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Abstract: Prostate cancer stands as one of the most prevalent malignancies afflicting men worldwide.
The tumor microenvironment plays a pivotal role in tumor progression, comprising various cell types
including endothelial cells, tumor-associated fibroblasts, and macrophages. Recent accumulating
evidence underscores the indispensable contribution of endothelial cells to prostate cancer develop-
ment. Both endothelial cells and tumor cells release a multitude of factors that instigate angiogenesis,
metastasis, and even drug resistance in prostate cancer. These factors serve as regulators within the
tumor microenvironment and represent potential therapeutic targets for managing prostate cancer.
In this review, we provide an overview of the crucial functions of endothelial cells in angiogene-
sis, metastasis, and drug resistance, and their prospective therapeutic applications in combating
this disease.
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1. Introduction

Prostate cancer (PCa) ranks among the most common malignancies affecting men in
Western countries [1]. The primary driver behind PCa development and progression is
androgens, making androgen deprivation therapy (ADT) a paramount treatment strategy.
ADT encompasses both surgical and pharmacological castration [2]. Despite the initial
robust response to treatment due to testosterone level suppression, most patients experience
cancer progression within two years, diagnosed as castration-resistant prostate cancer
(CRPC) [3]. Recent reports suggest that combining ADT with chemotherapy drugs can
enhance survival rates in PCa [4]. However, there remains a subset of patients resistant to
chemotherapy [5].

The tumor microenvironment (TME) plays a pivotal role in tumor progression, and
is primarily comprised of vascular endothelial cells, cancer-associated fibroblasts (CAFs),
tumor-associated macrophages (TAMs), and soluble factors [6]. Previous studies have
established a link between TME-derived cytokines and chemokines and PCa pathogene-
sis [7]. CAFs also wield a significant influence on PCa progression, participating in tumor
angiogenesis, metastatic spread, and treatment resistance [8]. Additionally, factors secreted
by TAMs have been shown to contribute to proliferation, metastasis, and resistance to
therapy [9]. Consequently, the TME in PCa plays a crucial role in tumor angiogenesis,
metastasis, and resistance to chemotherapy.

Endothelial cells play a pivotal role in tumor angiogenesis and metastasis [10]. An-
giogenesis stands as a fundamental process in tumor progression, where newly formed
blood vessels supply vital oxygen and nutrients to the tumor, while simultaneously aiding
in waste and carbon dioxide removal, thereby facilitating tumor growth [11]. Furthermore,
endothelial cells contribute to tumor metastasis through the secretion of various soluble
factors [12]. Equally significant is their involvement in tumor drug resistance [13,14]. As a
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result, the tumor microenvironment, with particular emphasis on endothelial cells, emerges
as a crucial factor in tumor development.

In parallel, tumor cells themselves release an array of soluble factors, including vascu-
lar endothelial growth factor (VEGF), which serves a dual role. On the one hand, VEGF
promotes the proliferation of vascular endothelial cells, and on the other, it induces tumor
cell metastasis by creating a premetastatic niche [15–17]. This intricate interplay between
endothelial cells and tumor cells actively drives tumor progression.

This review endeavors to delve into the biological significance of endothelial cells
within the tumor microenvironment (TME) of prostate cancer (PCa). It centers on the
intricate interplay between PCa cells and endothelial cells, specifically elucidating the
mechanisms through which endothelial cells contribute to PCa angiogenesis, metastasis,
and drug resistance. Additionally, our review examines the potential utility of endothelial
cells in prognostication and the treatment of PCa.

