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Abstract: The purinergic system has a dual role: the maintenance of energy balance and signaling
within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these
functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of
catabolic pathways. This review details the association between the purinergic system and muscle
and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors
in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in
the management of sarcopenia.
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1. Management of Energy Distribution in the Body

Energy homeostasis is defined as the regulation of energy utilization for essential
physiological processes and the production of compounds. It revolves around maintaining
a balance between energy intake and expenditure to sustain bodily functions and weight [1].
Energy expenditure refers to the amount of energy an individual uses to maintain essential
bodily functions such as breathing, circulation, and digestion [2].

The energy generated by the metabolism is primarily derived from glucose. Glucose
is converted to ATP as immediate energy needed for many essential processes in organisms
and cells [3,4]. Following hydrolysis of its phosphate groups, ATP releases its storage
energy and provides energy for cells [5,6]. The efficiency of ATP formation is only about
43%, and the remaining 57% is lost as heat in the body’s metabolism [7].

The relationship between body composition and energy metabolism has been the
subject of research for many years. Keesey and Hirvonen demonstrated that energy
requirements increase proportionally with bodyweight in rats [8]. Even at rest, there is a
baseline energy consumption associated with organs with high metabolic rates [9]. The rate
of energy consumption for each organ depends on its individual metabolism and size, and
this dynamic process can vary with growth, the onset of diseases, and nutritional status. It
is known that under resting conditions, skeletal muscle, heart, liver, brain, kidneys, and
adipose tissue exhibit the highest basal metabolic rates [9].

During an illness, the basal metabolic rate can vary dramatically depending on the
type, severity, and stage of the disease [10]. In untreated inflammatory conditions, the
immune system is the primary energy-consuming organ, accounting for 10–15% of the
total energy expenditure [11]. Chronic, low-grade systemic inflammation, characterized by
increased pro-inflammatory cytokines, such as obesity, cachexia, or exercise, also results in
significant energy expenditure. In exercise, interleukin 6 (IL-6) myokine acts as an energy
sensor, triggering lipolysis and ATP generation as muscle glycogen is consumed during
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contraction [12,13]. On the other hand, IL-6 produced by macrophages in obesity and aging
causes an increase in lipolysis and high levels of free fatty acids [11].

Caloric restriction is the most commonly employed method for weight loss. While it
can yield initial results, prolonged caloric restriction often leads to diminished effective-
ness in achieving weight loss. During caloric restriction, the first organs to reduce their
metabolism are skeletal muscle and adipose tissue, whereas the remaining organs and
tissues tend to be largely preserved [3].

2. The Double Edge of the Purinergic System

In 1929, Albert Szent-Gyorgyi and Alan Drury proved that purines and pyrimidines
are involved in extracellular signaling [4]. However, it was not until 1972 when Geoffrey
Burnstock showed that ATP was a transmitter in non-adrenergic and non-cholinergic in-
hibitory nerves that purinergic signaling was proposed [14]. Adenosine and ATP play a
dual role within the purinergic system. They mediate both energy storage and release
through ATP and their phosphate hydrolysis to ADP and AMP, thereby meeting cellu-
lar energy demands and facilitating nucleotide assembly. Additionally, they serve as
signaling molecules [15].

The purinergic system mediates cell signaling through the activation of selective recep-
tors (named purinergic receptors) and secondary pathways for the control of physiological
actions (such as cell proliferation/differentiation) [16]. Purinergic receptors are divided into
two groups (based on agonist selectivity), namely P1 adenosine receptors and P2 nucleotide
receptors. Two subfamilies of P2 receptors (ionotropic P2X receptors and metabotropic P2Y
receptors) [16,17] and four different P1 receptor sub-types (A1R, A2AR, A2BR, and A3R)
have been characterized [18]. P1 receptors are activated at different adenosine concentra-
tions, where A1R and A2AR are high-affinity receptors (<1 µM adenosine) and A2BR and
A3R are low-affinity receptors (<10 µM adenosine) [19].

The sequential hydrolysis of extracellular ATP to adenosine is catalyzed by ectonu-
cleotidases (CD39, CD73). Once adenosine is produced, it is released via cell membrane
equilibrative (ENT) and concentrative (CNT) nucleoside transporters. Adenosine release
via ENT keeps intracellular and extracellular adenosine levels in balance, while CNT fa-
vors intracellular adenosine levels [20]. Extracellular adenosine can either be converted
to inosine by adenosine deaminase [21] or it can activate adenosine receptors. Moreover,
intracellular adenosine can sequentially be converted to AMP, ADP, and ATP via phospho-
rylation or into uric acid as a final metabolite [17].

