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Abstract: Deep-brain subthalamic nucleus stimulation (DBS-STN) has become a well-established
therapeutic option for advanced Parkinson’s disease (PD). While the motor benefits of DBS-STN are
widely acknowledged, the neuropsychiatric effects are still being investigated. Beyond its immediate
effects on neuronal circuits, emerging research suggests that DBS-STN might also modulate the
peripheral inflammation and neuroinflammation. In this work, we assessed the effects of DBS-STN
on food-related motivation, food intake pattern, and the level of anxiety and compared them with
markers of cellular and immune activation in nigrostriatal and mesolimbic areas in rats with the
6-OHDA model of early PD. To evaluate the potential mechanism of observed effects, we also mea-
sured corticosterone concentration in plasma and leukocyte distribution in peripheral blood. We
found that DBS-STN applied during neurodegeneration has beneficial effects on food intake pattern
and motivation and reduces anxiety. These behavioral effects occur with reduced percentages of
IL-6-labeled cells in the ventral tegmental area and substantia nigra pars compacta in the stimulated
brain hemisphere. At the same brain structures, the cFos cell activations were confirmed. Simultane-
ously, the corticosterone plasma concentration was elevated, and the peripheral blood lymphocytes
were reduced after DBS-STN. We believe that comprehending the relationship between the effects of
DBS-STN on inflammation and its therapeutic results is essential for optimizing DBS therapy in PD.

Keywords: subthalamic nucleus deep-brain stimulation; Parkinson’s disease; 6-hydroxydopamine;
interleukin-6; cFos protein; lymphocytes; corticosterone; food-related motivation; anxiety

1. Introduction

The deep-brain stimulation of the subthalamic nucleus (DBS-STN) is an effective
and widely used treatment for motor symptoms in the late stage of Parkinson’s disease
(PD) [1]. DBS-STN is a safe procedure, and numerous studies have demonstrated that
this surgical treatment can significantly enhance the motor skills of patients with PD [2].
In addition to motor benefits, some studies have indicated the influence of DBS-STN on
emotional symptoms and cognitive function [2,3]. DBS-STN in PD patients improves
depression and anxiety scores [4] and influences motivation [5]. Although the motor effects
of DBS-STN for PD patients are spectacular, the mechanism of DBS-STN action still remains
uncertain. Research indicates that the effects observed after DBS-STN in PD patients may
be related to the role of the STN in the mesolimbic system [3]. The STN is involved in
processing information in the basal-ganglia–limbic network [5–7]. In rats, the STN sends
afferent projections to the ventral tegmental area (VTA)—the main region of dopaminergic
mesolimbic and the hypothalamus—the main center for the regulation of food intake and
energy metabolism [8,9]. The traditional role of the STN in the basal ganglia network
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places it within motor circuits. The modulatory properties of DBS-STN [10] appear to be
important for the emotional effects of this method in PD patients; however, the mechanisms
underlying these changes are still controversial.

DBS-STN has been shown to increase cell firing in structures innervated by the
STN [11]. Microdialysis studies have confirmed that glutamate release in output basal gan-
glia structures is increased after DBS-STN [12]. In addition, there is accumulating evidence
that DBS-STN increases striatal dopamine efflux and metabolism in rats [13,14]. Nore-
pinephrine and dopamine are neurotransmitters that play roles in reward processing and
motivation, and their abnormal serum levels have been reported in depressed rodents [15].
The clinical observations of PD patients after DBS-STN reported craving for sweet food
in some cases or decreased addictive behavior toward dopaminergic treatment [16]. The
animal study documented the opposite effect of DBS-STN on the cocaine-induced and
natural reward and proved that DBS-STN reduces craving for cocaine while increasing
craving for sucrose [17]. The other study showed that lesions of STN decreased incentive
motivation (seeking behavior) for cocaine while inducing the opposite effect (facilitating
incentive motivation) for food [18–20]. On the other hand, many studies have reported
increases in apathy after DBS-STN (for revival, see [21]), defined as a loss of motivation or
reduction in goal-directed behavior. One explanation for the emergence or worsening of
apathy following DBS-STN is a withdrawal-like syndrome due to the reduction of dopamin-
ergic treatment [22,23]. There is also evidence supporting the role of DBS-STN itself in
this pathogenesis [24,25]. It is difficult to determine the underlying causes of motivational
symptoms arising after DBS-STN in the clinic due to the interaction between DBS-STN,
pharmacological co-treatments, and the progression of PD pathology. It seems that the
emotional effect after DBS-STN may be linked to hormonal imbalance and weight gain,
which are reported after DBS-STN in clinical cases [26,27]. Studies suggest that dysregu-
lated hypothalamic–pituitary–adrenal axis (HPA) activity is linked to an overproduction
of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin
(IL)-6, and IL-1β. This, in turn, contributes to the impairment of hippocampal neurogenesis
and the promotion of depression-like behaviors [28,29].

Dissociating the effects of DBS-STN itself from underlying neuropathology and co-
occurring pharmacological treatment is critical to understand DBS-STN’s influence on
emotion [22]. The objective of this study was to enhance our understanding of the anti-
inflammatory properties of DBS-STN in a rodent model of Parkinson’s disease. The anti-
inflammatory effects of the administered stimulation were associated with the evaluation
of motivation and anxiety levels, behaviors that undergo changes as a result of DBS-STN
application in PD patients. In this manner, we aimed to identify a potential mechanism
responsible for some emotional effects observed after DBS-STN. Our previous research
showed that DBS-STN applied in rats with advanced models of PD elevated corticosterone
levels and influenced the peripheral numbers of lymphocytes [30]. A previous study
performed by our research team showed also that the electrical or pharmacological acti-
vation of the VTA influences peripheral blood immunity, feeding behavior, and neuronal
activation in the hypothalamus [31,32]. Since pro-inflammatory activity is hypothesized
to be already present in the prodromal stages of PD [33] and DBS-STN is considered to
be a potential anti-inflammatory method [30,34], explaining the mechanism of DBS-STN
seems important for its use in PD patients. To study the effects of DBS-STN applied in par-
tially nigral-depleted Wistar male rats on neuronal activation and neuroinflammation, we
measured IL-6 and cFos expression in the dopaminergic structures of the nigriostriatal (sub-
stantia nigra pars compacta, SNpc) and mesolimbic (VTA) systems. To link changes in the
brain expression of IL-6 and cFos after DBS-STN with behavior, we studied the food intake
patterns and motivations (Vermicelli handling test, VHT) and the levels of anxiety (elevated
plus maze, EPM). The peripheral immune system activation during neurodegeneration
was also measured using peripheral blood morphology and corticosterone levels. Thus,
understanding the role of DBS-STN on emotional processing and its anti-inflammatory
properties may contribute to defining DBS-STN’s mechanism of action in PD patients.
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2. Results
2.1. PD Model and Electrode Placement Confirmation