2. Multiple Factors Derived from Tumor Cells Increase the Proliferation of Endothelial Cells

Tumor angiogenesis is a complex process distinct from angiogenesis in normal tissues.
In the latter, blood vessels typically form through sprouting angiogenesis [18], whereas
tumor angiogenesis employs multiple mechanisms, including intussusceptive angiogen-
esis [19], vessel co-option [20], vascular mimicry [21], and sprouting angiogenesis [22].
Angiogenesis results from a delicate balance between pro-angiogenic and anti-angiogenic
factors, such as VEGF and thrombospondin-1 (TSP-1). When the pro-angiogenic factors
in the stroma outweigh the anti-angiogenic ones, tumor blood vessels begin to form [23].
In normal vascular structures, a layer of pericytes envelops the outer layer of the vascular
endothelium. However, in the tumor endothelium, pericyte coverage is significantly re-
duced, leading to a decreased endothelial cell-to-pericyte ratio. This imbalance between
endothelial cell proliferation and insufficient pericyte coverage results in vessel wall in-
stability, subsequently causing tumor bleeding [24]. Maintaining vascular integrity is also
dependent on VE-cadherin, which plays a pivotal role. Decreased VE-cadherin levels or the
loss of its function disrupts endothelial cell barrier integrity, elevating vascular permeability
and facilitating the blood-borne metastasis of tumor cells [25]. Tumor cells often prolifer-
ate at a faster rate than tumor angiogenesis can support, resulting in the compression of
intra-tumor vessels. Coupled with increased endothelial permeability in tumor vessels,
this phenomenon leads to hypoxia in certain tumor regions, subsequently causing tumor
hemorrhage and impacting drug delivery [26]. In summary, the tumor vasculature exhibits
marked differences from its normal counterpart, characterized by heightened permeability
and inadequate perfusion.

Angiogenesis stands as a critical biological process in the growth and metastasis of
prostate cancer (PCa) and has emerged as an appealing therapeutic target for castration-
resistant prostate cancer (CRPC) [27]. Research has indicated that PSMA-positive mem-
branes secreted by PCa cells possess the ability to induce a pro-angiogenic state in vascular
endothelial cells [28]. Meanwhile, the transcription factor Forkhead Box A1 (FOXA1) plays a
role in promoting PCa angiogenesis by triggering the expression of various pro-angiogenic
factors, including EGF and endothelin-1 [29]. Among the first identified angiogenic growth
factors, fibroblast growth factor (FGF) acts on PCa cell FGFR, leading to FRS2α phosphory-
lation. This, in turn, enhances VEGF-A production through the HIF1α and cJUN pathways,
thereby promoting tumor angiogenesis within the microenvironment [30,31].

Tumor-derived transient receptor potential channels (TRP) play a role in various
aspects of tumor progression [32]. TRPA1, for instance, facilitates vascular sprouting by
regulating Ca2+ [33]. Additionally, bradykinin (BK), functioning as an autocrine growth
factor, stimulates tumor growth and angiogenesis by prompting the release of FGF and
VEGF [34]. Binding to B2 receptors, BK activates Akt, mTOR, NF-κB, and AP-1, ultimately
promoting VEGF expression and facilitating angiogenesis in PCa cells [35].

The transition from E-cadherin to N-cadherin, known as “cadherin switching,” pro-
motes the epithelial-to-mesenchymal transition (EMT) process and heightens tumor malig-
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nancy [36]. N-cadherin also plays a role in PCa angiogenesis by regulating the expression
of monocyte chemoattractant protein-1 (MCP-1) through the PI3k/Akt signaling pathway
in PCa cells [37].

The deletion of the chromosome-helix-DNA binding protein 1 (CHD1) gene is one of
the most common mutations in PCa [38]. CDH1 deletion increases hypoxia-inducible factor
1α (HIF1α) expression through the downregulation of prolyl hydroxylase domain protein
2 (PHD2), consequently promoting angiogenesis in PCa [39]. HIF1α is a pivotal transcrip-
tion factor in the tumor angiogenesis process, with the lactylation of HIF1α enhancing the
transcription of KIAA1199, further promoting angiogenesis in PCa [40].

N-Myc is involved in the conversion of CRPC to neuroendocrine PCa [41] and also
promotes angiogenesis in PCa by mediating TEM8 upregulation [42]. The overexpression of
the murine double minute 2 (MDM2) gene often leads to p53 inactivation, which promotes
tumorigenesis [43]. MDM2 can also enhance PCa angiogenesis by upregulating TNF-α,
MMP9, and CXCL10 [44].

Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated
in PCa, and its overexpression leads to the degradation of asymmetric dimethylarginine
(ADMA), consequently increasing NO levels. Elevated NO levels, in turn, promote the
expression of certain vascular growth factors (e.g., VEGF, HIF1α), ultimately driving tumor
angiogenesis [45].

Chronic stress, known to be associated with beta-adrenergic signaling and cardiac
hypertrophy [46], is also linked to tumor progression. Beta-adrenergic receptors activate
CREB and bind to the promoter of histone deacetylase 2 (HDAC2), inducing its expression.
The overexpression of HDAC2, in turn, suppresses TSP-1 expression, thereby promoting
PCa angiogenesis [47].

