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Abstract: The spectrum of neurodegenerative diseases known today is quite extensive. The com-
plexities of their research and treatment lie not only in their diversity. Even many years of struggle
and narrowly focused research on common pathologies such as Alzheimer’s, Parkinson’s, and other
brain diseases have not brought cures for these illnesses. What can be said about orphan diseases?
In particular, Huntington’s disease (HD), despite affecting a smaller part of the human population,
still attracts many researchers. This disorder is known to result from a mutation in the HTT gene,
but having this information still does not simplify the task of drug development and studying the
mechanisms of disease progression. Nonetheless, the data accumulated over the years and their
analysis provide a good basis for further research. Here, we review studies devoted to understanding
the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to
describe the action of repurposed drugs and try to find new therapeutic targets.

Keywords: Huntington’s disease; drug target; PARP1 inhibitor; drug repurposing

1. Introduction

Various approaches to drug research and development are basically de novo drug
discovery and drug repurposing. While the former requires long-term research, the latter is
being actively implemented for the treatment of many diseases, owing to the accumulation
of ample data in databases and the discovery of mechanisms that unite various diseases.
In fact, the accumulated knowledge contributes to the search for therapies for diseases
with still poorly understood mechanisms. Thus, drug repurposing is actively used for the
treatment of different types of cancer and common neurodegenerative disorders such as
Alzheimer’s and Parkinson’s disease [1]. This strategy involves extrapolation of already
discovered molecular processes and drug targets to hallmarks and symptoms of a disease
in question. In recent studies, for example, PARP inhibitors were often used as repositioned
drugs. They had been developed as anticancer drugs, but now researchers test them
on other diseases, including Parkinson’s, Alzheimer’s, Huntington’s, and other brain
pathologies [2,3]. Huntington’s disease (HD), despite its extrinsic simplicity—only mutation
in one gene underlies the pathogenesis—has no effective treatment today. Designing an
anti-HD therapy that would eliminate etiology is a topical and relevant task of biomedicine.

In this work, we review some aspects of the latest approaches to drug discovery
with an emphasis on repurposing. One of the key objectives is the drug target search.
We distinguish several essential ways to search. The first one is driven by hallmarks of
the disease, such as protein aggregates or oxidative stress, so that these problems can be
resolved by similar medication even if they have different root causes. The second way
is to employ certain biomolecules as targets. Nonetheless, in different diseases, the same
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biomolecule may play different roles in pathogenesis, and hence the effect of the drug may
be unexpected. The third way is to target a molecular pathway, not a specific molecule.
Within the framework of this field, we discuss issues of drug repurposing and methods of
target searches and outline a combined strategy. Another objective of our work is to look
for genes of proteins that interact with mutant huntingtin (mHTT) and to determine their
molecular pathways. Next, we use the found genes as targets for drug discovery among
existing therapeutics. These drugs may be considered subjects of further experiments and
potential therapies for HD.

2. HD Mechanisms

The development of HD is associated with the expansion (multiplication) of trin-
ucleotide CAG in the first exon of the huntingtin (HTT) gene [4]. The pathogenesis of
the disease is based on the expression of the huntingtin protein having an abnormal con-
formation and of its derivatives, such as clusters of N-terminal fragments and protein
aggregates [5,6]. The formation of protein bodies driven by various forms of the mutant
huntingtin occurs in medium spiny neurons during the progression of the pathology and
leads to their death. These phenotypic markers can be observed in postmortem brain
samples from patients or animal models [7]. The disease is accompanied by behavioral
symptoms, for instance, impaired motor functions and disturbances of mental and cognitive
abilities [8].

What happens in HD at the molecular level? At the moment, aberrations are being
revealed in such molecular pathways as the utilization of proteins and cellular structures
(namely, the ubiquitin–proteasome system and autophagy), expression regulation of in-
tracellular signaling, cytoskeleton-associated processes (e.g., cell transport and division),
glutamatergic and dopaminergic synaptic signaling systems, and, finally, mitochondrial
function; the latter dysfunction is combined with destabilization of energy homeosta-
sis and oxidative stress, which leads to activation of pathways of a stress response and
apoptosis [9,10].