All adenosine receptors belong to the GPCR family of seven transmembrane receptors
linked to calcium mobilization, either promoting (A2AR/A2BR) or inhibiting (A1R/A3R)
the generation of cyclic AMP (cAMP) [22]. A1R and A3R are negatively coupled to adeny-
late cyclase, while A2AR and A2BR are positively coupled to adenylate cyclase [23]. The
inhibition of cAMP due to A1R and A3R stimulation has been shown to promote the
contraction of smooth muscle cells via MAPK and ERK1/2 activation [24]. Increased cAMP
levels lead to the activation of protein kinase A (PKA) and the exchange protein directly
activated by cAMP (EPAC) [25]. PKA and EPAC may perform individual, combination,
or opposite effects [25,26]. Studies in cancer and neuronal models have shown that PKA
activation promotes proliferation, while EPAC activation promotes differentiation [26].
Furthermore, EPAC is able to promote osteoclast formation, and PKA counteracts this
effect [27,28]. In contrast, in vitro smooth muscle models have shown that both PKA and
EPAC promote muscle proliferation [29]. Therefore, the role of these cAMP receptors is
tissue dependent. The activation of the cAMP response element binding protein (CREB) is
triggered by the phosphorylation of PKA in the nucleus. CREB phosphorylation has been
related to the activation of pro-anabolic genes [30] and the reduction in pro-atrophic genes
in muscle [31].

ATP is released to the extracellular space via connexins (e.g., connexin-43) and pan-
nexin channels (Panx-1, Panx-2, Panx-3) [15,17,23]. In addition, some experiments show
that connexins are not clearly expressed in adult muscles. Consequently, the process of re-
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leasing ATP to the extracellular space might be carried out by pannexin1 hemichannels [32].
The physiological effects of elevated extracellular ATP are mediated by P2X and P2Y recep-
tors. P2X receptors are ligand-gated ion channels, while P2Y receptors are members of the
G protein-coupled receptor (GPCR) family. There are seven sub-types of P2X receptor (1–7)
and eight sub-types of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11–14), all of which are
selective for ATP, ADP, UTP, and UDP [4,17,33].

Moreover, the purinergic system exerts its role to fulfill cellular energy demands via
modulation of the AMP-activated protein kinase (AMPK)-mediated mechanism. AMPK is
a ubiquitously distributed serine/threonine protein kinase that regulates cellular energy
homeostasis, acting as a central energy sensor and maintaining energy stores by fine-tuning
anabolic and catabolic pathways through the activation of pathways that generate ATP
(e.g., glucose transport and glycolysis) and the deactivation of energy-consuming anabolic
pathways (e.g., inhibition of fatty acid synthesis) [34]. AMPK is activated via the phospho-
rylation of tyrosine residue 172 with the increase in the intracellular AMP–ATP ratio [35].
Moreover, creatine kinase (CK) mediates an energetic role in the purinergic system. ATP
generated via mitochondrial oxidative phosphorylation is used to catalyze the conversion
of creatine (Cr) to phosphocreatine (PCr) [36]. Then, PCr is released into the cytosol and
activates CK to regenerate the ATP consumed during muscle expenditure [36]. Elevated
levels of PCr in the cytosol are related to inactive AMPK due to high ATP concentra-
tions [37]. Therefore, AMPK and CK act as mediators of energy control in the purinergic
system [38]. Alterations in the energy balance between anabolism and catabolism generate
a poor metabolic rate, which leads to wasting conditions, such as aging [39].

3. Sarcopenia

Sarcopenia is a generalized and progressive loss of skeletal muscle mass and function,
concomitant with an increased risk of adverse outcomes such as falls, metabolic dysfunction,
disability, poor quality of life, and death [40,41]. After the age of 30, an individual loses
between 3 and 8% of muscular mass every decade, with this rate increasing after the age of
60 [42]. This decrease in muscle mass produces a decline in strength and muscular function,
with qualitative changes in muscular tissue due to a reduction in motor units affecting both
nervous and muscular fibers, especially fiber type II, and, therefore, altering the contractile
activity [43,44].

Sarcopenia can be categorized as primary or secondary sarcopenia. Primary sarcope-
nia is associated with the aging process, seen in the elderly, and secondary sarcopenia
is associated with one or more of the following causes that could promote the loss of
muscle mass: sedentary lifestyle, immobilization, malnutrition, diabetes, obesity, cancer,
and other acute or chronic inflammatory diseases (e.g., rheumatoid sarcopenia) [45,46].
The European Working Group on Sarcopenia in Older People (EWGSOP) described the
following criteria for the diagnosis of sarcopenia: low skeletal muscle mass (diagnosed
via DXA or anthropometry) and either low muscle performance (walking speed, muscle
power) or low muscle strength (e.g., handgrip) [47,48].

In addition, when considering the duration, sarcopenia can be described as acute
sarcopenia when lasting less than 6 months and chronic sarcopenia when the duration
is longer than 6 months, and it is associated with other chronic conditions, including
aging [49] (Figure 1).