Krüppel-like factor 5 (KLF5) also plays a regulatory role in angiogenesis. The dele-
tion of KLF5 enhances tumor angiogenesis by dampening PI3K/AKT signaling in PTEN-
deficient PCa cells, leading to an accumulation of HIF1α [48].

In conclusion, genes encoded in PCa cells stimulate the proliferation of vascular
endothelial cells, consequently driving angiogenesis. The effects of these coding genes on
endothelial cells in PCa are illustrated in Figure 1.

Simultaneously, the significance of non-coding RNAs in tumor angiogenesis cannot be
understated, with miRNAs playing a particularly pivotal role. MiRNAs are a class of short
non-coding RNA molecules that regulate target gene expression by specifically binding to
the 3′-untranslated region (3′-UTR) of mRNA [49]. However, miRNA expression tends to
be downregulated in PCa patients.

For instance, miR-130b can target the TNF-α gene and activate the NF-κB signaling
pathway, thereby reducing VEGFA expression and inhibiting angiogenesis in PCa [50].
MiR-185 can target the 3′-UTR of ALK4, inhibiting the nodal/ALK4 signaling pathway and
consequently diminishing PCa angiogenesis [51]. MiR-129-5P inhibits angiogenesis in PCa
by targeting ZIZ2, which in turn inhibits the Wnt/β-catenin signaling pathway [52]. MiR-
195 hinders angiogenesis in PCa by targeting PRR11 expression [53]. MiR-218 suppresses
angiogenesis in PCa by targeting the mTOR component RICTOR, leading to a decrease in
VEGFA expression [54]. MiR-212 modulates cellular autophagy by targeting SIRT1, thereby
restraining PCa angiogenesis [55]. MiR-155 reduces arsenic trioxide-induced angiogenesis
in PCa by inhibiting the TGF β/SMAD signaling pathway [56].

In summary, non-coding RNAs, particularly miRNAs, exert inhibitory effects on
angiogenesis in PCa by regulating coding genes. However, the decreased expression of
miRNAs in PCa patients can lead to opposing results. The influence of non-coding genes
on endothelial cells in PCa is detailed in Table 1.
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Figure 1. Effect of coding genes on endothelial cells in PCa cells (By Figdraw): FGF: fibroblast
growth factor; VEGF: vascular endothelial growth factor; TRPA: tumor-derived transient receptor
potential channels A; CHD1: chromosome-helix-DNA binding protein 1; PHD2: prolyl hydroxy-
lase domain protein 2; FOXA1: forkhead box A1; FRS2α: fibroblast growth factor receptor sub-
strate 2 α; BK: Bradykinin; HIF1α: hypoxia inducible factor 1 α; MDM2: murine double minute
2; DDAH1: dimethylarginine dimethylaminohydrolase-1; ADMA: asymmetric dimethylarginine;
HDAC2: histone deacetylase 2; KLF5: Krüppel-like factor 5; MCP1: monocyte chemoattractant
protein-1. The crosstalk between endothelial cells and tumor cells promotes angiogenesis in PCa. FGF
activates endothelial cells through FGF/FGFR/FRS2/cJUN(/HIF1α). BK triggers angiogenesis via
BK/PI3K/AKT/mTOR/AP-1(/NF-κB)/VEGF. KLF5 deletion boosts HIF1α via PI3K/AKT. DDAH1
inhibits ADAM, raising NO, enhancing VEGF and HIF1α. MDM2 generates TNF-α, MMP9, CXCL10
for angiogenesis. FOXA1 drives EFG, endothelin-1 for vessel formation. CHD1 deletion increases
HIF1α by suppressing PHD2. Lactonization of HIF1α boosts KIAA1199 for angiogenesis. N-Myc
upregulates TEM8 for angiogenesis. Chronic stress via β-adrenergic receptors inhibits TSP-1 through
CREB/HDAC2 for angiogenesis. TRPA1 regulates Ca2+ in angiogenesis. N-cadherin heightens
MCP-1 via PI3K/AKT for angiogenesis.

Table 1. Effect of non-coding genes on endothelial cells in PCa cells.