The parkinsonian phenotype was confirmed in 6-OHDA lesioned rats using behavioral
VHT testing (described below) and TH quantification (Figure 1). The intranigral administra-
tion of 6-OHDA at the right brain hemisphere induced a reduction of TH-immunoreactive
neurons in the SNpc and its terminals in the striatum, as demonstrated by immunohisto-
chemistry performed 7 days after neurotoxin injection (Figure 1A,B). The quantification
of TH+ neurons revealed a significant (F (3.72) = 128.55; p < 0.001, one-way ANOVA)
reduction in the number of TH-positive body cells in the right SNpc of 6-OHDA-depleted
rats in both DBS-STN-stimulated (6-OHDA_DBS) and control (6-OHDA_SHAM) animals.
The quantification of the number of labeled cells in the SNpc on the lesioned side was
reduced by 42% (p < 0.001, Tukey post-hoc) in 6-OHDA_SHAM and by 35% (p < 0.001,
Tukey post-hoc) in 6-OHDA_DBS (F (3.72) = 128.55) in comparison to the non-lesioned
(contralateral) hemisphere (Figure 1C). The Nissl staining showed that the localization of
the tips of stimulating electrodes was in the STN region between 3.60 and 3.80 mm posterior
to the bregma (Figure 1D).
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Figure 1. Verification of 6-OHDA lesion (A,B) and electrode placement (D). Photomicrographs (rep-
resentative rat from 6-OHDA_DBS group) of substantia nigra (A) and striatum (B)—TH-im-
munostained sections from rat sacrificed 7 days after DBS-STN, applied on the next day after 6-
OHDA nigral injection (L—left, R—right hemisphere), and tip (asterisk) of stimulating electrode 
located in right STN (D). Graph (C) shows the number of TH+ cells in the substantia nigra pars 
compacta, counted using stereology in 6-OHDA_DBS (n = 18) and 6-OHDA_SHAM (n = 18) rats in 
IPSI (right) and CONTRA—lateral hemisphere to the DBS-STN. Data are represented as means ± 
SEM. *** p < 0.001 vs. 6-OHDA_SHAM CONTRA; ### p < 0.001 vs. 6-OHDA_DBS CONTRA, Tukey 
HSD after ANOVA. 

Figure 1. Verification of 6-OHDA lesion (A,B) and electrode placement (D). Photomicrographs (repre-
sentative rat from 6-OHDA_DBS group) of substantia nigra (A) and striatum (B)—TH-immunostained
sections from rat sacrificed 7 days after DBS-STN, applied on the next day after 6-OHDA nigral
injection (L—left, R—right hemisphere), and tip (asterisk) of stimulating electrode located in right
STN (D). Graph (C) shows the number of TH+ cells in the substantia nigra pars compacta, counted
using stereology in 6-OHDA_DBS (n = 18) and 6-OHDA_SHAM (n = 18) rats in IPSI (right) and
CONTRA—lateral hemisphere to the DBS-STN. Data are represented as means± SEM. *** p < 0.001
vs. 6-OHDA_SHAM CONTRA; ### p < 0.001 vs. 6-OHDA_DBS CONTRA, Tukey HSD after ANOVA.

2.2. DBS-STN Effects on Motivation for Food and Contralateral Forepaw Impairment

The Kruskal–Wallis test revealed that 6-OHDA_DBS rats have significantly shorter
eating times for a single piece of pasta from day 1 to 3 and from day 5 to 7 of the stimulation
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procedure (DAY_1 to DAY_3 and DAY_5 to DAY_7) in comparison to the 6-OHDA_SHAM
group [DAY_1 (H = 15.84; p ≤ 0.001), DAY_2 (H = 12.75; p ≤ 0.001), DAY_3 (H = 6.86;
p ≤ 0.001), DAY_5 (H = 22.97; p ≤ 0.001), DAY_6 (H = 16.49; p ≤ 0.001), DAY_7 (H = 20.50;
p ≤ 0.001)] (Figure 2A). The Kruskal–Wallis test confirmed, also, that the number of
contralateral paw adjustments increased after each day of DBS_STN (DAY_1 (H = 24.85
p ≤ 0.001), DAY_2 (H = 6.93 p ≤ 0.01), DAY_3 (H = 7.53 p ≤ 0.01), DAY_4 (H = 11.27;
p ≤ 0.001), DAY_5 (H = 6.39; p ≤ 0.05; DAY_6 (H = 6.74 p ≤ 0.01), DAY_7 (H = 4.79
p ≤ 0.05), Figure 2B). In parallel with increased contralateral paw efficiency, the VAR was
reduced in 6-OHDA_DBS rats (DAY_1 (H = 3. 83; p ≤ 0.01), DAY_2 (H = 4.55; p ≤ 0.01),
DAY_3 (H = 5.03; p ≤ 0.01), DAY_5 (H = 3.21; p ≤ 0.05), DAY_6 (H = 3.30; p ≤ 0.01), DAY_7
(H = 5.52; p ≤ 0.01), Figure 2C), which was substantiated through Kruskal–Wallis testing.
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Figure 2. Effect of DBS-STN on food intake pattern and food intake motivation (Vermicelli handling
test) in rats with early-stage PD. (A) Time to eat a single pasta piece as a determinant of motiva-
tion for food in rats before PD model induction (injection_of_6-OHDA) and after subsequent days
(DAY_1–DAY_7) of DBS-STN (6-OHDA_DBS, n = 6) or SHAM (6-OHDA_SHAM, n = 6) stimulation.
(B,C). Contralateral paw adjustment during pasta eating and Vermicelli asymmetry ratio (VAR) as
a determinant of food intake pattern in the same experimental condition. Data are means ± SEM.
Explanation: * p < 0.05, ** p < 0.01, *** p < 0.001 differences vs. 6_OHDA_SHAM (Kruskal–Wallis test,
post-hoc Dunn).