2.1. Transcription Dysfunction

The most frequently, as shown by recent studies, transcriptional impairment affects
neurotransmitter receptors, ion channels, and BDNF [11,12]. Aberrant huntingtin interacts
with different transcription-regulating proteins (p53, CREB, CBP, and MSK-1, which control
cell proliferation and DNA damage repair), PGC-1α, organelle and vesicle transporters, and
dopamine 2 receptor–interacting proteins [13]. There is evidence that mHTT’s interactions
with the transcription factors p53, CBP, CREB, SP1, NF-κB, REST, Foxp1, and HSF1 impede
gene expression [14–19].

Normally, huntingtin binds to transcription factors that recognize a neuron-restrictive
silencer element (NRSE) region of the genes necessary for life support of spiny neurons
and thereby regulates their transport to the nucleus from the cytoplasm and their activity.
Impairment of this interaction leads, in particular, to the shutdown of expression of the
NRSE-containing genes BDNF and REST [20].

PGC-1α is involved in metabolic regulation and mitochondrial biogenesis. CREB-
mediated transcription of PGC-1α is suppressed by mutant huntingtin. Conversely, re-
covery of the PGC-1α level impedes mHTT aggregation in striatal neurons [21,22]. mHTT
inhibits SP1-dependent transcription as shown in postmortem brain samples from HD
patients [23]. Additionally, mHTT mediates translocation of the REST protein to the nu-
cleus and causes silencing of genes [24]. The interaction of mHTT with p53 leads to the
expression of apoptotic genes [25].

Decreased activity of enzymes that promote chromatin remodeling has been demon-
strated in HD. Phosphorylated CREB (a cAMP-dependent transcription factor) binds to a
CRE region in the promoter of genes important for neuronal survival [26] and activates tran-
scriptional coactivator CBP, thereby directing it to chromatin being remodeled to assemble a
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transcription factor complex. mHTT interacts with CBP and TAFII130, thus preventing their
binding to the CRE region and interrupting the CRE-mediated transcription process [20,27].

In a recent paper, a set of genes differentially expressed in HD was presented [28].
As for human studies, investigators have found IGDCC3, a participant in nervous system
development, and XKR4, a regulator of the apoptotic process during development. In
postmortem brain samples, DNAJB1, HSPA1B, and HSPB1 are reported to be upregulated
in all cell types except for medium spiny neurons. At the earliest stages of HD, there is a
change in the expression of genes HSPH1 and SAT1. Differential expression analysis of
genes of transcription regulators has revealed the upregulated factors TCF4, FOSL2, BCL6,
ZBTB16, FOXP1, KLF15, RXRA, CUX1, CREBBP, and NFIA and the downregulated factors
ZKSCAN1, MAX, E2F3, BCL11A, EGR1, FOXG1, TP53, HMG20A, JMJD1C, and STAT4 [28].

2.2. Systems of Clearance of Proteins and Other Cell Components

Heat shock proteins such as HSP70, HSP40, and HSP90 participate in the pathological
processes of HD. It has been established in mouse models of HD that an increase in Hsp70
expression plays a neuroprotective role, and inhibition of Hsp90 results in mHTT degra-
dation [29]. HSP40 and HSP70 suppress the formation of fibrillar aggregates from mutant
forms of huntingtin, thus facilitating their refolding or, more often, their being directed to
the ubiquitination and degradation system of the 26S proteasome complex [29–32]. Nev-
ertheless, at the same time, heat shock proteins often lose their ability to perform their
functions and get mixed up in growing mHTT aggregates. In this case, hydrolysis of
the mutant protein by proteases occurs, which leads to the formation of N-terminal toxic
fragments of mHTT [33,34]. These fragments exist in several forms: soluble monomers,
oligomers, or aggregates. Therefore, mHTT generally disrupts the process of protein
transfer by chaperones to proteasomes for both itself and other proteins.