MiRNAs Expression in
PCa Gens and Pathways Effect on

Angiogenesis Reference

MiR-130b Down TNF-α/NF-κB/VEGFA promotion [50]
MiR-185 Down nodal/ALK4 promotion [51]

MiR-129-5P Down ZIZ2 promotion [52]
MiR-195 Down PRR11 promotion [53]
MiR-218 Down RICTOR promotion [54]
MiR-212 Down SIRT1 promotion [55]
MiR-155 Down TGF β/SMAD promotion [56]

3. Interaction between Endothelial Cells and Tumor Cells Induces Metastasis of PCa

Tumor metastasis is a multifaceted process that encompasses several pivotal stages.
Initially, tumor cells engage in ECM remodeling, which consists of components such as
collagen and elastin. They achieve this by secreting enzymes that enhance their invasive
and metastatic capabilities. Notably, matrix metalloproteinases (MMPs) participate in ECM
degradation through a process called endocytosis. During endocytosis, the cells frequently
undergo epithelial–mesenchymal transition (EMT), a cellular phenomenon marked by the
transition from epithelial characteristics to mesenchymal features [57]. EMT is orchestrated
by various factors, including tumor cells proliferating in proximity to endothelial and
inflammatory cells. These cells release chemokines that attract immune cells and stimulate
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angiogenesis, collectively contributing to EMT formation [58]. Subsequently, cancer cells
infiltrate the bloodstream, embarking on their journey to distant organs, with integrins and
E-cadherin playing indispensable roles in facilitating distant metastasis [59,60]. Once in the
bloodstream, tumor cells encounter an array of challenges. Circulating tumor cells (CTCs)
can disseminate either individually or as clusters. They must contend with issues such as
the stiffening of the ECM and the shear forces present in the bloodstream, which collectively
constrain their potential for distant metastasis [61]. However, various blood components
interact with CTCs to promote distant metastasis. For example, when CTCs interact
with platelets, they form a protective coating around cancer cells that aids in evading
detection by immune cells [62]. Anoikis resistance among CTCs plays a pivotal role in the
distant metastasis of tumor cells. Anoikis is a programmed cell death response triggered
when disruptions in the adhesive function of the extracellular matrix occur. Typically,
tumor cells manage to evade adhesion-induced cell death, which further propels tumor
metastasis [63]. The extravasation of CTCs usually transpires in organs with high vascular
permeability, such as the liver and bone [64]. It represents the final step in distant tumor
metastasis. Remarkably, metastatic tumor cells often release factors that act at the distant
site before metastasis occurs, effectively promoting the spread of tumor cells. This critical
process is known as the premetastatic niche (PMN). The PMN plays a pivotal role in tumor
metastasis by inducing normal cells in the target organ to recruit the necessary cells. This
aids in creating a favorable microenvironment conducive to tumor cell colonization [16].
Similarly, CTCs undergo the process of mesenchymal–to-epithelial transition (MET) before
establishing themselves within the parenchyma of distant tissues [65]. To summarize,
tumor metastasis is an intricate and multifaceted journey. A more profound comprehension
of this process is fundamental for advancing translational treatments.

Distant metastases stand as the primary cause of mortality in PCa patients. Extensive
research has underscored the pivotal role of endothelial cells in PCa metastasis. Single-cell
sequencing results have further illuminated that activated endothelial cells (aECs) con-
tribute significantly to PCa cell invasion and metastasis [66]. Recent studies have unveiled
the influence of CCL5, a chemokine secreted by PCa endothelial cells, on PCa metasta-
sis. CCL5 inhibits androgen receptor (AR) expression in PCa cells, thereby promoting
autophagy. Increased autophagy accelerates the disassembly of focal adhesion proteins,
ultimately facilitating PCa metastasis [67].

The activation of purinergic P2Y2 receptors (P2Y2R) has been associated with cell adhe-
sion [68]. The endothelial cell activation of P2Y2R induces the secretion of intercellular cell
adhesion factor-1 (ICAM-1) and vascular cell adhesion factor-1 (VCAM-1), which enhances
the adhesion of tumor cells to endothelial cells, thus mediating PCa metastasis [69].

Additionally, research has shown that the deletion of AKT1 in endothelial cells results
in β-catenin phosphorylation and a reduced expression of tight junction proteins such as
claudin-5, ZO-1, and ZO-2, promoting PCa metastasis [70].

Connexin (Cx)43 has been found to promote diapedesis in cancer cells. PCa cells with
high Cx expression induce an upregulation of endothelial Cx43 through the activation of
the intercellular Cx43/ERK1/2/Cx43 axis, facilitating diapedesis in PCa cells [71].

