OH)D in acute studies [158]. Long-term daily
administration studies reported higher efficacy of D3 [160,161] or equal efficacy [162]. Some
studies have concluded that vitamin D3 is more effective than D2 in reducing cancer and
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all-cause mortality, regulating gene expression, and shifting the immune system to a more
tolerogenic status [161,163].

Table 3. Physiological functions of vitamin D and related diseases.

Function Activity Related Disease Ref.

Calcium
homeostasis

Facilitation of calcium absorption in intestine
and resorption in the renal tubules

Rickets [6]

Osteomalacia [5,149]

Immune
regulation

Regulation of the expression and activity of
pro-inflammatory cytokines

(IL-1β, IL-6, IL-8, TNF-α, and IFN-γ)

Rheumatoid arthritis [164]

Multiple sclerosis [165,166]

Allergic diseases [167]

Chronic diseases [168]

Cardiovascular disease [19,169]

Cancer [170]

Cell growth
regulation

Regulation of the expression of several genes
involved in proliferation and differentiation

Cancers [171]

Autoimmune diseases [172]

MMP
regulation

Direct and indirect regulation of the expression
of MMP-2 and MMP-9

Cancers [173–177]

Liver fibrosis [178]

3.4. Vitamin D in Cancer Treatment and MMP Regulation

Vitamin D has been extensively considered for its potential as an anticancer agent
based on epidemiological and preclinical studies. The extensive epidemiologic evidence
strongly supports the importance of sufficient vitamin D nutrition, which includes sunlight
exposure, in preventing various types of cancers with particular focus on breast, colon, and
prostate cancers [179–181]. Early reviews of multiple meta-analyses of epidemiological
studies have shown that higher vitamin D intake or higher levels of 25(OH)D are associated
with a significant reduction in the risk of development of colorectal and breast cancers,
especially in premenopausal females [182,183]. A long-term epidemiological study on
pancreatic cancer patients has also shown that the patients who had sufficient prediagnostic
plasma levels of 25(OH)D had longer survival [183]. Similarly, pretreatment serum vitamin
D deficiency was associated with increased inflammatory biomarkers in all stages of
pancreatic ductal adenocarcinoma [184]. However, the later epidemiological study based on
a randomized, double-blind, placebo-controlled trial reported that daily supplementation
with vitamin D3 (1000 IU), calcium (1200 mg), or both after removal of colorectal adenomas
did not significantly reduce the risk of recurrent colorectal adenomas over a period of 3
to 5 years [185]. Furthermore, multiple in vivo and in vitro studies demonstrated vitamin
D and its metabolites, especially 1,25(OH)2Ds have anticancer effects through various
pathways, including genomic and non-genomic pathways [186].

Among the mechanisms, vitamin D and its metabolites could stimulate the expression
and activity of MMP-2 and MMP-9. The antitumor effects of 1,25(OH)2D, by blocking
vasculogenic mimicry (VM) growth factors and altering TIMP/MMP balance in breast
cancer cells have been reported [173]. There is also a reduction in the expression and activity
of MMP-2 and MMP-9 in breast cancer cells, MCF-7 and MDA-MB-231, upon treatment of
1,25(OH)2D. The expression of TIMP-1/2—natural inhibitors of MMPs—in these cell lines
was upregulated, while a decrease in VEGF which regulates the expression of MMP-9 was
also observed [117,118].

The treatment of ovarian cancer cells with 1,25(OH)2D3 decreased the expression of
MMP-9 in M2 macrophages [174]. This led to the suppression of cell proliferation and
migration abilities in ovarian cancer. In a study in human corneal epithelial cells (HUCEC),
the expression of MMP-9 was decreased with 1,25(OH)2D3 treatment [187]. The study
demonstrated that HCECs are able to produce 1,25(OH)2D3 themselves from precursors D3
and 25(OH)2D3, resulting in an enhanced expression of the antimicrobial peptide, LL-37,



Int. J. Mol. Sci. 2023, 24, 17038 11 of 34

dependent on VDR 25(OH)2D3 decreasing the expression of proinflammatory cytokines
(IL-1β, IL-6, TNFα, and CCL20) and MMP-9.

The downregulation of MMP-2 and MMP-9 expression and activity upon addition of
1,25(OH)2D and/or 25(OH)D in human lung fibroblasts cells (HFL-1) have been reported
as well [175]. This downregulation correlated with the inhibition of IL-1β, an inhibitor
of TIMP-1 and TIMP-2. Therefore, vitamin D, 25(OH)D, and 1,25(OH)2D play a role
in regulating human lung fibroblast functions in wound repair and tissue remodeling.
Also, the combination of RA and 1,25(OH)2D3 has shown potential as a preventive agent
against cell invasion in pancreatic adenocarcinoma (PDAC) [188]. The observed anticancer
activity in PDAC cells resulting from the treatment with RA and 1,25(OH)2D3 was linked
to the inhibition of MMP-9 expression. The suppression of TNF-α played an essential
role in this inhibition, as it effectively blocked the JNK pathway and downregulated
miR-221 expression.