Although sarcopenia has a severe impact on the quality of life of elderly people and
society, the pathophysiological mechanisms underlying this disease have not been eluci-
dated due to the intricacy of the network of interactions and causes (chronic inflammation,
muscle protein turnover alterations, neuromuscular junction dysfunction, and hormone
levels, among others) [50]. Muscle loss in both primary and secondary sarcopenia appears
to be driven by different mechanisms, involving changes in biochemical molecules in dif-
ferent signaling pathways [51,52]. Sarcopenia in the elderly is primarily caused by anabolic
resistance induced by myostatin [51], while secondary sarcopenia appears to be activated
by catabolic processes [52]. In this regard, the severity of secondary sarcopenia observed
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in chronic debilitating conditions and inflammatory diseases varies with the intensity of
systemic inflammation [53].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Canonical pathways in obesity, aging, and chronic inflammatory diseases that generate 
sarcopenia. In obesity and aging, the increase in pro-inflammatory cytokines and CRP in the serum 
generates high levels of MCP-1, which binds to the CCLR2 receptor in muscle and adipose cells. In 
adipose tissue, this causes the inhibition of adiponectin and leptin expression. The inhibition causes 
a negative cross-talk between muscle and the inhibition of AMPK, fatty acid oxidation, and glucose 
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in the serum produces an increase in myostatin. Myostatin inhibits IGF1/Akt via AMPK activation. 
This causes a reduction in glucose uptake and an increase in atrogene expression underlying pro-
tein degradation and muscle atrophy. The inhibition of glucose uptake in obesity, aging, and 
chronic inflammatory disorders generates insulin resistance and muscle loss due to the failure to 
restore muscle cell energy demands. Red cross indicates blockade of the expression of AMPK. Red 
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Figure 1. Canonical pathways in obesity, aging, and chronic inflammatory diseases that generate
sarcopenia. In obesity and aging, the increase in pro-inflammatory cytokines and CRP in the serum
generates high levels of MCP-1, which binds to the CCLR2 receptor in muscle and adipose cells. In
adipose tissue, this causes the inhibition of adiponectin and leptin expression. The inhibition causes a
negative cross-talk between muscle and the inhibition of AMPK, fatty acid oxidation, and glucose
uptake. In chronic inflammatory disorders and aging, the presence of pro-inflammatory molecules
in the serum produces an increase in myostatin. Myostatin inhibits IGF1/Akt via AMPK activation.
This causes a reduction in glucose uptake and an increase in atrogene expression underlying protein
degradation and muscle atrophy. The inhibition of glucose uptake in obesity, aging, and chronic
inflammatory disorders generates insulin resistance and muscle loss due to the failure to restore
muscle cell energy demands. Red cross indicates blockade of the expression of AMPK. Red arrows
inform of up or down regulation of which is indicated next to it.

Low-grade chronic inflammation, produced by slight elevations in circulating pro-
inflammatory mediators (such as C-reactive protein (CRP), tumor necrosis factor (TNF),
and IL-6), is among the causes of inducing sarcopenia. Catabolic inflammatory processes
are involved in the development of sarcopenia, especially at an advanced age, even in
healthy individuals [54]. This low-grade chronic inflammation presents immune cell
senescence, alterations in T cell function and the extracellular matrix, foci of chronic
infection, and an increased fat mass [55]. Recent data from sarcopenic elderly individuals
suggest that circulating TNF and IL-6 are significantly elevated, and these circulating
levels are correlated with and increased risk of muscle strength loss [56,57]. Under normal
circumstances, CRP, TNF, and IL-6 maintain the balance between catabolism and synthetic
metabolism in skeletal muscles, but higher levels of inflammatory markers are associated
with physical decline, resulting in increased catabolism, with an inhibition of protein
synthesis, and damage in muscle integrity and function, resulting in sarcopenia [58,59].
On the other hand, IL-6 has been proven to act as a sensor of muscle damage, promoting
the activation and migration of T cells via gap junction proteins, such as connexins and
pannexins [60]. Anti-inflammatory cytokines (IL-4, IL-10, and IL-15) are able to antagonize
pro-inflammatory cytokine activity to reduce muscle atrophy and retard sarcopenia [61].
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It has been observed that IL-4 improves glucose metabolism in muscle cells and acts as
a myoblast recruitment factor, promoting myogenesis and muscle regeneration [62,63]
(Figure 1).