Integrins, on the other hand, inhibit tumor progression. α3β1 integrin, for instance,
restrains tumor progression through the α3β1/Abl kinase/Hippo pathway, with reduced
α3β1 integrin levels having the opposite effect [72]. Similarly, CXCL16-CXCR6 interactions
in PCa promote Ezrin activation and αvβ3 integrin aggregation, leading to MMP expression
in PCa cells and thereby enhancing cell migration, invasion, and adhesion to endothelial
cells [73].

Furthermore, interleukins play a crucial role in promoting PCa migration. Endothelial
cell-secreted interleukin-6 (IL-6) reduces AR expression in PCa cells, subsequently activat-
ing the TGF-β/MMP-9 pathway, ultimately leading to PCa metastasis [74]. Insulin and
insulin-like growth factor 1 (IGF1) also promote PCa cell adhesion to endothelial cells by
enhancing IL-17-induced VCAM-1 expression in endothelial cells [75].
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Selectins, particularly E-selectin, have been identified as significant players in tumor
metastasis, controlling PCa rolling, adhesion, and metastatic processes [76,77]. Additionally,
CCL-2 has been shown to promote tumorigenesis and metastasis in various solid tumors,
including PCa [78]. Stat5 has been implicated in reducing E-cadherin expression on the
surface of tumor cells, thereby promoting PCa metastasis in both in vivo and in vitro
settings [79].

As mentioned above, anoikis resistance plays a role in promoting tumor metastasis [63].
Various mechanisms are linked to the development of anoikis resistance. Syndecan-4
(SDC4) is closely associated with anoikis resistance. Interfering with syndecan-4 expres-
sion using miRNA significantly diminishes the adhesion and invasive abilities of tumor
cells [80,81]. Moreover, anoikis resistance leads to the remodeling of the extracellular matrix
and activation of the PI3K/Akt and Ras/ERK pathways in endothelial cells [82].

The most common site of metastasis in PCa is the bone, and recent studies have re-
vealed that PCa metastasis involves endothelial-to-osteoblast (EC-to-OSB) conversion [83,84].
In metastatic PCa, prostate stem cell antigen (PSCA) is notably overexpressed in metastatic
sites, such as the bone, and is associated with a poor prognosis [85]. PSCA overexpression
in PCa cells facilitates bone metastasis by interacting with PGRN, upregulating integrin-α4
expression, and activating NF-κB, which, in turn, promotes the adhesion of PCa cells to
bone marrow endothelial cells (BMEC).

In conclusion, the interplay between endothelial cells and tumor cells plays a pivotal
role in driving the distant metastasis of PCa cells. The mechanisms of PCa metastasis are
illustrated in Figure 2.
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Figure 2. Interaction between endothelial cells and tumor cells induces metastasis of PCa (By
Figdraw). IGF1: insulin-like growth factor 1; IL: Interleukin; ICAM-1: intercellular adhesion molecule
1; VCAM-1: vascular cell adhesion molecule 1; CCL: chemokine ligand; SDC4: syndecan 4; P2Y2R:
purinergic P2Y2 receptor; MMP: matrix metalloproteinase; CXCR6: chemokine receptor 6; CXCL16:
chemokine ligand 16; STAT5: signal transducer and activator of transcription 5; ZO: also known as
TJP: tight junction protein. Interaction between endothelial cells and tumor cells induces metastasis
of PCa. CCL5 suppresses AR expression, elevates autophagy, promoting PCa metastasis. P2P2R
activation enhances PCa adhesion through ICAM-1 and VCAM-1. Loss of AKT1 fosters metastasis
by phosphorylating β-catenin, reducing tight junction proteins. Connexin43high cells aid PCa
diapedesis. CXCL16–CXCR6 interactions drive metastasis by increasing integrin aggregation and
MMP expression. IL-6 reduces AR expression, contributing to PCa metastasis. Insulin and IGF1
amplify IL-17, bolstering PCa cell adhesion. E-selectin and CCL2 promote PCa metastasis. Stat5
downregulates E-cadherin, fueling PCa metastasis. SDC4 facilitates adhesion and invasion through
anoikis resistance. PCa triggers bone metastasis via EC-to-OSB conversion and PSCA interaction.
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4. Endothelial Cells Induced Drug Resistance in PCa and Other Solid Cancers

The role of endothelial cells in promoting angiogenesis and metastasis in PCa has been
extensively discussed above. Additionally, endothelial cells exhibit resistance during tumor
treatment, including resistance to chemotherapy.