Furthermore, the potential of vitamin D as a therapeutic agent for a number of human
diseases, besides cancers, have been suggested by altering the expression and activity of
MMPs. The expression of MMP-2 and MMP-9 were decreased in response to vitamin D
metabolites which could be a VDR therapy to improve arterial calcification [189]. The daily
intake of vitamin D may suppress MMP activity and be involved in the development of
articular cartilage degeneration and the progression of osteoarthritis [19].

4. Vitamin E

Vitamin E was discovered in 1922 by Evans and Bishop [190]. Vitamin E exists
in multiple forms, α-tocopherol is the most biologically active form. It is distributed
throughout the body and found in various tissues and organs. Vitamin E is not a single
nutrient, but a group of compounds that consist of four tocopherol isomers (α-, β-, γ-,
and δ-tocopherol) and four tocotrienol isomers (α-, β-, γ-, and δ-tocotrienol), as lipophilic
antioxidants preventing lipid peroxidation (Figure 4) [191]. The bioavailability of vitamin
E depends on pancreatic function, biliary secretion, micellar formation, and penetration
across intestinal membranes [192].
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4.1. Transportation and Homeostasis of Vitamin E

The distribution of vitamin E takes place throughout the body and its absorption
occurs in the intestine, where it is taken up alongside lipids, and packaged into lipoproteins
for transportation to various tissues and organs. With the carriers such as chylomicron
remnants, low-density lipoproteins (LDLs), and high-density lipoproteins (HDLs), trans-
portation of vitamin E is facilitated [193–195]. A substantial portion of the absorbed vitamin
E is stored in adipose tissue, with estimates suggesting that approximately 90% of the total
amount is deposited, specifically in the lipid droplets of adipocytes [196]. This storage
mechanism allows the body to access and utilize vitamin E when needed, contributing to
its role in various physiological processes. Vitamin E homologs are primarily transported
by very low-density lipoprotein (VLDL) with α-tocopherol specifically recognized and
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transported by the α-tocopherol transfer protein in the liver [197]. VLDL is a type of
lipoprotein that carries vitamin E, triglycerides, and cholesterol from the liver to various
tissues in the human body. The liver plays a crucial role as a hub for the distribution of
vitamin E homologs throughout the body [197].

The metabolism of vitamin E mainly occurs in the liver (Figure 5). The majority of
γ-tocopherol, δ-tocopherol, γ-tocopherol acetate, and δ-tocopherol acetate are metabolized
through a process initiated by CYP4F2, leading to the production of 13’-OHs and 13’-
COOH metabolites [198]. These metabolites further undergo conversion into the ultimate
metabolite, CEHC (carboxyethyl hydroxychroman) [199]. Conversely, most α-tocopherol
and small amounts of other vitamin E forms are transported by tocopherol transfer protein
(TTP) within hepatic cells, then integrated into lipoproteins with the assistance of ATP-
binding cassette transporter A1 (ABCA1) [198,200]. Vitamin E bound to lipoproteins is
transported to other tissues through the circulatory system.
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The concentration of vitamin E in tissues and organs varies. It is stored mainly in
adipose tissue and cell membranes. After reaching the bloodstream, vitamin E is distributed
to different tissues, where it serves as an antioxidant protecting cell membranes from oxida-
tive damage. The plasma levels of vitamin E are influenced by the absorption, distribution,
and excretion rates of each of its isoforms. All eight homologs possess lipophilic properties
and are absorbed from the intestine after being ingested in micelles, which are formed by
pancreaticobiliary secretions [201]. In plasma, the half-life of α-tocopherol is estimated to
be around 20 h, the longest among all the vitamin E isoforms [202]. Therefore, due to the
longest half-life, α-tocopherol is the predominant isoform found in tissues whereas the
other congeners are metabolized and more quickly removed [203]. Plasma α-tocopherol
concentrations in humans range from 11 to 37 µM whereas γ-tocopherol concentrations are
roughly 2 to 5 µM, and other tocotrienol concentrations are less than 1 µM [204]. Vitamin E
tends to accumulate in high-lipid tissues including the liver, adipose tissue, muscles, and
brain, and protects against oxidative damage. The levels of vitamin E in the bloodstream
are regulated by metabolic processes, including its assembly and secretion in lipoproteins
in the intestine and liver, transfer between lipoproteins in the blood, and uptake by various
tissues. This ensures plasma vitamin E levels are closely linked to normal lipoprotein
metabolism in the body [195].