2.3. DBS-STN Affects Anxiety Level

The Kruskal–Wallis test revealed that rats after DBS-STN have had been significantly
affected in terms of the total number of open-arm entries (H = 31.179, p < 0.001) and
number of closed-arm entries (H = 16.062, p < 0.05) and time spent in each of the arms
(H = 27.537, p < 0.001 and H = 14.173, p < 0.05) in comparison to 6-OHDA_SHAM animals.
The Dunn test confirmed that all 6-OHDA lesioned rats showed an increased level of
anxiety after 6-OHDA injection (DAY_1 and DAY_2) compared to the respective group
baseline conditions (injection of 6-OHDA; Figure 3C). The reduced numbers of entries on
the open arm of EPM in 6-OHDA_SHAM animals (p < 0.05 and p < 0.05) and 6-OHDA_DBS
animals (p < 0.01 and p < 0.01) were confirmed using Dunn post-hoc tests. At the same
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points of the procedure, the time spent on open arms was reduced only in 6-OHDA_DBS
rats (p < 0.01 and p < 0.01, Dunn post-hoc). The anxiolytic-like behaviors were observed
in DAY_7 of DBS_STN and were reflected by a higher number of entries and time spent
in open arms for 6-OHDA_DBS rats in comparison to 6-OHDA_SHAM rats (p < 0.01 and
p < 0.05, Dunn post-hoc) and in comparison to DAY_1 (p < 0.001 and p < 0.05; Dunn post-
hoc, Figure 3B,C). The numbers of entries in closed arms of EPM in DAY_1 and DAY_2 were
affected in both the 6-OHDA and lesioned groups, but only in 6-OHDA_DBS, the means
were statistically significant in comparison to the respective baseline (p < 0.01 and p < 0.01;
Dunn post-hoc, Figure 3E). On the last day of the procedure (DAY_7), 6-OHDA-depleted
rats without DBS-STN chose the closed arms of EPM more often than 6-OHDA_DBS rats
(p < 0.05; Dunn post-hoc, Figure 3E). The time spent in closed arms of EPM was reduced
in both 6-OHDA-depleted groups after 7 days of procedure in comparison to the baseline
(injection of 6-OHDA) (p < 0.001 and p < 0.05; Dunn post-hoc, Figure 3F).
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Figure 3. Effect of DBS-STN on anxiety-like behaviors in rats with early-stage PD. (A,D) EPM test 
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or closed arms of maze before PD model induction (injection_of_6-OHDA) and after one (DAY_1), 
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Figure 3. Effect of DBS-STN on anxiety-like behaviors in rats with early-stage PD. (A,D) EPM
test conditions during exploration of open or closed arms of maze. (B,E) Number of entries into
the open or closed arms of maze before PD model induction (injection_of_6-OHDA) and after
one (DAY_1), two (DAY_2), or seven days (DAY_7) of DBS-STN (6-OHDA_DBS, n = 6) or SHAM
(6-OHDA_SHAM, n = 6). (C,F) The cumulative durations of time spent in open or closed arms of
EPM, measured at this same point of procedure in both groups. Data are means ± SEM. Explanation:
* p < 0.05 differences vs. baseline (injection_of_6-OHDA) for 6_OHDA_SHAM; ## p < 0.01 differences
vs. baseline (injection_of_6-OHDA) for 6_OHDA_DBS; @ p < 0.05, @@ p < 0.01 differences vs.
6-OHDA_SHAM; $ p < 0.05, $$$ p < 0.01 differences vs. DAY_1 of DBS-STN procedure applied in
6-OHDA_DBS (Kruskal–Wallis test and post-hoc Dunn test).
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2.4. DBS-STN Influence on Percentage of cFos+ Cells and 6-OHDA Induced-Changes in the
Percentage of IL-6+ and Double-Labeled Cells (cFos+/IL-6)

The immunofluorescence study showed that the number of IL-6+- and cFos+-containing
cells in SNpc and VTA dopaminergic regions in the hemisphere ipsilateral to a lesion were
affected by DBS-STN applied in the 6-OHDA-induced model of PD (Figure 4A–F). The
Tukey post-hoc test after the one-way ANOVA confirmed elevated percentages of cFos–
positive cells in the VTA (F (3.23) = 3.544; p < 0.05; Figure 4E) and SNpc (F (3.23) = 3.804;
p < 0.05; Figure 4F) located in the ipsilateral hemisphere in comparison to the percent-
ages of cells observed in the same hemisphere of 6-OHDA_SHAM. In the same brain
structures, the percentages of IL-6-positive labeled cells were reduced (F (3.23) = 4.238;
p < 0.05 and F (3.23) = 3.804; p < 0.05; Figure 4E,F, Tukey post-hoc). Interestingly, the per-
centage of double-labeled cells (Fos+/IL-6) after DBS-STN was reduced only in the SNpc
(F (3.23) = 3.566; p < 0.05, Tukey post-hoc).
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tures of nigrostriatal and mesolimbic systems. (A–D) IL-6-immunoreactive (yellow arrows), cFos-
immunoreactive (green arrows), and double-labeled IL-6/Fos-immunoreactive (white arrows indi-
cate cells with colocalization) cells in the VTA and SNpc, localized in the ipsilateral-to-stimulation
brain hemisphere in the representative rats subjected to SHAM (6-OHDA_SHAM) or DBS-STN
(6-OHDA_SHAM). The scale bar is 10 µm. (E,F) Percentages of labeled cells in both brain hemi-
spheres (IPSI, CONTRA) in VTA and SNpc. Data are means ± SEM. Explanation: * p < 0.05, ** p < 0.01,
differences vs. 6_OHDA_SHAM; Tukey HSD after ANOVAs.