Frailty is a multi-system syndrome associated with lower resilience against stressors
and an increased risk of adverse health outcomes [64,65]. Both low muscle strength or
function and weight loss are phenotypic characteristics of the frailty syndrome [66], reflect-
ing that frailty and sarcopenia are linked, although they are distinct, as not all frailty in
patients is related to skeletal muscle mass or function [64]. Both conditions share the same
pathophysiology and clinical outcomes, with sarcopenia being considered a component
of frailty, but not vice versa [67]. Therefore, diagnostic criteria are essential for the recog-
nition of each condition in clinical practice. According to Fried et al., individuals can be
categorized as non-frail (0 Fried criteria present), pre-frail or intermediate (1–2 criteria), or
frail (≥3 criteria) [64], with these criteria observing the following factors: low gait speed
and low grip strength, weight loss, self-reported low physical activity, and exhaustion [66].
Sarcopenia is then considered the physical component of frailty. As described above, it is
clear that the degree and chronicity of inflammation are responsible for the effect on muscle
mass, strength, and quality. Relatively mild inflammation levels that occur in normal aging
or obesity may not be sufficient to observe the effects on muscle mass or strength lost but
affect metabolic quality and, therefore, contribute to sarcopenia development [68]. In a
more severe systemic inflammation scenario, as seen in frailty, pro-inflammatory cytokines
contribute to muscle mass and strength loss [69]. Exogenous TNF administration to mice
induced anorexia and muscle loss, the upregulation of leptin, activation of NFκB (nuclear
factor kappa B), atrophy and activation of the ubiquitin–proteasome pathway, and sup-
pression of the AKT serine–threonine protein kinase and mammalian target of rapamycin
(Akt-mTOR) pathway [70]. Moreover, neutrophils and NET (neutrophil extracellular traps)
generation are impaired with age [71]. Higher neutrophil counts have been associated with
frailty and low levels of physical activity, and higher white cell count in healthy individuals
can predict frailty over the years [72]. The neutrophil chemotactic ability is reduced with
age, inducing an inefficient migration, higher tissue damage, and secondary systemic
inflammation, suggesting that neutrophils play a key role in sarcopenia and frailty [67,73].

Rheumatoid arthritis (RA) is the most common autoimmune disease, with 1% of the
world population affected [74]. Apart from articular manifestations, RA has several sys-
temic comorbidities, including rheumatoid cachexia (RC), a condition that impacts function
and quality of life and affects approximately 11% to 26% of RA patients worldwide [51,75].
It is characterized by a reduced skeletal muscle mass with either stable or increased fat
mass, degradation of balance and disruption of muscle protein synthesis, decreased muscle
mass, strength, and function, together with total energy expenditure, insulin resistance,
increased basal metabolic rate, and inflammation [51]. The mechanism involved is not fully
understood but includes cytokine-driven hypermetabolism produced by TNF, IL-1β, and
IL-6 (associated with resting energy expenditure and sarcopenia in RA patients), as well as
the limitation of physical activity and insulin resistance [51,76]. Novel approaches indicate
that insulin resistance is produced in RA patients due to the increase in energy expenditure
via high levels of IL-6 in the serum [77].

Employing an antigen-induced arthritis animal model, we have previously demon-
strated that rabbits developed a rheumatoid cachexia-like secondary sarcopenia with
increased muscle protein breakdown and a compensatory anabolic response [51]. Rheuma-
toid rabbits showed weight loss, decreased muscle size, and an upregulation of atrogenes
in muscles, along with a decrease in myostatin expression and a reduction in the sig-
nal transducer and activator of transcription 3 (p-STAT-3) levels. This response suggests
that the inflamed muscle could contribute to secondary sarcopenia through an autocrine
mechanism of atrophy triggered by pro-inflammatory mediators [51]. In an adjuvant-
induced arthritis model, the authors have observed a 20% decrease in skeletal muscle and
muscle weight [78]. In a collagen-induced arthritis (CIA) rat model, Hartog et al. have
described reduced weight and spontaneous locomotion. Additionally, a 31% reduction in
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the gastrocnemius relative weight has also been demonstrated 21 days after the induction
of arthritis [78,79]. Numerous studies have monitored alterations in body composition
parameters and, consequently, the development of rheumatoid cachexia (RC). This was
carried out through the implementation of specific drug treatments or a combination of
therapeutic approaches. Disease-modifying anti-rheumatic drugs (DMARDs) play a crucial
role in managing disease activity by impeding inflammatory signaling pathways, such as
those involving TNF and IL-6. Methotrexate (MTX) monotherapy is a first line DMARD
agent for RA. It is unknown whether MTX monotherapy is beneficial for RC, but some
authors have demonstrated that MTX in combination with different drugs may protect
against the development of RC [75]. The use of Janus kinase (JAK) inhibitors has also
been explored. The IL-6/JAK/STAT pathway is key for muscle fiber development and
regeneration. Multiple studies have demonstrated that the JAK/STAT pathway controls the
myogenic development of adult satellite cells [80]. Furthermore, the JAK/STAT pathway
induced the expression of atrogenes Murf1 and Atrogin1 in muscle alterations derived
from RA [81]. In an antigen-induced arthritis rabbit model of RA, the inhibition of the
JAK/STAT pathway with tofacitinib prevents the expression of the atrogenes and myogenic
alterations in muscles [81].