Regulation mechanisms of vitamin E encompass various processes by which it in-
fluences cellular and molecular activities in the body. Vitamin E is well-known for its
antioxidant properties, but it also plays a role in non-antioxidant functions and regulation
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of cellular processes. These mechanisms encompass the inhibition of mitogen-activated
protein kinase (MAPK) signaling pathways [205,206], modulation of transcription factors,
anti-inflammatory effects, and impacts on cellular signaling pathways [207–211]. Collec-
tively, these mechanisms contribute to its role in maintaining cellular health and addressing
various health-related conditions.

4.2. Functions of Vitamin E in the Human Body and Related Diseases

Under normal conditions, vitamin E is an essential nutrient for a vital role as an
antioxidant in the human body [212]. Vitamin E, together with other vitamins and mi-
cronutrients, fulfills various physiological roles in maintaining the body’s overall balance
and health [213]. Its deficiency can contribute to the development of neurological disor-
ders [214]. The roles and related diseases of vitamin E are summarized in Table 4.

Vitamin E has demonstrated effectiveness in combating conditions such as cancer, ag-
ing, arthritis, and cataracts due to its antioxidant properties [215]. Therefore, the antioxidant
effect of vitamin E has been attributed to a wide range of benefits, such as anti-inflammatory,
anticancer, and neuroprotective effects. In addition, vitamin E has been well-documented
to potentially affect endothelial nitric oxide synthase, including vasculoprotective, antifi-
brotic effects, and wound healing [216–218]. The localized administration of vitamin E
may offer more favorable outcomes than systemic administration in cancer treatment for
humans [216]. Furthermore, the various vitamin E isoforms enact a key role in safeguarding
cell membranes, which are abundant in highly unsaturated fatty acids, against oxidative
damage with α-tocopherol being the most biologically active and widely recognized for its
role in this regard [219].

Moreover, vitamin E could stimulate the defense systems of the human body by
enhancing humoral and cell immune responses, and increasing phagocytic functions.
Its supplementation significantly strengthens both cell-mediated and humoral immune
functions in humans, especially in the elderly [215]. A recent study demonstrated that daily
vitamin E supplementation can improve the immune response to a specific antigen [220].
Vitamin E has been shown to act as an antioxidant, modulate signal transduction, regulate
gene expression, and play a role in managing skin diseases [221]. Furthermore, topical
vitamin E, applied directly to the skin, has emerged as a popular treatment for a number
of skin disorders owing to its antioxidant properties. It protects the skin from various
deleterious effects due to solar radiation by acting as a free radical scavenger [222].

Cardiovascular complications arise because of the oxidation of LDLs present in the
body and the consequent inflammation [223]. By scavenging free radicals and preventing
the oxidation of LDLs, γ-tocopherol contributes to the maintenance of vascular health. Ad-
ditionally, γ-tocopherol has been reported to improve cardiovascular function by increasing
the activity of nitric oxide synthase, which produces vessel-relaxing nitric oxide [224]. More-
over, vitamin E could modulate the development of cardiosclerosis and play an important
role in cardiovascular disorders, including ischemic heart disease and heart failure [225].

Vitamin E deficiency in humans can lead to a range of health issues, including mus-
cle weakness, vision problems, immune system changes, numbness, difficulty walking,
tremors, and poor balance. It is also well-documented to cause ataxia, a neurological
disorder resulting from sensory neuron damage in the peripheral nervous system [226,227].
In relation to neurological diseases, long-term α-tocopherol supplementation has been
shown to be effective in preventing the progression of nervous system degeneration caused
by vitamin E deficiency over decades [228]. In AD, oxidative stress and aggregation of
amyloid-β (Aβ) cause neuronal damage and neuronal cell death. The antioxidant prop-
erties of vitamin E could reduce oxidative stress, prevent cytotoxic hydrogen peroxide
production, and protect neurons, potentially slowing AD progression [215]. Additionally,
Vitamin E deficiency may lead to neuromuscular issues like spinocerebellar ataxia and
myopathies [229]. Furthermore, vitamin E deficiency can result in anemia due to oxidative
damage to red blood cells [229]. It has also been associated with retinopathy [230] and
can impair the immune response [231]. Ensuring adequate vitamin E intake is essential
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for maintaining the overall health of the nervous system and various other systems in
the body.

Table 4. Physiological functions of vitamin E and related diseases.

Function Activity Related Diseases Ref.