2.3. Cytoskeleton Impairment: Intracellular Transport and Synaptic Transmission

The structural role of HTT is to combine microtubules with carrier proteins such as
dynein and kinesin for transport pathways in the cell. The absence of this function in
mHTT impairs intracellular trafficking, thereby having a strong effect on synaptic activity
owing to a decrease in the transport of mitochondria, vesicles, and other structures along
axonal microtubular pathways [35–38]. Thus, neurotransmission via receptors such as the
GABAA (γ-aminobutyric acid receptor type A) and AMPA (α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid) receptors deteriorates because mHTT impairs the ability of the
HAP1 protein to mediate the binding of the KIF5 protein to the receptors implementing
microtubule transport [39,40]. In addition, the transport of neurotrophic factor BDNF and
its receptor TRKB, which ensure the survival of neurons, are disturbed too [41].

Transport failures, coupled with a decrease in energy, also diminish the reuptake
of glutamate (a ligand of NMDA receptors), as a result of which excitotoxicity develops.
It consists of hyperactivation of NMDA receptors and an enhancement of the flow of
calcium ions into the cell; this alteration triggers the respiratory chain of electron transport.
Excessive exposure to calcium induces upregulation of reactive oxygen species [42].

2.4. Mitochondrial Dysfunction

Mitochondria are a link between several pathological processes: disturbances of the
electron transport chain, of metabolic processes, and of calcium homeostasis [11,12].

For ATP synthesis, transmembrane potential of mitochondria should not deviate from
the optimal value. A decrease in the activity of respiratory chain complexes, especially
complex II (succinate dehydrogenase) and complex III (ubiquinol-cytochrome c oxidore-
ductase), as well as impaired protein transport between mitochondria and cytosol, owing
to the interaction of mHTT with TIM23, cause an aberration of membrane potential of
mitochondria [43]. Furthermore, mHTT provokes mutations in mitochondrial DNA, which
lead to heteroplasmy [44].
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Problems also appear in metabolic pathways because it is reported that mHTT inhibits
the binding of TAF4 to the PGC-1α gene promoter, which is involved in glucose metabolism
and fatty acid β-oxidation [45]. The GAPDH protein binds to N-terminal regions of mHTT,
thereby providing its enhanced delivery to the nucleus, and subsequently loses its activity
after entering the mHTT aggregates [46].

Normally, electron leakage from the electron transport chain occurs mainly due to the
functioning of complexes I and III resulting in the formation of reactive oxygen species,
such as the superoxide anion and peroxides, which the antioxidant system can handle. In
addition, the activities of enzymes in the Krebs cycle, for example, aconitase, are wors-
ened [47].

Mutant HTT not only enhances the formation of reactive oxygen species but also
disrupts the expression of proteins of one of the pathways of the antioxidant system:
NRF2/ARE [48]. As mHTT interacts with CREB-binding proteins and TAF4, mHTT
decreases the amount of coactivator PGC-1α, which negatively affects the expression
of respiratory chain enzymes’ nuclear subunits, of the antioxidant system, of TFAM (a
mitochondrial–DNA transcription regulator), of ATP synthase, and of superoxide dismu-
tase [49].

By binding the MFN2 protein, N-terminal fragments of mHTT disturb the expression
of genes necessary for maintaining mitochondrial morphology and mitogenesis in C.
elegans models of HD. In addition, the whole mHTT protein accumulates in mitochondria
and stimulates division of mitochondria by recruiting Drp1. It was recently shown that
inhibition of the calcineurin–Drp1 pathway or upregulation of Opa1 promotes the survival
of striatal neurons [50].

Mitochondria-associated membranes are microdomains enriched with inositol-1,4,5-
triphosphate (IP3) receptors (IP3Rs), ryanodine receptors (RYRs), and molecular chaperones
(such as glucose-regulated protein p75) that form functional complexes with voltage-gated
anion-selective channels to ensure the transfer of Ca2+ from the endoplasmic reticulum to
mitochondria [51].

mHTT depolarizes the mitochondrial membrane in several ways: it affects the outer
and inner pores of mitochondria and induces the formation of ion channels, which changes
the flow of protons through the inner membrane of mitochondria. Membrane depolar-
ization, in turn, disrupts calcium buffering in mitochondria and promotes the opening of
permeability pores (MPTP) at lower Ca2+ concentrations, thus leading to a cytochrome c
release and mitochondrial swelling. Another way to increase the calcium concentration in
the cytosol is the effect of mHTT on IP3 receptors [12,52].