2.5. DBS-STN Affects Plasma Corticosterone Concentration and Peripheral Blood
Leukocyte Number

The Mann–Whitney U test showed that the plasma corticosterone concentration was
elevated after DBS-STN applied during neurodegeneration in the nigrostriatal system in
rats (U = 2.282, p < 0.01; Figure 5A). In parallel, the number (U = 2.419, p < 0.05; Figure 5B)
and percentage (U = 2.096, p < 0.05; Figure 5C) of lymphocytes in peripheral blood decreased
in 6-OHDA_DBS rats while other subsets of blood leukocyte numbers did not change.
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3. Discussion

The present study indicated that DBS-STN, when applied simultaneously with the
destruction of dopaminergic cells in the SNpc, resulted in an increase in motivation for
food and had beneficial effects on forelimb motor skills. In addition, anxiolytic effects of
DBS-STN were observed in our study. Interestingly, behavioral effects of DBS-STN occurred
concurrently with an elevated plasma level of corticosterone and a decreased number of
lymphocytes in peripheral blood. In parallel, both the reduced percentage of IL-6-labeled
cells in the nigrostriatal and mesolimbic (SNpc and VTA) systems as well as activated
cFos-labeled cells in these systems were confirmed.

The neurotoxin 6-OHDA administered to the SNpc induced neuronal death mainly in
the anterior part of the SNpc. During the Vermicelli test, atypical behaviors characteristic
of the complete abolition of transmission in the nigrostriatal system were not observed [35].
Moreover, the effect of DBS-STN on the motor efficiency of the forelimbs in the VHT test
was noted. Additionally, the application of DBS-STN for seven consecutive days resulted
in a reduction in the time required to eat a piece of pasta as measured during the test.

Rats with partial 6-OHDA lesions in the nigrostriatal system displayed motiva-
tion deficits in an operant task [36]. SNpc-lesioned animals also displayed apathy- and
depression-like symptoms, including lower preference for food-paired places, increased im-
mobility rates in the forced swim test, and reduced time engaging in social interactions [37].
Partial nigrostriatal denervation has been repeatedly found to spare motor performance
while producing motivational impairments in operant tests [38,39]. The most recent study
conducted by Pasquerea and Turner [40] demonstrated that in monkeys, STN neurons play
a role in feeding behavior and regulate food intake. In mice, the overall activity of STN
neurons was enhanced in response to food consumption depending on the size, valence,
and palatability of food and the physiological status of the animals [41]. Notably, in their
investigation, the optical stimulation of STN neurons decreased food intake whereas the
inhibition of STN neurons enhanced food consumption [41]. In conclusion, the authors
suggest that the physiological mechanism underlying the weight gain following DBS-STN
could involve increasing food intake through the inhibition of STN neurons. Studies by
Winter et al. [42] and Klavir et al. [43] proved that in rodents, DBS-STN improves persevera-
tive and compulsive-like behavior. These results are as per our observations. The DBS-STN
influenced the motivation for food consumption, which was reflected in shortening the
time of eating in the VHT.

The STN is functionally connected with the VTA and hypothalamus [8]. The mecha-
nism of changes in motivation to eat that were observed in our study may have been related
to the STN’s connections with the VTA, a crucial structure of the mesolimbic system. We
found that the percentages of cFos-positive neurons in the VTA and SNpc increased after
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DBS-STN was applied in rats during neurodegeneration compared to sham-stimulated
animals. Surprisingly, the study by Wade and collaborators [44], which assessed cFos
expression in the mesolimbic system, showed a decreased number of cFos-positive cells.
The likely cause for the divergences in the obtained results is probably associated with
experimental conditions. Wade et al. [44] applied bilateral DBS-STN in naïve rats (without
the PD model) while in our study, the partial dopamine-depleted rats and unilateral DBS-
STN were used. In a stable rat model of PD, DBS-STN induces nigrostriatal dopaminergic
plasticity [45]. After one week of stimulation, DBS-STN rats exhibited a 3.5-fold increase in
the number of TH+ neurons within the SNpc, but not in the VTA, compared to sham con-
trols. There was no difference in basal cell activity, as indicated by cFos expression, in both
midbrain dopaminergic systems. In naïve and partially dopamine-depleted rats, DBS-STN
increased striatal dopamine efflux and metabolism [46–48]. In addition, some studies im-
plicated that DBS-STN’s effects on the cFos marker are extremely time-dependent [49–51].
Hence, the outcomes of our study may differ from the aforementioned results.

In addition to the cFos marker, we assessed the percentages of IL-6-labeled cells in
both the VTA and SNpc as indicators of neuroinflammation, which arises following the
injection of 6-hydroxydopamine into the nigrostriatal system [52]. A distinct association
between IL-6 and PD was, for the first time, indicated in the study of Mogi et al. [53].
The immunoreactivity of IL-6 in the SNpc and striatum in PD was prominently higher
than that in the control group. Since then, many studies have been conducted that have
highlighted the diverse role of IL-6 in PD pathophysiology (for revival, see [54]). In our
study, the expression of IL-6-positive cells in the SNpc and VTA was reduced after the
application of DBS-STN in the 6-OHDA model of PD. These results are similar to the
last study of Pinheiro Campos [34]. They found that 6-OHDA-lesioned rats exhibited
increased immunoreactivity of Iba-1 and increased expression of CX3CL1, TNF-α, IL-1β,
IL-6, and IFN-γ. After five sessions of DBS-STN treatment, the inhibition of 6-OHDA-
induced striatal cytokine expression was observed. In an excellent study by Chen and
collaborators [55], similar effects were noted. They found suppressed microglial activation
and nuclear factor-κB expression, a decrease in the levels of the pro-inflammatory cytokines
interleukin (IL)-1β and IL-6, and an increase in the expression of the anti-inflammatory
cytokine IL-4. Additionally, there were downregulations of the IL-1 receptor, extracellular
signal-regulated kinase (ERK), and cleaved-caspase3 in the SNpc in rats within a PD model
subjected to DBS-STN. The anti-inflammatory effect of DBS-STN has been confirmed in our
studies and may promote the increased motivation to eat as a result of the VHT.