Sarcopenia is sometimes accompanied by changes in adipose tissue. The modulation
of myokine and adipokine levels contributes to the cross-talk between muscle and adipose
tissue [82]. Secretions of these cytokines regulate anabolic and catabolic responses in mus-
cles. These cytokines are altered with high adiposity and age-related muscle wasting [82].
Myostatin and irisin are the main myokines involved in the muscle–fat cross-talk [83,84].
Myostatin is a human growth factor that produces a downregulation of protein synthesis in
muscles via Smad2/3 and inhibits insulin-like growth factor-1 (IGF-1)/Akt via (forkhead
box transcription factors) FOXO; moreover, it inhibits glucose transporter protein type-4
(GLUT4) and AMPK [85,86]. This pathway produces a reduction in glucose uptake and
leads to muscle atrophy. With aging, myostatin expression increases with a strong corre-
lation to decreased strength [87]. Clinical studies have shown that patients with obesity
have an increased presence of myostatin in the serum [88]. Therefore, there is a relationship
between fat and myostatin expression that has not been elucidated (Figure 1).

In contrast, irisin correlates with increased strength and muscle maintenance via
Akt/mTor [89]. The activation of this pathway has been demonstrated in a C2C12 model, in
which irisin treatment was observed to contribute to the development of muscle hypertro-
phy [90,91]. In addition, a decrease in irisin expression was found in patients with severe
obesity [92]. Therefore, there is a relationship that has not been elucidated between fat
and the expression of both myostatin and irisin. On the other hand, among the adipokines
involved in the muscle–fat relationship are leptin and adiponectin. Leptin is known to be
a pro-inflammatory adipokine. It is closely related to the amount of body fat and acts on
muscle via the modulation of AMPK levels [93]. Old obese rats show resistance to leptin.
On the other hand, the caloric restriction of these models increases responsiveness to leptin
(especially in aging) [94]. In humans, serum leptin levels were positively correlated with
body mass index (BMI) and negatively correlated with skeletal muscle index (SMI) [95].
This indicates that leptin is a good marker to indicate the risk of sarcopenic obesity [95].

Adiponectin is a key regulator synthesized by adipose tissue involved during glucose
and fatty acid metabolism. Adiponectin promotes the ability of insulin to stimulate glucose
uptake through increased GLUT4 translocation to the plasma membrane. C2C12 myoblast
cells transfected with adiponectin showed reduced lipid accumulation [96]. The role of
adiponectin in sarcopenia is unclear, but clinical studies have shown that the level of
adiponectin is significantly lower in sarcopenic patients [97]. However, a parallel clinical
study observed that strength was negatively correlated with adiponectin expression [98].

The principal function of monocyte chemoattractant protein-1 (MCP-1/CCL2) is to
regulate monocyte/macrophage migration and infiltration [99]. Increased adipose tissue
has been shown to correlate with increased MCP-1, which promotes macrophage migration
into the adipose tissue and the synthesis of other cytokines, such as IL-6 and TNF [100–102].
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Cytokine expression has been studied in patients with cachexia, and only MCP-1 was
found to be increased, indicating a major role in muscle loss [103]. This was confirmed in a
clinical study, where sarcopenic patients showed increased serum MCP-1 expression [104].
Therefore, MCP-1 favors a pro-inflammatory state in adipose and muscle tissues, leading
to the development of sarcopenia (Figure 1).

4. P2 Receptors in Muscle and Fat in Sarcopenia

The presence of P2 purinergic receptors has been proven in muscles using immuno-
chemistry. P2Y11 and P2X1 are more expressed in the cytosol of muscle fibers. In addition,
P2X1 is expressed in the plasma membrane, as well as P2Y4. In contrast, other receptors,
such as P2Y1, P2Y2, P2Y12, and P2X4, are not expressed in muscle cells [105]. In sar-
colemma, receptors P2X1 and P2Y4 are visible. P2X1 is found inside vesicles in sarcolemma
and P2Y4 does not have these vesicles. The P2Y11 receptor is expressed in type I fibers,
while it is less expressed in type 2 fibers and almost absent in sarcolemma [105].

P2 receptors are correlated with muscle blood flow. Experiments with the continuous
infusion of ATP have been shown to stimulate muscle blood flow, allowing us to prove
that P2 receptors are involved during physical exercise in muscles. This was proven using
a P2Y1R blocker. It has been shown that upon blocking this receptor, the potentiation
(contraction) in the EDL muscle was prevented, whereas it was not prevented in the soleus.
This information suggests that ATP is able to activate P2Y1 receptors in fast muscles [32].
On the other hand, the use of P2 receptor inhibitors led to a decrease in muscle blood
flow [106]. In addition, the use of ATP increases the abundance of NA+–K+ pumps in
muscles. This means that P2 receptors are involved in muscle excitation during intense
exercise [107].