2.5. Cell Death

Events taking place in mitochondria under the influence of N-terminal fragments of
mHTT induce the release of cytochrome c, its binding to deoxy-ATP, APAF-1, and caspase
9, and formation of the apoptosome. This complex then activates caspases 3, 6, and 7,
initiating caspase-dependent apoptosis [12].

Different caspases have dissimilar effects on the course of pathological processes:
caspase 2 can cleave mHTT and generate toxic N-terminal fragments causing neurite
degeneration; caspase 7 in a complex with mHTT activates other caspases, thereby stimu-
lating apoptosis [53]; and caspase 8 cleaves off and activates the BCL2 (B-cell lymphoma
2) domain, whose activity induces caspase-independent apoptosis. mHTT also stimulates
apoptosis in other ways: binding to the transcription factor p53 and increasing the ex-
pression of Bax and PUMA (p53-activated modulator of apoptosis) [54]. Additionally, the
interaction of mHTT with HIP1 is weakened, which allows HIP1 to freely interact with
proapoptotic proteins, for example, procaspase 8, which also provokes cell death.

Intensive production of reactive oxygen species caused by mitochondrial dysfunction
results in DNA damage. Emergence of DNA double-strand breaks hyperactivates poly-
ADP-ribose polymerase I (PARP1), which recruits DNA repair enzymes by synthesizing
poly(ADP-ribose) chains [55,56]. Excessive accumulation of poly(ADP-ribose) triggers
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a process of cell death called “parthanatos”, during which proteins such as AIF and
SMAC/DIABLO are released from mitochondria into the cytosol. AIF moves into the
nucleus and causes DNA fragmentation and inhibition of poly(ADP-ribose) polymerase,
thereby accelerating cell damage and destruction. SMAC/DIABLO binds to an X-linked
apoptosis inhibitor protein and triggers apoptosis by inhibiting the antiapoptotic activity
of the X-linked apoptosis inhibitor protein [56].

2.6. The Role of Astrocytes

Aggregates of mHTT are observed in astrocytes, although to a lesser extent than in
spiny neurons [57]. Astrocytes are involved in the protection of neurons from excitotoxi-
city, in particular, by regulating the level of glutamate in the extracellular space through
transporters such as EAAT2 and GLT1 [58,59]. In some cases, for example, with a certain
number of glutamine repeats (polyQ), astrocytes exhibit signs characteristic of HD in neu-
rons [60,61]. Inwardly rectifying K+ channels’ abundance is decreased in astrocytes, and
therefore membrane potential diminishes as well [62]. Binding of mHTT to N-terminal
myelin regulatory factor and inhibition of concurrent binding of CREB and TAF4 by mHTT
reduce the expression of myelin core proteins and cause myelination deficiency and oligo-
dendrocyte dysfunction [63].

2.7. Molecular Pathways of HD

Established pathways of HD can be found in databases of protein–protein interactions
(PPIs) or molecular pathways and Gene Ontology. For instance, in the KEGG database
(Kyoto Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/, accessed on
23 August 2023), there is information about the following pathways in this regard: Calcium
signaling, Ubiquitin–proteasome system, Autophagy, Apoptosis, TNF signaling, Oxidative
phosphorylation, Microtubule-based transport, and Transcription.

A comparison of these data with previously described pathways from recent literature
reviews [12,52,64] indicates that there are several mechanisms in the pathogenesis of HD.