The brain cytokine IL-6 supports healthy weight maintenance in a normal physiologi-
cal state [56]. The peripheral level of IL-6 is increased in obesity; however, these changes
do not correspond with IL-6 levels in the brain, which, instead, are reduced [56]. The
interesting study by Mishra [57] indicates that in rats, the infusion of IL-6 to the lateral
parabrachial nucleus (lPBN) and paraventricular hypothalamus (PVN) leads to chow intake
reduction on a diet that is rich in both fats and sugars. Unfortunately, in this project, the
concentration of IL-6 in rat plasma was not measured. However, in our previous studies, we
demonstrated that DBS-STN, when applied in unilaterally completely dopamine-depleted
rats, reduces plasma IL-6 concentrations, likely through a corticosterone-dependent mech-
anism [30]. IL-6 can induce the release of corticosterone either directly, by stimulating
corticotropin-releasing hormone (CRH)-synthesizing neurons in the PVN, or indirectly,
through the stimulation of the production of prostaglandin E2 in perivascular cells [58]. In
addition, IL-6 was shown to act directly on anterior pituitary cells as well as in adrenal
glands, leading to the synthesis of adrenocorticotropic hormone (ACTH) and glucocorti-
coids (GC), respectively [59]. Indeed, in our study, the plasma corticosterone concentration
was increased after DBS-STN stimulation in rats with early models of PD. This effect was
similar to those previously obtained [30] and observed in clinical studies [26]. The anti-
inflammatory properties of corticosteroids are often used for the alleviation of fatigue and
a loss of appetite in patients with advanced cancer [59–62]. During acute stress, appetite
is typically suppressed [63]. Chronic stress generally promotes the wanting, seeking, and
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intake of palatable high-fat and energy-dense foods [64]. Stress, particularly chronic stress,
has been linked with obesity and weight gain in several but not all studies [65,66]. The
effects of chronic stress on food intake and weight may be related to disruptions in the
HPA axis. HPA axis activation results in the secretion of cortisol, a glucocorticoid that stim-
ulates appetite and increases the intake of highly palatable foods [67]. A physiologically
relevant systemic injection of corticosterone induced an increase in the dopamine transient
amplitude and duration in the mesolimbic system [68].

Several lines of evidence indicate that corticosterone is an anxiety level modulator [69].
Furthermore, the anxiolytic effect of corticosterone is concomitant with the prevention of
impairment in social interaction [70]. In rodents, a single administration of a high dose
of corticosterone 1 h after acute and severe stress protects against the anxiogenic and
depressive effects of immobilization [71]. Corticosterone administration after cued fear
conditioning also suppresses fear-potentiated anxiety as measured by the EPM one week
after the administration [72]. Blood sample analysis has revealed that a reduced secretion
of corticosterone under basal conditions predicts greater anxiety and avoidance responses,
correlating with a decreased corticosterone response to subsequent stressors [73]. In our
study, we confirmed that DBS-STN significantly increased the plasma corticosterone levels
in rats with early models of PD. We suggest that an elevated corticosterone level promotes
exploratory behavior on the open arms of the EPM maze. The anxiolytic effect of DBS-STN
in rodent models of PD has been previously described by Faggiani and collaborators [74].
Acute DBS-STN markedly reversed locomotor deficits and anxiety behavior in animals
with bilateral DA depletion.

The influence of stress hormones on peripheral lymphocyte distributions is well docu-
mented (for revival, see [75]). In our study, the elevated level of plasma corticosterone after
DBS-STN in rats resulted in a reduction in both the percentage and number of peripheral
blood lymphocytes. There is growing evidence supporting the role of peripheral immunity
in PD patients, including more rapid PD progression in the presence of a pro-inflammatory
cytokine profile in the blood [76], a Th1-biased CD4+ T cell profile [77,78], and an altered
CD8+ T cell profile, with increased activation and reduced senescence markers [79]. Previ-
ously [30], we demonstrated that DBS-STN, when applied in a model of the advanced stage
of PD in rats, decreased the percentage of B and CD4+ T lymphocytes in peripheral blood.
In this study, the overall effects were similar; unfortunately, the study did not include
lymphocyte phenotyping.

Our study was limited regarding its low number of animals per group due to the very
high experimental effort involved in such cohorts. We tried to minimize this limitation by
using closely matched groups according to their VHT behavior. It is relatively difficult to
train rats in the VHT test towards the constant food intake pattern, so finally, only six rats
per group were chosen for further experiments. Given the limited number of rats in each
group and the deviation of the results from a normal distribution, our primary approach
for statistical analysis involved the use of non-parametric tests such as the Kruskal–Wallis
and Mann–Whitney U tests. Both abovementioned tests enable the statistical evaluation of
results in the absence of heterogeneity of variance to test an experimental hypothesis [80].
Nevertheless, the statistical power of non-parametric tests is typically lower than that of
traditional ones; hence, the substantiation of the acquired results on a larger group of
animals is required.

The other limitation of our study was that DBS-STN is typically applied in advanced
stages of PD to alleviate motor symptoms, and the timeline of our study did not align with
this clinical practice. In our study, the 6-OHDA was administered into the SNpc 24 h prior
to the first DBS-STN session. In consideration of prior studies, the motor symptoms are con-
ventionally evaluated no earlier than 3 weeks after the neurotoxin administration [81–83],
and in rats, the DBS-STN procedure moves on after such behavioral screening [45]. The last
study by Slézia and collaborators showed that mild motor impairments, characterized by a
dissociation of explorative horizontal locomotion on the open field and motor coordination
on the rotarod, are first detectable one week after a striatal 6-OHDA injection [84]. Although



Int. J. Mol. Sci. 2023, 24, 16916 11 of 19

neurodegeneration commences earlier after the administration of 6-OHDA into the SNpc,
stable observable motor symptoms manifest after three weeks [85]. For this reason, the
screening for characteristics of motor deficits (i.e., methamphetamine-induced rotation,
rotarod, cylinder test, open-field test) was not performed in our study.

The main effect of DBS-STN obtained in this study has not been shown so far, and
we suggest that it may be caused by anti-inflammatory properties of stimulation on the
mesolimbic and nigrostriatal systems. In this study, we demonstrated that the application
of DBS-STN during neurodegeneration reduced the percentages of IL-6 labeled cells in the
VTA and SNpc and increased the percentage of cFos-positive (activated) neurons in the
VTA. The peripheral effects of DBS-STN included an increase in corticosterone levels and a
decrease in the number of peripheral blood lymphocytes.

4. Materials and Methods
4.1. Animals

Male Wistar rats (n = 12), weighing 280–300 g at the time of surgery, were used for the
experiments. Animals were kept in standard housing conditions with ad libitum access
to standard rat diet (Labofeed B standard, Morawski) and water. Rats were handled on a
daily basis to minimize stress caused during experimental procedures. Animals were split
into groups:

• 6-OHDA_DBS-group—DBS-STN after intranigral injection of 6-hydroxydopamine
(6-OHDA) to mimic PD (n = 6),

• 6-OHDA_SHAM group—unstimulated rats with intranigral injection of 6-OHDA
(n = 6) as control group.