Antioxidant Mitigates oxidative stress
and counteracts free radicals

Cancer [232]

Aging [232,233]

Arthritis [234,235]

Neuroprotection Reduction in oxidative stress and
aggregation of amyloid-β (Aβ)

AD [215,236,237]

Parkinson’s disease (PD) [238,239]

Cardiovascular health Enhancement of nitric oxide synthase activity Heart disease [223]

Stroke [240,241]

Skin health Acting as a free radical scavenger
Skin damage [222,242]

Skin cancer [221]

MMP regulation
Regulating the expression of

MMP-2 and MMP-9
through specific pathways, indirectly

Cancer [207–209]

Inflammatory
disorders [20]

4.3. Vitamin E for Treating Human Diseases and MMP Regulation

In diseased conditions, the roles of vitamin E become important. Its antioxidant prop-
erties may play a significant role in mitigating oxidative stress and inflammation, which
are often key factors in the onset and/or progression and severity of various diseases.
Based on multiple epidemiological studies, vitamin E possesses cancer-preventive poten-
tial. It exhibits anticancer properties by stimulating the wildtype p53 tumor suppressor
gene, downregulating mutant p53 proteins, activating heat shock proteins, and blocking
transforming growth factor-α to exert an antiangiogenic effect. These diverse functions
contribute to the potential of vitamin E in combating cancerous processes [243].

Investigation of vitamin E and cancer has primarily focused on α-tocopherol. How-
ever, other forms of vitamin E, especially γ-tocopherol, may exhibit distinct mechanistic
properties that are relevant to the prevention of lung cancer [244]. For example, a case-
control study in Europe reported that γ-tocopherol can reduce the risk of lung cancer [192].
Furthermore, γ-tocopherol, especially in combination with δ-tocopherol, induced apoptosis
in androgen-sensitive prostate cancer cells within a short duration of three days, while
α-tocopherol alone did not exhibit the same effect [245].

Both in vitro and in vivo studies have demonstrated that tocotrienols exhibit more
potent anticancer activities compared to tocopherols. Among the tocotrienols, γ-tocotrienol
and δ-tocotrienol have been particularly highlighted for displaying stronger anticancer ef-
fects by inhibiting cancer invasion and metastasis [246–251]. δ-tocotrienol has been reported
to inhibit cancer cell invasion by downregulating MMP-2 and MMP-9 [252]. Treatment with
γ-tocotrienol also resulted in the suppression of mesenchymal markers and the restora-
tion of epithelial markers, which are associated with the inhibition of cell invasion [253].
Moreover, recent findings indicate that tocotrienols exert an impact on numerous signaling
pathways within cancer cells, including NF-κB-mediated pathways, phosphatidylinositol-3
kinase/phosphoinositide-dependent/Akt, Raf/Erk, and JNK-related pathways [207–210].
Tocotrienols have shown impressive anticancer properties over time, consistently surpass-
ing tocopherols in their ability to combat tumors [247,251], while also preserving normal
cell growth and viability [211,254].

Vitamin E indeed exerts a wide range of effects beyond its potential in the treatment
of cancer and it has been reported to have neuroprotective roles in maintaining cognitive
function and reducing the risk of neurodegenerative diseases. This is attributed to its
remarkable antioxidant, anti-inflammatory, and cholesterol-lowering properties [255]. Due
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to its antioxidant properties, vitamin E has emerged as an appealing therapeutic agent
for the prevention and treatment of neurodegenerative diseases including AD and PD
where oxidative stress is one of the important pathophysiological risk factors [238,256].
Therefore, vitamin E supplementation has been extensively studied as a potential therapy
for neurodegenerative disorders both in vitro and in vivo [238,239,257].

Extensive evidence supports the involvement of ROS as crucial pathologic media-
tors in numerous human disease processes. Specifically, O2

− radicals actively partici-
pate in regulating the activities of MMPs. Vitamin C and E act as potent inhibitors of
oxygen-free radicals [241], which are known activators of MMPs. They have an impor-
tant role in preventing the excessive activity of MMPs which can be linked to cancer
progression and metastasis. Therefore, these vitamins could be beneficial in the prevention
and management of certain diseases and pathological conditions associated with MMP
dysregulation [258–260]. Also, it has been reported that α-glucosylation (AGR) as well as
vitamins C and E have the ability to decrease the expression and activity of MMPs.

In addition, oral supplementation with vitamin E in diabetic and obese mice led to a
reduction in oxidative stress levels along with a decrease in the expression of MMP-2 and
improved skin tensile strength and collagen fibers [261]. Chronic inflammation can lead to
increased MMP production and activity, contributing to tissue damage and disease progres-
sion. By reducing inflammation, vitamin E may help modulate MMP-related processes. The
administration of vitamin E supplements to patients with diabetic nephropathy resulted in
reduced circulating levels of TNF-α, MMP-2, and MMP-9 compared to the placebo group.
After 12 weeks of intervention, compared with the placebo, vitamin E supplementation
resulted in a significant reduction in MMP-2 and MMP-9 [20].