Additionally, chronic inflammatory diseases that generate muscle dystrophies produce
an increase in the amount of ATP in muscle tissue [107]. This ATP activates the P2X7
receptor, which has been correlated with muscle fiber atrophy [108]. Experiments in a
co-culture with osteoclast and muscle cells showed that the mechanical stimulation of
osteoclast releases ATP in the medium. This ATP initiates a cross-talk with muscles,
inducing the P2–PI3K–Akt-mTOR pathway in muscles [109]. On the other hand, knockout
models of P2X7 showed a reduction in the expression of CCL2 and IL6 in WAT, but
no alterations were observed in BAT thermogenesis [110]. In adipocytes, it has been
observed that the expression of P2X7 is related to an inhibition of SIRT3/5 genes involved
in browning, favoring the adipogenesis process [111]. Therefore, it is possible that the
expression of P2X7 generates muscle atrophy, increases adipogenesis, and reduces BAT,
contributing to the development of obese sarcopenia in chronic inflammation.

The action of P2Y receptors is controversial. P2Y1 and P2Y2 receptors improve mus-
cle regeneration, which is blocked when these receptors are inhibited [112]. However,
in skeletal muscle fibroblasts, P2Y2 receptors promote fibrosis and muscle atrophy via
Akt/ERK/PKC activation [113]. Therefore, the role of P2Y receptors in the development of
sarcopenia remains unknown.

5. Adenosine Receptors in Muscles and Fat and Their Role in Sarcopenia

The expression and distribution of adenosine receptors in skeletal muscle may change
depending on the species, and within the species, it may depend on the muscle state, type
of muscle fiber, and location within the fiber. In vitro, in the C2C12 myoblastic line, A1R
was first characterized, correlating its expression with the cellular enhancement of glucose
uptake [114]. A subsequent study analyzed the gene expression of all receptors in C2C12,
in which A2BR was the most highly expressed. A1R, A2AR, and A3R were expressed to
a lesser extent compared to A2BR [115]. In mouse tibialis, the expression of A1R, A2AR,
and A2BR was observed via a polymerase chain reaction (PCR) [115,116]. Moreover, in
rats, the expression of these receptors was also confirmed via Western blotting [117]. In
human skeletal muscle, the expression of A2AR and A2BR in the plasma membrane and
cytosol and the absence of A1R were verified via immunohistochemistry. A2AR is equally
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distributed in type 1 and 2 fibers and is slightly more expressed in the cytoplasm than in
the membrane of type 1 fibers. In contrast, A2BR has major expression in the cytoplasm of
type 2 and the plasma membrane of type 1 fibers. Therefore, according to the expression of
the receptors in the cell membrane in comparison with cytosol, A2AR is responsible for
glucose transport across the cell membrane in type 2 fibers and A2BR in type 1 fibers [118].
When blocking adenosine receptors or using adenosine deaminase to remove extracellular
adenosine, there is a great decrease in glucose transport in skeletal muscle fibers, which
confirms their role in glucose metabolism [119].

The activation of PKA and AMPK depends on the expression of adenosine A2A and
A2B receptors [120,121]. The upregulation of A2A and A2B promotes the formation of
cyclic AMP from ATP by adenylate cyclase [122]. This cAMP activates both PKA and ex-
change proteins directly activated by cyclic AMP (EPAC) proteins. Next, cAMP is reduced
to AMP by phosphodiesterase [123]. This increases the intracellular AMP concentration
and thus the AMP/ATP ratio, similar to events during muscle contraction [124]. This ratio
activates AMPK via phosphorylation and allows for the restoration of ATP levels from
AMP [125]. The activation of both PKA and AMPK has been observed to promote CREB
expression [121,126,127]. CREB promotes the expression of genes involved in mitochon-
drial biogenesis (PGC-1 and TFAM) and muscle regeneration, preventing alterations in
muscles [128,129] (Figure 2).

Adenosine receptors differ in expression within adipose tissue depending on whether
they are located in white (WAT) or brown (BAT) adipose tissue. Vassaux et. al. analyzed
the mRNA expression of adenosine receptors in the white adipocytes and pre-adipocytes
extracted from rat epididymal white fat pad. A2R expression was characterized in pre-
adipocytes but not adipocytes, and A1R was only in adipocytes [130,131]. However,
in studies on mesenchymal cell differentiation to adipocytes, it has been observed that
both A1R and A2AR are more expressed with the passage of days of adipocyte differ-
entiation [132]. On the other hand, in murine BAT, the expression of the four adenosine
receptors was demonstrated [115]. There is some controversy because some studies suggest
that A2AR is the most abundant adenosine receptor in human and murine BAT [133,134].
However, subsequent studies have shown a predominant role of A2BR in murine BAT [115].
This may be due to the heterodimerization of A2AR–A2BR, in which the expression of
both is required for activation [115]. Methotrexate treatment in RA increases the adenosine
available to adenosine receptors, decreases joint inflammation, and induces the browning
of adipose tissue with a high expression of genes that induce thermogenesis in RA [135].