The procedures applied in both groups are presented in Figure 6. All procedures were
approved by the Local Ethical Committee for the Care and Use of Laboratory Animals in
Bydgoszcz, Poland 36/2015 and were in accordance with the EU Directive 2010/63/EU.
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Figure 6. Schematic diagram of experimental timeline in 6-OHDA_SHAM (n = 6) and 6-OHDA_DBS
(n = 6) groups. Explanations—H: handling; S: stereotactic electrode implantation into right sub-
thalamic nucleus (STN; AP = −3.6 mm; L = −2.6 mm; D = 8.0 mm) and guiding of cannula into
substantia nigra pars compacta (SNpc; AP = −5.3 mm; L = −2.4 mm; D = −7.5 mm) according to [86]
coordinates. RP: recovery period in home cage; VHT-T: training for pasta eating in the presence
of the experimenter prior to Vermicelli handling test; EPM: elevated maze test before PD model
induction and after DBS-STN or SHAM stimulation (1st, 2nd, and 7th day of stimulation); PD: 12 µg
of 6 hydroxydopamine dissolved in 4 µL 0.9% NaCl with ascorbic acid microinfusion into the right
SNpc. DBS-STN procedures were applied daily for seven days, for 1 h each, with continuous electrical
high-frequency stimulation of subthalamic nucleus (current frequency: 130 Hz, pulse width: 60 µs,
stimulation intensity: 70–220 µA) in DBS-STN group; VHT: Vermicelli handling test was performed
every day after DBS-STN or SHAM stimulation (1st to 7th day of stimulation). Blood and brain
collection: blood samples were collected via cardiac puncture.

4.2. Stereotaxic Implantation of Cannulae into the SNpc and Stimulating Electrode into the STN

The rats were anesthetized with 1.5–2.5% isoflurane (airflow: 0.5 L per min) using
an isoflurane pump (Bitmos OXY 6000, Bitmos GmbH Düsseldorf, Düsseldorf, Germany),
and analgetic butorphanol 2.0 mg/kg i.s. (Butomidor, Richter Pharma, Wels, Austria) was
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administered. A stainless-steel guide cannula (22 GA, 9 mm long; Plastic One, Roanoke,
VA, USA) was implanted 1 mm above the SNpc according to the stereotaxic coordinates:
−5.3 mm anterior to the bregma, −2.4 mm lateral to the midline, and 6.4 mm below the
skull surface [86] using stereotactic apparatus (Kopf Instruments, Tujunga, CA, USA).
The cannulae were permanently anchored to four stainless-steel skull screws with dental
acrylic (Duracryl, Spofa Dental a.s., Jičín, Czech Republic). After cannula implantation, the
monopolar stainless-steel electrode (0.2 mm diameter, Plastic One, Eschweiler, Germany)
in the right STN was implanted. The stereotaxic coordinates from STN were as follows: AP
−3.6 mm; L −2.6 mm; D −8.0 mm [86]. Rats postoperatively received antibiotic solution
(Penicillin procaine, Polfa, Poland). After surgery, the animals were transferred to a warm
room, where they stayed until regaining consciousness. The behavioral testsinjection and
stimulation procedures started after a 21 day recovery period from the surgery (Figure 6).

4.3. Unilateral Model of Partial Nigral Depletion

During the infusion procedure, each animal was held gently by hand. The 6-OHDA
(6-hydroxydopamine HCl, Sigma–Aldrich, Poznań, Poland) was injected into the right
SNpc in a volume of 2 µL (1.5 µg/µL dissolved in 0.9% NaCl containing 0.1% ascorbic
acid). Injection was performed using a microinfusion pump (Legato 100—Series Syringe
Pump, KD SCIENTIFIC, Holliston, MA, USA) and a Hamilton syringe (10 µL) connected
via polyethylene tube to an injection cannula (28 GA, 10 mm long, Plastic One, USA), which
was placed into the guide cannula. Injection rate was 0.5 µL/min, and the cannula was
left in place for additional 5 min after injection to allow for diffusion into tissue. To protect
noradrenergic neurons from damage, animals received an intraperitoneal injection of the
noradrenaline reuptake inhibitor desipramine (25 mg/kg, Sigma-Aldrich, Poznań, Poland)
30 min prior to neurotoxin injection [30].

4.4. Deep-Brain Stimulation of Subthalamic Nucleus

After a three-week recovery period, rats were habituated to DBS-STN conditions for
three consecutive days. Animals were taken from their home cages and placed in transpar-
ent plexiglas testing cylinders (gauge: 30 cm; height: 40 cm) and were allowed to explore
the boxes for 30 min. DBS-STN was performed on the next day after 6-OHDA injection
in accordance with method that we described previously [30]. Within the first 5 min of
screening stimulation, the behavioral effects of increasing the stimulation intensity from
0 to 150 µA were examined in individual animals. During this procedure, contralateral
torsion of the head or dyskinetic movements of the contralateral forelimb were observed. A
range of current intensity was set at 70–220 µA, values just below provocation of dyskinetic
movements. The following day, current intensity was applied continuously for 1 h through-
out the DBS-STN procedure. The stimulation duration and parameters were determined
based on the method described by Salin et al. [13]. Stimuli were delivered by a stimulator
unit (215/T, Hugo Sachs Elektronik D7806 March F.R., Breisgau, Germany) that provided
rectangular pulses. The frequency was set at 130 Hz and the pulse width at 60 µs all over
the stimulation period for all the stimulated animals. Sham-stimulated controls underwent
the same procedure excluding current flow.