α-tocopheryl succinate, a derivative of vitamin E, effectively inhibits the invasion of
human prostate cancer cells, including PC-3 and DU-145, through a reduction in secreted
MMP-9 activity [262]. The treatment of Kirsten murine sarcoma virus-transformed rat kid-
ney (KNRK) cells with vitamin E, led to the inhibition of MMP-9 and MMP-2 activities [263].
Based on the inhibitory effects on NF-κB and STAT3, γ-tocotrienol and δ-tocotrienol have
been proposed to be useful in chemoprevention or adjuvant chemotherapy for cancer. The
treatment with γ-tocotrienol or its combination with gemcitabine resulted in the downreg-
ulation of NF-κB-regulated gene products, including cyclin D1, MMP-9, and CXCR4 [264].

Furthermore, vitamin E can regulate vital cellular processes, including inflammation
and cell proliferation, by modulating key signaling pathways such as MAPKs (ERK, JNK,
and p38) and NF-κB. The MAPKs and the transcription factor NF-κB play important roles
in regulating the expression of MMP-2 and MMP-9 [265,266]. The activation of MAPKs
and NF-κB could upregulate the levels of MMP-2 and MMP-9 in cancer cells and other
pathological conditions. The treatment of p38 mitogen-activated protein kinase (p38-
MAPK) inhibitor (SB203580), p38-MAPK siRNA, or NF-κB inhibitors (TPCK and PDTC)
could suppress the expression and promoter activity of MMP-2 as well as cell invasion [267].
Consequently, by inhibiting these pathways, vitamin E will indirectly suppress the activity
and expression of MMPs.

5. Vitamin K

Vitamin K plays a multitude of vital roles in the body despite its relative lack of
popularity compared to other essential vitamins [268]. Naturally, vitamin K, as presented
in Figure 6, exists in three different forms: K1 (phylloquinone), K2 (menaquinones), and K3
(menadione) [269]. Vitamin K1 (phylloquinone) is abundant in green leafy vegetables and is
an essential dietary source of vitamin K. Vitamin K2 is synthesized by the human intestinal
microbiota and the primary sources of vitamin K2 are of microbial origin, commonly found
in fermented foods such as cheese, curds, and animal livers [270,271]. In contrast, vitamin
K3 (menadione) is produced through chemical synthesis and is primarily used for industrial
and research purposes, rather than occurring naturally [272].
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5.1. Transportation and Homeostasis of Vitamin K in Human Body

Vitamin Ks are absorbed alongside dietary fats, and the presence of bile salts enhances
their bioavailability (Figure 7) [273]. After being absorbed in the intestines, both vitamins
K1 and K2 enter through the bloodstream as a component of chylomicrons, which are
large lipoprotein particles formed in the intestines after dietary fat absorption. Once
vitamin Ks are in the bloodstream, chylomicrons are taken up by the liver [274,275]. In the
liver, vitamin K1 undergoes metabolism and over half of the absorbed amount is excreted
by the human body. Vitamin K2 is carried by LDL from the intestine to tissues outside
the liver for various physiological functions [276,277]. Vitamin K2 exhibits a preference
for accumulation in peripheral tissues. It is notably found in high levels in the brain,
aorta, pancreas, and adipose tissue indicating its vital roles in these areas [278–280]. In
contrast, the liver contains relatively lower levels of vitamin K2. This selective distribution
highlights the specific importance of vitamin K2 in various extrahepatic functions and
tissues [274,275]. On the other hand, vitamin K3 is not transported in the same way as
vitamin K1 and K2. Thus, it is commonly administered through supplements or injections
for specific therapeutic or research purposes.
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Vitamin K1 has a relatively fast removal rate from the circulation based on the moni-
toring of both urine and bile [10,281,282]. It is primarily retained in the liver to facilitate the
carboxylation of clotting factors [277]. The ability of the liver to store and utilize vitamin
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K1 for this purpose is essential for maintaining a balanced and effective blood clotting
mechanism in the body [283]. Conversely, vitamin K2, especially its long-chain derivatives,
undergoes redistribution back into the circulation instead of being primarily retained in the
liver. This redistribution enables its availability for tissues beyond the liver. This includes
important tissues such as bones and vasculature, where vitamin K2 plays essential roles in
supporting bone health and promoting cardiovascular health [277,284]. This indicates that
vitamin K2 is not solely confined to the liver but is also utilized by extra hepatic tissues,
contributing to its diverse physiological functions in various parts of the human body.

The metabolism of vitamin K in liver is of utmost importance for blood clotting and the
regulation of calcium balance within the body as shown in Figure 7. Vitamin K is recycled
in the liver after participating in the carboxylation process [285]. After carboxylation,
vitamin K becomes an epoxide form, either vitamin K oxide or vitamin K epoxide and
must undergo a chemical reduction process to return to its reduced form by the enzyme,
vitamin K epoxide reductase (VKOR) [286]. This process allows vitamin K to participate in
carboxylation, enabling clotting proteins like factor II, VII, IX, and X to function in blood
clotting [10]. Additionally, clotting proteins are further transformed into their active forms
by the enzyme γ-glutamyl carboxylase (GGCX) after vitamin K-dependent carboxylation is
over [287,288]. Thus, in this metabolic process, clotting proteins are well-equipped to carry
out their functions effectively in the liver for maintaining calcium homeostasis.