Recent studies have revealed that endothelial cell-secreted FGF2 leads to the upregula-
tion of ETS-related gene (ERG) expression and the activation of the Akt/mTOR signaling
pathway in PCa cells, thereby promoting docetaxel resistance [86]. In various solid tumors,
endothelial cells have demonstrated the ability to develop drug resistance. For instance,
ATP-binding cassette (ABC) transporter proteins are highly expressed in tumor endothelial
cells, resulting in chemotherapy resistance [87]. In uroepithelial carcinoma, chemotherapy
induces the expression of IL-8 in tumor cells, subsequently upregulating the expression of
ABCB-1 in endothelial cells, leading to tumor drug resistance [88].

Soluble factors derived from endothelial cells, such as Notch ligand Jagged1 (Jag1),
induce Notch2-Hey1 signaling in lymphoma cells (LCs), contributing to chemoresistance
in lymphoma [89]. A loss of endothelial FAK in melanoma/lung carcinoma cells reduces
the production of DNA damage-induced cytokines, thus increasing the chemosensitivity
of tumor cells to DNA damage treatment in vitro and in vivo [90]. Hepatic endothelial
cells play a paracrine role in promoting cell growth and chemoresistance through the
activation of HER3-AKT in colorectal cancer cells [91]. In acute myeloid leukemia (AML),
the activation of endothelial cells induces the secretion of interleukin-8 (IL-8), or via VEGF-
a/VEGFR-2 signaling, leading to resistance to cytarabine (Ara-C) [92,93].

Furthermore, miR-1246 derived from extracellular vesicles of highly metastatic tumor
cells induces IL-6 expression, which, in turn, upregulates IL-6 and induces 5-FU resistance
through STAT3 and AKT activation in endothelial cells [94]. Tumor endothelial cells with
high acetaldehyde dehydrogenase (ALDH) activity have been demonstrated to exhibit drug
resistance to 5-FU in melanoma [95]. Additionally, adriamycin (Dox) induces the upregu-
lation of breast cancer resistance protein (ABCG2) and P-GP in endothelial cells, leading
to the increased resistance of breast cancer cells to sunitinib [14,96,97]. In patients with
multiple myeloma (MM), HIF1α protein in MM endothelial cells may induce angiogenesis
and resistance to bortezomib and lenalidomide [98].

In conclusion, factors secreted by endothelial cells can induce drug resistance in PCa
and other solid tumors. Further details on drug resistance are provided in Table 2.

Table 2. Endothelial cells-induced drug resistance in solid cancers.

Key Molecules Mechanisms of Drug
Resistance Resistant Drugs Tumor Type Reference

FGF2
Upregulation of ERG expression
and activation of the Akt/mTOR

signaling pathway
Docetaxel PCa [89]

ABCB-1
The expression of IL-8 and

upregulation the expression of
ABCB-1

Gemcitabine/cisplatin Uroepithelial
carcinoma [91]

Jag1 Inducing the expression of
Notch2-Hey1 in LCs

Multiple chemotherapy
drugs Lymphoma [92]

FAK
Loss of FAK reduced the

production of DNA
damage-induced cytokines

Multiple chemotherapy
drugs

Melanoma/lung
carcinoma [93]

HER3 Activation of HER3-AKT Multiple chemotherapy
drugs Colorectal cancer [94]



Int. J. Mol. Sci. 2023, 24, 16893 8 of 16

Table 2. Cont.

Key Molecules Mechanisms of Drug
Resistance Resistant Drugs Tumor Type Reference

IL-8
Secretion of interleukin-8 (IL-8),

or via VEGF-a/VEGFR-2
signaling

Cytarabine Acute myeloid
leukemia [95,96]

MiR-1246
Inducing IL-6 expression and

upregulating IL-6 through
STAT3 and AKT activation

5-FU Melanoma [97]

ALDH Activation of ALDH 5-FU Melanoma [98]

ABCG2/P-GP
Upregulation of breast cancer

resistance protein (ABCG2) and
P-GP

Adriamycin
(Dox)/sunitinib Breast cancer [14,99,100]