Mutations in the HTT gene lead to the loss of functions and to emergence of new
types of activity of mHTT, the appearance of toxic N-terminal fragments during proteolytic
activity, and mHTT aggregation. Collectively, these events disrupt the entire functional
network of HTT and lead to failures in areas of natural functions of mHTT. In addition,
due to the new functions of mHTT, N-terminal fragments, and the formation of physical
obstacles in the form of protein aggregates, other cell processes fail too. In general, the
following disturbed areas of cell physiology can be distinguished: cellular transport,
systems of defense and homeostasis of the cell, and energy supply and metabolism (in
particular, mitochondrial activities).

Cellular transport means the processes of physical motion of molecules or cellular
structures, such as mitochondria, autophagosomes, or vesicles containing neurotrans-
mitters. Structures of the transport system support both cell division (mitosis) and the
mechanics of cell movement and migration, which involve the cytoskeleton and its associ-
ated proteins.

The second area of cell physiology that suffers because of mHTT is the systems of the
cell response to stress, or defense systems, in particular, autophagy and various types of
cell death (apoptosis and parthanatos) [65–67]. mHTT affects the defense systems not only
at the cellular level but also in the whole body. Hyperactivation of activated microglia and
cells of the peripheral immune system is induced by mHTT binding to transcription factors
and leads to chronic inflammation and damage to neurons and peripheral tissues [68].

The consequences of impaired mitochondrial functions and their disturbed integrity
are extensive. The aberrant activity of mHTT impedes mitochondrial biogenesis and results
in a mitochondrial cytochrome c release, caspase activation, calcium dysregulation, and
decreased energetic function [69]. Aside from a decrease in cell energy supply, (i) upreg-
ulation of reactive oxygen species, (ii) the induction of caspase-mediated apoptosis, and
(iii) AIF-mediated parthanatos are among the key factors of neuronal death [66]. Based

https://www.genome.jp/kegg/
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on the above facts, several basic pathways initiating mitochondrial dysfunction can be
distinguished: the involvement of mHTT in the regulation of transcription, in transport of
molecules into mitochondria, and in binding to enzymes and distortion of their functions.
Pathological consequences of mHTT’s functions are summarized in Figure 1.
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Figure 1. Pathological processes triggered by mHTT: mHTT causes a range of abnormalities in
mitochondria, cell defense systems, intracellular transport, and cell division.

Some of the concerning questions are mHTT’s protein interactors and related processes.
Addressing these questions should clarify not only the mechanism of HD but also new
therapeutic targets. Above, we reviewed some impairments during HD development;
however, the extent of mHTT involvement in these processes remains uncertain.

Recently, Wanker et al. reviewed mHTT’s PPIs and related pathways, such as axonal
transport, autophagy, mTOR signaling, palmitoylation, mitochondrial fission, mitophagy,
and transcription regulation [70]. Greco with the research group have analyzed PPIs of
the HTT protein containing normal or expanded CAG repeats in a mouse HD model [71].
They have demonstrated that some processes associated with mHTT depend on the polyQ
length and revealed the most common pathways of mHTT: processes related to vesic-
ular trafficking and synaptic signaling. Accordingly, it was hypothesized that mHTT
sequesters the key proteins that are necessary for the regulation of synapse morphology
and neurotransmission.

Another research article on mHTT PPIs—with some severe limitations, e.g., in terms
of polyQ length, experimental methods, and HTT species—has revealed the following PPI
clusters associated with mutant huntingtin: protein modification, RNA splicing, mitochon-
dria, granule membrane, macroautophagy, cytoplasmic vesicles, ion channel transport, and
translation [72]. Each cluster involves the top KEGG pathways related to huntingtin.
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2.8. HD Treatment

Today, most treatments reduce the motor and behavioral symptoms of HD; however,
they do not address the underlying causes at the molecular level. In this section, we
consider common therapeutic strategies targeting mHTT and pathological cell processes.

One of the strategies is to reduce the protein or mRNA level of mHTT. The latest thera-
peutic approaches are aimed at degradation or isolation of mRNA of mutant huntingtin,
at suppression of its transcription, or at altering its processing [73,74]. Another way is to
modify the mutant protein to decrease toxicity.