Vitamin K1 and MK-4 (menaquinone-4), a subtype of vitamin K2 presented in Figure 6,
have different distributions within tissues. Vitamin K1 is predominantly concentrated in
the liver, heart, and pancreas, while MK-4 is more abundant in the kidneys and brain.
Additionally, longer forms of vitamin K2 (MK-7 to MK-13) are also detected in the liver,
contributing to the diverse physiological functions of vitamin K in the body [289]. This
diversity in tissue distribution of vitamin K1 and MK-4 underscores their importance
in maintaining overall health and highlights the complexity of vitamin K’s role in the
human body.

5.2. Functions of Vitamin K in the Human Body and Related Diseases

Under normal conditions, vitamin K plays several crucial roles in maintaining overall
health and supporting various physiological processes in the human body (Table 5) [288].
Recently, extensive research has revealed that vitamin K offers health benefits in maintain-
ing blood homeostasis which has been linked to chronic low-grade inflammatory diseases,
including cardiovascular disease, osteoarthritis, dementia, cognitive impairment, mobility
disability, and frailty [290]. Vitamin K is widely utilized in the treatment of various diseases,
such as vascular calcification, osteoporosis, diabetes, and liver cancer, because of its proco-
agulant properties as well as its anti-inflammatory and antioxidant capabilities [291–293].

Additionally, vitamin K is necessary for wound healing in animal models, as it could
enhance cell proliferation and differentiation [290]. Vitamin K has been shown to reduce
the inflammatory response in in vitro, animal [294], and in large-scale human studies [295].
Another crucial aspect of the importance of vitamin K is its ability to function as a potent
antioxidant. By generating vitamin K–hydroquinone, a highly efficient radical scavenging
complex, this complex effectively mitigates lipid peroxidation in cells [296]. Despite its
vital role, vitamin K is not as widely discussed as other vitamins (i.e., A, B, C, D, and E).
However, vitamin K is indeed essential for blood clotting and maintaining healthy bone
tissue [297]. Its deficiency results in blood coagulation impairment, hemorrhagic disorder,
fat malabsorption, and deterioration of bone density [272].

Vitamin K, especially vitamin K2, is believed to contribute significantly to cardiovas-
cular health by playing a crucial role in regulating calcium homeostasis, which is vital
for maintaining optimal heart function and vascular health. The primary reason for the
speculation about the positive cardiovascular effects of vitamin K is its crucial role in the
synthesis of Matrix Gla protein (MGP), which acts as a natural inhibitor of arterial calcifica-
tion, thereby helping to maintain the health of arteries [10]. Vitamin K also plays a crucial
role in modifying specific glutamic acid residues in proteins, both inside and outside of
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the liver through post-translational processes. This process is critical for blood coagulation
and preventing calcification in cartilage and blood vessels [298]. Various types of vitamin
K exhibit differences in their biological activities, which arise from variations in enzyme
affinity and tissue distribution [299]. These distinctions could influence the determination
of the specific functions and effects of each form of vitamin K in human body.

A substantial body of evidence establishes a connection between vitamin K deficiency
and heightened risks of cancer, cardiovascular disease, soft tissue calcification, and os-
teoporosis [300–302]. Vitamin K deficiency can lead to various health issues, including
increased bleeding tendencies, impaired bone development, heightened risk of osteoporo-
sis and fractures, and elevated susceptibility to cardiovascular diseases characterized by
vascular calcification and atherosclerotic plaques [303]. Vitamin K deficiency also affects
calcium homeostasis, which leads to vascular calcification and bone disorders [15].

Table 5. Physiological functions of vitamin K and related diseases.

Function Activity Related Diseases Ref.

Blood clotting

The accumulation of calcium in arteries and
blood vessels

Synthesis of Matrix Gla protein (MGP)
Activation of blood clotting factors

Arterial calcification [304,305]

Cardiovascular disease [298]

Liver disease [306,307]

Blood coagulation
impairment [308]

Neuroprotection

Sphingolipid metabolism modulation and Aβ

clearance
Regulation of Gas6 carboxylation and neuronal

apoptosis

Alzheimer’s disease (AD) [309]

Neurological disorders [310]

Bone health Fostering calcium absorption into bone
Osteoporosis [15]

Fractures and weak
bone structure [311,312]

Wound healing Enhanced cell proliferation
and tissue repair

Diabetes
Immune disorders

[313]
[313–315]