HIF1α Secretion of HIF1α protein Bortezomib/lenalidomide Multiple myeloma [101]

5. Clinical Perspectives of Endothelial Cells in PCa
5.1. Endothelial Cells Can Be Used as Markers for the Treatment and Prognosis of PCa

Previous research has implicated endothelial cells in the diagnosis and prognosis of
various diseases, including nephritis [99], gastric cancer [100], pituitary tumors [101,102],
and others. Francesca Rivello and her team introduced the Metabolic Assay-Chip (MA-
Chip) for the identification and isolation of highly metabolically active cells (hm cells) in
the tumor microenvironment (TME). In prostate cancer (PCa) patients, the presence of more
than 5 hm cells significantly reduces the probability of survival compared to those with
0 to 5 hm cells, serving as an indicator of poor PCa outcomes [103]. Sebastian Chakrit
Bhakdi and colleagues demonstrated that the detection of tumor-associated circulating
endothelial cells (tCECs) doubled the positive predictive value (PPV) of independent PSA
tests while retaining over 90% of the negative predictive value [104]. Additionally, another
study revealed that a high expression of VEGFR1 and NRP1 in endothelial cells predicted
the risk of distant recurrence [105]. T. Kosaka and his team found that the density of
vasohibin-1 (VASH1) expression in PCa patients correlated with their prognosis. Patients
with higher VASH1 density (≥12 per mm) had a 5-year PSA recurrence-free survival rate of
58.8%, while those with lower VASH1 density (<12 per mm) had a rate of 89.1% [106]. C. K.
E. Wong and colleagues reported that a high expression of CD31+ and CD45− circulating
platelets indicates early recurrence after prostatectomy [107]. Mozhdeh Foroozan and
colleagues demonstrated that an elevated expression of the endothelial cell marker CD34 in
prostate cancer (PCa) correlates with increased tumor aggressiveness, establishing CD34 as
a valuable prognostic indicator [108]. In summary, endothelial cells hold significant clinical
relevance as a pivotal marker for assessing PCa progression, thereby aiding in both the
treatment and prognosis evaluation of PCa.

5.2. Now and the Future: The Role of Endothelial Cells in PCa

The treatment of prostate cancer (PCa) has always presented a significant challenge,
especially in the case of metastatic castration-resistant prostate cancer (mCRPC). Classical
androgen deprivation therapy (ADT) combined with chemotherapy is a widely accepted
approach in the standard management of PCa patients [109]. However, as discussed earlier,
endothelial cells can develop resistance to drugs, adding complexity to PCa treatment.

Among the potential drug targets, angiogenesis inhibitors, particularly VEGF antag-
onists, show great promise. Bevacizumab, the first VEGF inhibitor approved for cancer
treatment, has demonstrated its efficacy [110]. A clinical study revealed that PCa patients
treated with bevacizumab alongside ADT had significantly improved PSA recurrence-free
survival (RFS) compared to those receiving ADT alone [111]. The PI3K/AKT/mTOR signal-
ing pathway is often associated with angiogenesis, making the blockade of this pathway a
valuable strategy to inhibit tumor progression [35]. Tesirolimus, an mTOR inhibitor, hinders
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tumor angiogenesis by disrupting VEGF production [112]. However, a phase II clinical
study on temsirolimus monotherapy for CRPC indicated minimal activity in chemotherapy
CRPC [113]. Combining two or more chemotherapy drugs can be advantageous for tumor
patients. Recent clinical research has shown that the co-administration of two angiogenesis
inhibitors (bevacizumab and lenalidomide) alongside docetaxel and prednisone in mCRPC
may offer potential clinical benefits [114].

Metastasis represents a bleak clinical outcome in tumor development. While ator-
vastatin is typically used to enhance endothelial function, some studies have indicated
its ability to inhibit the adhesion function of PCa DU-145 cells to endothelial cells [69].
Moreover, the endothelial-to-osteoblast (EC-to-OSB) transition is a common occurrence
in PCa bone metastases. Retinoic acid receptor agonists, such as all-trans retinoic acid
(ATRA) and palovarotene, can target PCa-induced bone formation to potentially improve
the clinical prognosis of patients with bone metastasis [115].

In conclusion, targeting key molecules involved in angiogenesis or metastasis holds
promise for effective tumor treatment. Clinical trials involving angiogenesis inhibitors in
PCa in recent years are summarized in Table 3.