In a first study, treatment with a cAMP analog (db-cAMP) was associated with an
extended average lifespan and the maintenance of muscle mass, thus preventing the
occurrence of sarcopenic events in mice [136]. The production of cAMP in skeletal muscle is
primarily dependent on A2BR [115,137]. An A2BR−/− (skeletal muscle-specific knockout)
murine model led to a loss of muscle mass and strength and increased senescence markers
and mitochondrial alteration [115]. In addition, in skeletal muscle explants from patients,
a higher expression of A2BR was correlated with a lower expression of the senescence
marker p21 [115]. In primary myocytes isolated from these same patients and treated with
an A2BR agonist, an increase in differentiation and proliferation markers was observed,
as well as an improvement in the expression of mitochondrial oxidative phosphorylation
markers [115].

Because the development of sarcopenia is accompanied by an increase in fat in what is
known as obese sarcopenia, it is important to establish the role of adenosine receptors in
both WAT and BAT [138,139]. Adenosine is secreted from adipocytes, activating the A1R,
which is involved in multiple functions. In isolated rat adipocytes, increased A1R expres-
sion has been correlated with increased lipolysis [140]. On the other hand, increased A2BR
expression appears to inhibit lipogenesis and adipogenesis [141]. In human and murine
brown adipocytes, adenosine activates its receptors at nanomolar levels. The inhibition
of A2AR, both pharmacologically and in a murine A2Aknockout model, has shown that
A2A is an essential contributor to the process of thermogenesis [133]. Subsequently, it was
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proven in the A2BR murine knockout model that the activation of this receptor with an
agonist increased the thermogenesis process and decreased the induction of obesity via
diet [115]. The aforementioned evidence seems to lead to the conclusion that both A2AR
and A2BR (as heterodymers) make an essential contribution to preventing the onset of the
sarcopenic process and the development of obesity correlated with muscle loss [115].
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Figure 2. Purinergic system in the management of muscle homeostasis. Fatty acids and glucose
are used to produce cell energy via ATP and are recovered via adenosine. ATP and adenosine
maintain a balance in the cytosol and extracellular space via pannexin and an equilibrative nucleoside
transporter, respectively. In muscles, the A2B receptor (the most expressed of the adenosine receptors
in skeletal muscle (SKM)) forms a heterodymer with the A2A receptor to exert its function. These
receptors activate cAMP/PKA/CREB, which increases the mitochondrial biogenesis to maintain
energy balance in the muscle cell. On the other hand, muscle contraction uses available ATP. This
produces an increase in the AMP/ATP ratio and activates AMPK, which is able to restore ATP levels
in the cell. Therefore, A2BR, cAMP, and AMPK are essential molecules in the control of muscle
homeostasis and future pharmacological targets in the treatment of sarcopenia.

6. Therapeutic Possibilities: Adenosine in Tissue Regeneration

The main role of adenosine is to maintain cellular homeostasis and it is of special inter-
est as a target in the treatment of many diseases and disorders [6]. Clinical treatment with
adenosine is not very effective due to its short lifetime and receptor non-specificity [142].
However, several approaches have been developed for the therapeutic use of the purinergic
system, including the oral or intravenous administration of ATP, the use of AR agonists, the
use of adenosine analogs or drugs that modulate cellular levels of adenosine and increase
its selectivity toward an AR, and the use of a cAMP analog [143].

In relation to muscle disorders, some therapeutic strategies correlated with the puriner-
gic system were investigated.
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6.1. A2B Signaling via AMPK/cAMP and Mitochondrial ADP Sensibility Counteracts
Aging Sarcopenia

AMPK activation has been shown to inhibit the progression of aging via FoxO, mTOR,
CREB, and sirtuin (SIRT) 1 signaling pathways [144]. AMPK activation has been corre-
lated with increased levels of cAMP via Ca2+/calmodulin-dependent protein kinase II
(CaMKII) [145,146]. Because the increase in cAMP in muscles primarily depends on A2BR,
an A2BR agonist could be a good therapeutic agent to counteract muscle loss in aging [115].
In addition, adenosine has been shown to prevent age-related loss of muscle contrac-
tion [147,148]. In a parallel study, CaMKII has been shown to decrease muscular fatigue
by reducing calcium release during intense exercise [149]. CaMKII also promotes ATP
signaling via P2R and pannexin, contributing to the migration of dendritic cells during mus-
cular damage [150]. Furthermore, the commitment of myoblasts to the myogenic lineage
relies on an increase in intracellular free calcium levels. Potential cell membrane pathways
implicated in these calcium increases include P2 receptors and connexin and/or pannexin
hemichannels, recognized for their ability to allow for the passage of calcium [151].