MMPs regulation Indirect influences on
MMP-2 and MMP-9 expression

Cancer [316,317]

Inflammatory disorders [318,319]

Cardiovascular disease [320]

5.3. Vitamin K in Human Disease Treatment and MMP Regulation

Within the realm of diseased conditions, vitamin K demonstrates its diverse signifi-
cance and impacts on blood clotting disorders, bone health, cardiovascular disease, liver
disease, malabsorption disorders, warfarin therapy, and its potential role in cancer. Vita-
min Ks exhibit promising potential as anticancer agents and function as chemosensitizers
when combined with other chemotherapy drugs targeting diverse cancers from various
origins through multiple mechanisms, such as inhibition of cancer cell proliferation, sur-
vival, metastasis, and angiogenesis, and induction of intrinsic and extrinsic apoptosis,
nonapoptotic cell death, autophagy, cell cycle arrest via inhibition of MAPK/ERK, NF-κB,
wingless-related integration site (WNT), JNK, and phosphatidylinositol 3-kinase/protein
kinase B (PI3K/AKT) signaling pathways [321].

Vitamin Ks have been investigated as therapeutic agents for cancer treatment of vari-
ous cancer cell lines [322], including HCC [323], leukemia, colorectal cancer, ovarian cancer,
pancreatic cancer [324], and lung cancer [325]. In different cancer cell lines, vitamin K2
could inhibit cancer cell growth through the induction of autophagy, a natural process that
eliminates damaged cellular components and safeguards against diseases [326]. Further-
more, vitamin K2 could inhibit the growth of hepatocellular carcinoma cells by suppressing
cyclin D1 expression through inhibition of NF-κB activation [327]. Vitamin K3 has been
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reported to inhibit the proliferation of several cancer cells as cellular redox mediators,
producing ROS, and triggering apoptosis through mitochondrial pathways [328,329]. Vita-
min K3 treatment, either alone or in combination with other chemotherapeutic drugs, has
demonstrated the ability to inhibit the growth of various neoplasms (abnormal growths of
tissue) and sensitize drug-resistant cancer cells to standard chemotherapy [321].

The combined action of vitamin K3 and vitamin C (also known as vitamin K3/AA)
has been reported to demonstrate a synergistic effect in inducing cell death in various
cancer types. When used together, they work in tandem to enhance the anticancer prop-
erties. It was reported that K3/AA treatment in a 1:100 ratio potentiated the antitumor
effect by about 4- to 61-fold in urologic cancer cells even with a short incubation time
such as 1 h [330]. The later in vivo study acknowledged that the combination of vitamin
K3 and vitamin C also decreased activities of plasma MMP-2/-9 in C57BL/6 mice [331].
In a recent study, expression of Siah2 and HIF-1α and MMP-9 were downregulated in
colon tissues with the treatment of vitamin K3 [332]. Vitamin K and vitamin C alone or
in combination, induce apoptosis in leukemia cells by a sequential cascade of molecular
events involving the production of ROS, simultaneous activation of NF-κB/p53/c-Jun tran-
scription factors, mitochondrial depolarization, and the caspase-3 activation pathway [333].
However, vitamin K3 could exhibit toxic effects on certain cells at high concentrations.
Vitamin K3 showed significant cytotoxicity against human oral tumor cell lines (HSC-2,
HSG), human promyelocytic leukemia cell line (HL-60), and human gingival fibroblasts
(HGFs) [334]. Thus, its use as a potential cancer treatment requires careful consideration
and proper dosage to minimize harm to healthy cells. The combination of K3/AA are
harmless to lymphocytes, at least under the present in vitro conditions [333]. In addition,
the combination of vitamin K3 and D-fraction (DF) could lead to a drastic >90% viability
reduction. In addition, they could induce a profound reduction in ACHN cell (Human
Renal Adenocarcinoma Cells) viability, through a p21(WAF1)-mediated G1 cell cycle arrest,
and ultimately induce apoptosis [335].

Moreover, the potential role of vitamin K in supporting brain health and cognitive
function in AD pathology has been studied for a long time. The involvement of vitamin K in
brain physiology occurs via the carboxylation of Gas6, a vitamin K-dependent protein, po-
tentially providing protection against neuronal apoptosis triggered by oxidative stress Aβ

accumulation [309]. Vitamin K has demonstrated its influence on the onset and progression
of AD along with cognitive functions by enhancing Aβ clearance through the modulation
of sphingolipid metabolism [336], exerting positive effects on the underlying mechanisms
involved in the pathology of AD [310]. Furthermore, a deficiency in vitamin K has been
associated with brain aging and cognitive decline, especially in individuals with AD and
the elderly [337]. While the research indicates a potential link between vitamin K and
AD, it is essential to acknowledge that further extensive research is needed to definitively
establish the relationship between vitamin K and the risk of AD.