Table 3. Angiogenesis inhibitors in clinical trials for the treatment of PCa.

NCT Number Title Status Conditions Interventions Characteristics

NCT00795171

Biomarker Study for
Sunitinib and
Docetaxel in Prostate
Cancer

Unknown
status

• Hormone
Refractory PCa

• Drug:
Docetaxel
Sunitinib

• Drug:
Docetaxel

Phase:
Phase 2

NCT00684970

Phase IIB Clinical Trial
of Hamsa-1™ in
Metastatic Castration
Resistant Prostate
Cancer (CRPC)

Unknown
status

• Metastatic
Castration
Resistant PCa
(CRPC)

• Drug:
Hamsa-1™
TL-118

Phase:
Phase 2

NCT01683994

Cabozantinib Plus
Docetaxel and
Prednisone for
Advanced PCa

Completed
• Prostatic

Neoplasms

• Drug:
Cabozantinib

• Drug:
Docetaxel

• Drug:
Prednisone

Phase:

• Phase 1

• Phase 2

NCT00321646

Neoadjuvant
Bevacizumab Plus
Docetaxel in High Risk
Patients With PCa
Undergoing Radical
Prostatectomy

Completed

• PCa

• Adenocarcinoma
of the Prostate

• Drug:
Bevacizumab

• Drug:
Docetaxel

Phase:
Phase 2

NCT00405574 Study of ATN-224 in
Patients With PCa

Unknown
status

• PCa • Drug: ATN-224 Phase:
Phase 2
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Table 3. Cont.

NCT Number Title Status Conditions Interventions Characteristics

NCT00631527

Sunitinib Malate,
Hormone Ablation
and Radiation Therapy
in Patients With PCa

Completed • PCa

• Drug:
Leuprolide

• Drug:
Goserelin

• Drug: Sunitinib
Malate

• Drug: Casodex

• Radiation:
Radiation
Therapy (RT)

Phase:
Phase 1

NCT00942578

A Phase 2 Trial of
Bevacizumab,
Lenalidomide,
Docetaxel, and
Prednisone (ART-P)
for Treatment of
Metastatic
Castrate-Resistant PCa

Completed • Metastatic PCa

• Drug:
Bevacizumab

• Drug:
Lenalidomide

• Drug:
Docetaxel

• Drug:
Prednisone

Phase:
Phase 2

NCT01083368

Temsirolimus and
Bevacizumab in
Hormone-Resistant
Metastatic PCa That
Did Not Respond to
Chemotherapy

Completed • PCa

• Drug:
Temsirolimus

• Biological:
Bevacizumab

• Genetic:
Polymorphism
analysis

• Other:
Laboratory
biomarker
analysis

Phase:

• Phase 1

• Phase 2

NCT00348595

Study of 2 Different
Doses of Revlimid in
Biochemically Relapse
PCa

Completed • PCa • Drug: Revlimid

Phase:

• Phase 1

• Phase 2

NCT00179738

A Multicenter,
Single-Arm,
Open-Label, Study to
Evaluate the Safety
and Efficacy of
Single-Agent
Lenalidomide
(Revlimid, CC-5013) in
Subjects With
Androgen
Independent PCa.

Terminated • PCa • Drug: CC5013 Phase:
Phase 2

6. Conclusions

In this comprehensive review, we have elucidated the multifaceted role of endothelial
cells within the tumor microenvironment (TME). These versatile cells not only play a pivotal
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role in the angiogenic processes of prostate cancer (PCa), but also significantly contribute
to the metastatic cascade. The challenge of drug resistance looms large in the treatment
of castration-resistant prostate cancer (CRPC), and the participation of endothelial cells in
this resistance phenomenon presents a compelling avenue for future research. Moreover,
we have encapsulated the pivotal role of endothelial cells as diagnostic and prognostic
markers in PCa management. This underscores their potential utility in early detection,
precise diagnosis, and tailored treatment approaches for PCa patients.

To conclude, we have outlined potential therapeutic targets centered around endothe-
lial cells in PCa, with a specific focus on anti-angiogenic agents. Additionally, we have
delved into the exploration of recent clinical research endeavors concerning angiogene-
sis inhibitors in PCa. In essence, these collective insights hold promise for steering PCa
prognosis and treatment research into a new and more hopeful direction.
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