A downregulation of A2BR in aging was observed. Studies on the A2BR receptor
agonist BAY 60-6583 in rats have demonstrated an improvement in muscle contraction [147].
The increase in cAMP as a molecule to counteract sarcopenia has not only been proven by
A2BR stimulation but also by using a cAMP analog (db-cAMP) [136]. Muscle cAMP levels
decreased in 24-month-old mice compared to 6-month-old mice, concomitant with a loss
of motor activity that was recovered with db-cAMP treatment [136]. On the other hand,
AMPK activation depends on the intracellular AMP/ATP ratio, and an increase in AMP
levels using a pharmacological modulator is a potential strategy to address sarcopenia in
aging [152]. Alternatively, ADP sensitivity has been shown to be reduced in old mouse
gastrocnemius, with an increased production of reactive oxygen species (ROS) [153]. This
increase in ROS leads to an age-associated increase in H2O2 release [154]. Insulin use has
been shown to contribute to increased ADP sensitivity in mitochondria [155]. As such,
insulin may be a good stimulating agent of mitochondrial biogenesis via ADP in aging.

Recently, it was reported that the pharmacological increase in extracellular adenosine
by dipyridamole in the myoblastic line C3C12 leads to an increase in A2B adenosine receptor
expression [127]. Subsequently, this leads to cAMP–PKA–CREB increase and AMPK
activation [127]. Furthermore, the pharmacological stimulation of cAMP and AMPK by
dipyridamole is able to prevent alterations in muscle myogenesis in vitro [127]. Therefore,
a new therapeutic via the treatment of sarcopenia is introduced with the use of drugs
that modulate adenosine levels in muscles (e.g., dipyridamole) [127]. On the other hand,
the use of tenofovir in the C2C12 line inhibits ATP release in the extracellular space [127].
This produces a decrease in extracellular adenosine levels, with a reduced expression in
the adenosine A2B receptor [127]. The decrease in the adenosine 2B receptor promotes
alterations in muscle myogenesis with the inhibition of PKA/AMPK pathways [127].

6.2. cAMP Treatment to Prevent Muscle Atrophy

Muscle atrophy is characterized by alterations in protein metabolism, leading to a loss
of muscle function [156]. AMP deaminase 3 controls the content of intracellular adenine
nucleotides. AMP deaminase 3 has been shown to be increased in a murine skeletal muscle
atrophy model [157]. The overexpression of AMP deaminase 3 is related toa decrease
in ATP and an increase in inosine monophosphate (IMP) levels [157]. Furthermore, the
upregulation of AMP deaminase 3 produces an inhibition of AMPK phosphorylation and
decreases in the mitochondrial protein synthesis rate [157]. In this case, the stimulation of
AMP production by an analog may be a good therapeutic approach to avoid muscle wasting
in atrophic muscles. In addition, AMPK activity is decreased in the extensor digitorum
longus of atrophic rats [158]. Therefore, implementing a cAMP analog, as mentioned
previously, could increase the intracellular AMP/ATP ratio, thereby preventing AMPK
inactivation [152].
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6.3. ATP as a Therapy for Cancer-Associated Cachexia

Cancer-associated cachexia occurs in half of all cancer patients [159]. The level of
muscle loss varies with the progression and type of tumor; therefore, maintaining muscle
mass is essential to improve the quality of life and treatment efficacy [160]. Patients
with gastric cancer have a lower content of ATP, ADP, AMP, and adenosine [161]. This
decrease in purines and pyrimidines is not due to a lack of nutrients. This was proven
in the muscle of a cancer cachexia model in pair-fed rodents, in which tumor resection
increased ATP levels [162,163]. Intravenous ATP has already been safely tested in lung
cancer patients. Both in phase I and phase II studies, ATP has shown promising results in
muscle maintenance and nutritional status [164]. In murine models, it has been observed
that intraperitoneal ATP inhibits weight loss in animals with advanced tumor growth
independent of its antineoplastic action [165]. On the other hand, prolonged oral use of
ATP (0 to 5000 mg/day) has been shown to lead to a decrease in ATP plasma levels in
biodistribution studies, which decreases its therapeutic potential [166].

6.4. Adenosine Modulators as a Treatment for Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is the most common, severe, and widely
studied type of dystrophy in humans [167]. In patients with DMD, ATP and total adenosine
are severely reduced in muscles (±50%). This decrease could be due to mitochondrial
dysfunctions and an increased degradation of adenosine that is secreted by urine [168].
Treatments were carried out to prevent the loss of adenosine levels by adenylosuccinic
acid (which increases cellular adenosine levels) or by inhibiting purine breakdown with
allopurinol, leading to improved muscle strength and reduced lipid deposition [169].

7. Conclusions

In conclusion, the purinergic system is largely involved in the control of sarcopenia
and muscle homeostasis. Adenosine A2A–A2B receptors play a fundamental role in muscle
maintenance. Therapeutically, the activation of these receptors could prevent myogenic
alterations and muscle loss in sarcopenia associated with aging and other pathologies.
Nevertheless, more research is necessary to find new therapeutic strategies for secondary
sarcopenia, including rheumatoid cachexia and other disorders.

8. Patents

A.M., M.M.-B., M.F., R.L., and G.H.-B. have filed a patent on the use of dipyridamole
as a novel therapy for muscular myogenesis disorders and inflammatory arthritis.
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