4.5. Elevated Plus Maze (EPM)

This test was performed immediately before 6-OHDA microinjection (as baseline), one
day after 6-OHDA administration, and on 7th day of HFS-STN stimulation (immediately
after end of HFS-STN procedure) (see Figure 6). The EPM consisted of two open arms
(10 cm in width and 50 cm in length) and two enclosed arms (10 cm in width, 50 cm in
length and 40 cm in height), elevated 50 cm above the floor. The EPM was cleaned with
70% ethanol before the start of every trial. After disconnecting the stimulation cable, the rat
was put on the center square of the EPM. Rat was placed in the maze, always in the same
position (heading towards the open end of the maze). The animal was allowed to explore
the EPM for 5 min and movement was recorded using a video camera (Ikegami, Ikegami
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Electronics, Neuss, Germany). A video camera was positioned approximately 250 cm over
the center of the maze and connected to a video-tracking digitizing device (EthoVision
XT10, Noldus, Wageningen, The Netherlands). Registered and analyzed reactions included
time spent in open/closed arms and in the center of the maze and number of entries into
open/closed arms and to the center of the maze, as we previously described [87]. In the
results section, we have presented number of entries into open/closed arms of maze and
time spent in each one of the arms.

4.6. Vermicelli Handling Tests (VHT)

VHT testing began three weeks after surgery. Procedures for the VHT were based on
those developed by Allred et al. [35]. To allow familiarization with the testing environment
and reduce the possibility of neophobia to the vermicelli, rats were given three acclima-
tization sessions with seven strips of 7 cm vermicelli, which were inserted into the cage
after the rat in question had finished eating the previous piece (Pastifico Fabianelli S.p.A,
Castiglion Fiorentino, Italy). In the final acclimatization session, all rats consumed all pasta
strips within 20 min. The testing conditions were the same in both groups. The VHT was
conducted in stimulation room. After end of DBS-STN or sham procedure, rat was imme-
diately placed in his home cage and the test was started. High-definition video cameras
(Canon IXUS 145) were placed on either side of the cage to capture the rats’ movements
within the cage. The vermicelli was marked at 1 cm intervals with food coloring to increase
visualization of pasta movement. For both groups, testing was completed before 6-OHDA
injection, one day after, and daily during seven days of DBS-STN procedure. Videos were
scored by an experimenter blind to the subjects’ lesion condition and testing timepoint.
The initial scoring was based on the criteria described by Allred et al. [35]. Videos were
viewed in high resolution at slow speed (×0.5). The first three video-recorded pieces of
vermicelli consumed by each rat were scored; when a piece was not scorable due to being
eaten outside the field of view of the cameras, the next viewable piece was scored. The
adjustments of each paw were analyzed and reported as the mean number per trial per
session (three pasta pieces per session). The total number of adjustments of each paw
was counted per trial (TO) together with the number of touches of paw as grasp (OD).
Then, the Vermicelli asymmetry ratio (VAR) was calculated according to the formula below:
VAR = (OD/TO) × 100. In addition to VAR, the time of manipulation was analyzed and
reported as the mean time of eating one vermicelli piece per session.

4.7. Blood Collection

Blood samples were collected via heart puncture under 2.5% isoflurane anesthesia
(airflow: 0.5 L per min) using an isoflurane pump (Bitmos OXY 6000, Bitmos GmbH,
Düsseldorf, Germany) between 09.00 and 10.00 AM and 1 h after the DBS-STN or sham
stimulation. The blood samples were divided into two tubes. One of tubes was centrifuged
(10 min, 3000× g) to obtain fresh plasma without platelets and cells. The supernatant was
transferred to Eppendorf tubes, quickly frozen at −70 ◦C, and stored to analyze plasma
CORT. The second part of the sample was tested immediately using automated hematology
analyzer (Cell Dyn 3700). Peripheral blood hematological parameters including the total
white cell (WBC) number and percentages of lymphocytes (LYM), neutrophils (NEU), and
monocytes (MON) were determined in the EDTA_K2 blood as we previously described [30].

4.8. Plasma Corticosterone Determination

Plasma corticosterone concentrations were measured via radioimmunoassay using a
commercially available kit (Rat corticosterone 125I RIA Kit, MP Biomedicals, Santa Ana, CA,
USA) and Wizard 1470 gamma counter (Pharmacia-LKB, Helsinki, Finland) in accordance
with previously used method [30,87,88]. The minimal detectable dose in this system was
7.7 ng/mL.
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4.9. Brain Tissue Preparation

One hour after the end of DBS-STN or sham stimulation, rats were euthanized with
Morbital (2 mL/kg) and transcardially perfused (via the left ventricle) with 200 mL of
0.9% saline followed by 200 mL of 4% paraformaldehyde in 0.1 M phosphate-buffered
saline (PBS).

The brains were removed quickly, postfixed, cryoprotected in a 30% sucrose solution
in PBS, and then frozen and kept at −70 ◦C until cryostat sectioning (CM 1850, Leica
Biosystems, Wetzlar, Germany). Coronal 20 µm thick sections containing the VTA and
SNpc (5.04 mm posterior to the bregma) were chosen for the double immunofluorescence
method for IL-6 and cFos protein detection. For tyrosine hydroxylase and Nissl staining,
the coronal 30 µm thick tissue sections were cut at the level of the 1.92 mm anterior to the
bregma (according to [86]) containing CPu, −5.04 mm anterior to the bregma containing
SNpc, and −3.72 mm anterior to the bregma containing STN (for Nissl staining).

4.10. Immunohistochemistry for TH-Expression

To determine the loss of dopaminergic neurons in the SNpc, we used immunohisto-
chemical staining of tyrosine hydroxylase (TH) as previously described (for details, see [89]).
Briefly, prior to all the immunohistochemical stages, the sections were rinsed several times
in PBS, then incubated in 0.3% hydrogen peroxide in PBS for 10 min at room temperature
and blocked for 45 min with a solution of 1% Bovine Serum Albumin (BSA) (BioChemika,
Fluka, Buchs, Switzerland) and 0.3% Triton X-100 in PBS at room temperature for the effec-
tive reduction of nonspecific binding. Next, the sections were incubated with a polyclonal
rabbit anti-TH antibody (Novus Biologicals, Centennial, CO, USA, NB300-109) at a dilution
of 1:1500 (diluted in PBS containing 0.3% TritonX-100 and 3% Normal Goat Serum (NGS,
Sigma-Aldrich, Poznań, Poland)) at 4 ◦C for 3 days. For light visualization, after a 30 min
incubation with biotinylated goat anti-rabbit IgG (a dilution of 1:200; Vector, Charlotte, NC,
USA) in PBS containing 0.02% sodium azide and 0.3% Triton X-100 at room temperature,
the sections were rinsed with PBS + Triton and incubated with avidin–biotin peroxidase
complex (ABC) (a dilution of 1:100 in PBS; Vector Elite Kit, Burlingame, CA, USA) for 1 h at
room temperature. Washed in PBS, the sections were incubated in 40 mL Tris buffer (pH
7.6) (BioChemika, Fluka) containing 30 mg of diaminobenzidine tetrahydrochloride (DAB)
(Sigma-Aldrich, Poznań, Poland). After a few minutes, the sections were incubated with
30% hydrogen peroxide (H2O2) (solution 90 µL H2O2/10 mL PBS, Eurochem BGD, Tarnow,
Poland) and allowed to react for 15–20 min. The reaction was controlled and stopped in
Tris buffer when the TH-immunoreactive cells turned brown. The tissue sections were
placed on slides, air dried, and, after dehydration with ethanol, mounted with DPX (DPX
Mountant for histology, Sigma-Aldrich, Poznań, Poland).