Beyond that, in particular, vitamin K2 is believed to contribute to cardiovascular health
by regulating calcium homeostasis, modifying systemic calcification, and reducing arterial
stiffness [320]. It could prevent the accumulation of calcium in arteries and blood vessels,
supporting vascular health and reducing the risk of atherosclerosis [320]. The positive
cardiovascular effects of vitamin K are primarily attributed to its role in the synthesis and
activation of Matrix Gla protein (MGP). By blocking the calcification of arteries, MGP
helps maintain the flexibility and integrity of blood vessels and reduces the risk of arterial
stiffness [10]. The close association between vitamin K and arterial health solidified its
importance in fostering a healthy cardiovascular system.

Emerging evidence suggests that vitamin K, particularly vitamin K2, may have broader
functions beyond blood clotting and bone health, and inhibitory effects on certain MMPs.
In a recent study, different forms of vitamin K2 (MK-4, MK-5, MK-6, MK-7) inhibited the
expression of MMP-2 and MMP-9 in the murine macrophage cell line (RAW 264.7) [319].
As with many biological processes, the regulation of MMPs by vitamin K is complex and
involves interactions with various cellular pathways. Vitamin K could induce apoptosis
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through different biochemical pathways, including alteration of intracellular calcium home-
ostasis and activation of the following pro-apoptotic factors: JNKs, Fas-dependent and
Fas-independent pathways, and NF-κB [316,317]. The potential of vitamin K to inhibit
certain pathways suggests it may have a role in further inhibiting MMP activity.

Inhibitors targeting ERK and JNK effectively suppressed 12-O-tetradecanoylphorbol-
13-acetate (TPA)-induced AP-1 transcriptional activity, whereas the p38 inhibitor showed
no effect in this context. Similarly, Vitamin K2 also showed a suppressive effect on TPA-
induced MMP expression by reducing AP-1 activity [21]. NF-κB activity is necessary for
the upregulation of several MMPs, even in cases where the promoter regions of certain
MMPs do not seem to have a clear NF-κB binding site [338]. Vitamin K2 could suppress
the expression of MMPs that possess NF-κB binding motifs in their promoter regions [21].
Additionally, vitamin K2 has been found to enhance the inhibitory effect of 5-fluorouracil
on the growth of hepatocellular carcinoma (HCC) cells by inhibiting the activation of NF-
κB [339]. Therefore, the vitamin K2-mediated inhibition of NF-κB is thought to be involved
in suppressing multiple MMPs.

6. Conclusions

Based on the literature included in this review, it appears that fat-soluble vitamins
could ameliorate human diseases through various mechanistic pathways, with particular
emphasis on MMP-2 and MMP-9 and their related intracellular signals. They could regulate
the production of MMP-2 and MMP-9 through various pathways (Figure 8). Vitamin A
and D appear to primarily regulate the transcription of MMP-2 and MMP-9 through
their respective metabolites, either directly or indirectly. Through the direct pathway, the
metabolites of both vitamins can directly regulate the promoter region of the target genes by
activating their respective receptors (RARs and RXRs for Vitamin A, and VDRn for Vitamin
D). Meanwhile, the indirect pathway involves the activation of receptors like the putative
plasma membrane vitamin D receptor (VDRm), which interacts with various intracellular
signals to influence the expression of MMPs. Those intracellular signals include (IKKβ),
NF-κB, VEGF, interleukin-1 (IL-1), P38-MAPK, TNF- α and JNK. Unlike vitamins A and D,
few studies cover the involvement of vitamins E and K in regulation of MMPs by affecting
intracellular signaling pathways, such as P38-MAPK, TNF-α, JNK, NF-κB, VEGF, and IL.
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Although the fat-soluble vitamins showed their potentials as treatments for human
diseases (including cancers) in various in vitro experiments, more clinical and preclinical
trials should be performed to determine the proper dose and strategy of consumption. In
addition, the delivery mechanisms of vitamins in the human body by lipids, lipoproteins,
and/or vitamin binding proteins needs further investigation. With the improvement in
understanding the roles of vitamins in pathologies of human diseases through more clinical
trials and studies, people can take vitamins in an efficient way as medications and develop
new derivatives of vitamins as promising drugs.

In summary, fat-soluble vitamins (vitamin A, D, E, and K) have undergone extensive
investigation for their potential applications in treating various human diseases, such as
cancers. Specifically, given the involvement of MMPs in the pathogenesis of these diseases,
there has been notable research into utilizing fat-soluble vitamins to target MMPs, both
directly and indirectly, particularly for regulating the expression and activity of MMP-2
and MMP-9. This review has provided an overview of current studies and knowledge
concerning the use of fat-soluble vitamins in targeting MMPs, revealing their potential for
the treatment of human disease.
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