4.11. Immunofluorescence for IL-6 and cFos Protein Colocalization

Immunofluorescence processing for IL-6 and cFos protein colocalization (IL-6/cFos+
cells) was performed in accordance with the method that we previously described [90]
with some modifications. After unmasking the antigen in 0.01 M citrate buffer (pH 6.0,
74 ◦C for 40 min), the sections were blocked in 5% bovine serum albumin (BSA) in PBS
with 0.02% Triton X for 2 h. Then sections were incubated for 48 h at 4 ◦C in a cocktail of
primary antibodies containing rabbit anti IL-6 IgG (Abcam, Anti-IL-6 antibody EPR23819-
11; dilution 1:300) and mouse anti-cFos IgG (Santa Cruz Biotechnology sc-166940, dilution
1:300) diluted in PBS with 0.2% Triton X. Following multiple rinses in 0.05 M Tris buffer
(pH 7.4), the sections were incubated for 2 h in a cocktail of secondary antibodies conjugated
with fluorochromes containing Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen, Carlsbad,
CA, USA, A11034, dilution 1:400) and Alexa Fluor 546 goat anti-mouse IgG (Invitrogen,
A11030, dilution 1:400). Dilutions of primary and secondary antibodies were established
according to the producers’ recommendations and our preliminary methodological trials.
The test for the specificity of an antibody involved (negative control) was performed by
omitting the primary antibodies. All stages of immunofluorescence were identical, as
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described previously, except for the first incubation: sections were placed in PBS with 0.2%
Triton X for 48 h without primary antibodies.

4.12. Microscopic Analysis

The counting of labeled cells’ TH+ cell bodies was performed in three sections of the
SNpc (−5.04 mm from Bregma). For TH+ cell body counting, a light microscope, Leica
DC300 (magnification 10 × 10), and Leica Qwin Software (Serial No. 4358) were used.
Then, the mean value of TH+ neurons from each animal was expressed as a percentage of
cell loss on the lesioned side compared to non-lesioned side.

Immunofluorescence staining sections were viewed at 20 × 10 magnification by an
investigator blinded to the assignment of treatment groups. Slices were examined under
a Zeiss Axio Scope.A1 fluorescent microscope with camera (AxioCam) and AxioVision
Rel.4.8 software. To quantify immunoreactivity, square test area (0.01 mm2) was chosen
randomly from representative sections within each tested brain area. The borders of the
brain structures were determined based on the Paxinos and Watson atlas [25]. In every test
area, the number of colocalized IL-6/cFos positive cells (IL-6/cFos+) and the numbers of
only IL-6 positive (IL-6+) and only cFos-positive (cFos+) cells were counted. The percentage
of double IL-6/cFos immunofluorescent cells (IL-6/cFos+) as part of all immunofluorescent
(only IL-6-positive + only cFos-positive + IL-6/cFos double-labeled) cells was estimated.

To determine the location of the stimulating electrode, we used the Nissl staining. The
selected sections were placed on slides, stained with Cresyl violet (Sigma-Aldrich, Poznań,
Poland), dehydrated, and finally mounted with DPX (Sigma-Aldrich, Poznań, Poland).
Animals showing a misplaced electrode were not included in the experimental groups
presented above.

4.13. Statistical Analysis

The statistical analyses were performed using IBM SPSS Statistics 27.0 and the level of
significance was set at p ≤ 0.05. The statistical evaluation of the mean TH+ cells in the SNpc,
cFos+, and IL-6+ were assessed using one-way ANOVA. The main factor was experimental
group (DBS or SHAM). Additionally in each group, a division into two brain hemispheres
was applied (contra- and ipsilateral to the stimulation), which resulted in four independent
groups of outcomes. The differences in the means were further analyzed with Tukey’s HSD
post-hoc. The behavioral data were analyzed using Kruskal–Wallis non-parametric tests
and post-hoc Dunn tests. The hematological data and data from plasma corticosterone
levels were analyzed using U-Man Whitney tests. All data were expressed as means ± SEM.
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consequence of medial site subthalamic stimulation in Parkinson’s disease. Psychoneuroendocrinology 2015, 52, 302–310. [CrossRef]
[PubMed]

27. Steinhardt, J.; Münte, T.F.; Schmid, S.M.; Wilms, B.; Brüggemann, N. A systematic review of body mass gain after deep brain
stimulation of the subthalamic nucleus in patients with Parkinson’s disease. Obes. Rev. 2020, 21, e12955. [CrossRef] [PubMed]

28. Tran, K.N.; Nguyen, N.P.K.; Nguyen, L.T.H.; Shin, H.M.; Yang, I.J. Screening for Neuroprotective and Rapid Antidepressant-like
Effects of 20 Essential Oils. Biomedicines 2023, 11, 1248. [CrossRef]

29. Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al.
Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [CrossRef] [PubMed]

30. Grembecka, B.; Glac, W.; Listowska, M.; Jerzemowska, G.; Plucińska, K.; Majkutewicz, I.; Badtke, P.; Wrona, D. Subthalamic Deep
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88. Wrona, D.; Majkutewicz, I.; Świątek, G.; Dunacka, J.; Grembecka, B.; Glac, W. Dimethyl Fumarate as the Peripheral Blood
Inflammatory Mediators Inhibitor in Prevention of Streptozotocin-Induced Neuroinflammation in Aged Rats. J. Inflamm. Res.
2022, 15, 33–52. [CrossRef]
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