Antisense oligonucleotides (ASOs), by hybridizing with complementary mRNA, pro-
mote mRNA degradation and downregulation of both wild-type and mutant HTT. Testing
on primates and rodents has yielded positive results [73], but such a therapy requires
readministration for long-term suppression of mHTT synthesis. ASOs are also used for
selective alteration of mRNA processing with the aim to prevent mHTT synthesis and
cleavage and the formation of toxic N-terminal fragments [74]. To date, a number of ASO-
based therapeutics have been developed and approved by the FDA: fomivirsen (Vitravene;
for cytomegalovirus retinitis), mipomersen (Kynamro; for familial hypercholesterolemia),
eteplirsen (Exondys 51; for Duchenne muscular dystrophy), and nusinersen (Spinraza; for
spinal muscular atrophy).

Transcription repression is achieved also with the help of synthetic zinc finger protein
(ZFP) repressors. These proteins consist of a zinc finger domain fused with some repressor,
such as the KOX1 transcriptional repressor domain, and can selectively bind HTT con-
taining expanded CAG repeats, thereby suppressing transcription. Testing of this therapy
on the R6/2 model of HD has shown a reduced level of the mHTT protein and symptom
stabilization [75]. It is necessary to conduct further trials to achieve greater selectivity and
to check for side effects.

RNA interference machinery involving small interfering RNAs (siRNAs) [76], artificial
microRNAs (miRNAs) [77], or short hairpin RNAs (shRNAs) [78] is also considered a
potential HD therapy. Some siRNA- and miRNA-based therapeutics are in clinical trials,
e.g., the AMT-130 trial (NCT04120493 and NCT05243017).

One more mRNA-targeting modality is small molecules mediating alternative splicing
of mutant huntingtin mRNA: PTC518 (NCT 05358717, LMI070 (branaplam), NCT05111249).

The most direct way to decrease the mHTT level is to eliminate the mutant protein
or to block its activity. Rapamycin, an inhibitor of the mTOR pathway, induces mHTT
protein autophagy [79]. Cystamine and pridopidine are being tested to reduce protein
aggregation. rAAV6-INT41 is an intrabody binding the polyP/proline-rich region of mHTT,
thus reducing the aggregation in neurons of the R6/2 HD mouse model [80].

Another strategy of HD treatment is to target defective molecular pathways or func-
tions. Generally, the following pathological processes are distinguished: impaired signal
transduction, abnormal degradation of proteins, altered protein folding, transcriptional
dysregulation, mitochondrial dysfunction [81], an axonal transport disturbance, and glial
dysfunction [82].

Accordingly, based on currently known mechanisms of HD, numerous drugs are
discussed in the literature. Firstly, a lot of studies are focused on synaptic dysfunction. To
suppress excitotoxicity, drugs aimed at reducing glutamate receptors’ activity or availability
of extracellular glutamate, e.g., Metamine [83] or BN82451 [84], have demonstrated efficacy
in studies. Nonetheless, the safe concentration has not been determined yet. Another
research field is aimed at regulating the dopamine level. FDA-approved drugs such as tetra-
benazine [85] and valbenazine [86] inhibit vesicular monoamine transporter 2 (VMAT2),
thereby reducing dopamine signaling. In addition, antibodies as a therapeutic modality
are widely used: ANX005 (a monoclonal antibody) inactivates pathogenic complement
cascade activation initiating neuroinflammation [87].

Mitochondrial dysfunction in HD has not been successfully corrected yet. Currently,
resveratrol, which is an inhibitor of p53-mediated mitochondrial apoptotic oxidative
stress [88], and PPARα agonist fenofibrate [89] are at the stage of clinical trials.
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Most of described drugs in this field are intended to correct the molecular mechanisms
whose malfunctions have been described. Anyway, a target can be identified among HTT’s
or mHTT’s interactors directly: a loss of function or gain of function of mHTT may be an
inducer of impairment. A low level of BDNF is associated with HTT dysfunction, leading
to deficient synaptic transmission [90]. Histone hypoacetylation is one of the hallmarks
of HD. mHTT can bind histone acetyltransferases, thus altering their functions. Sodium
butyrate (a modulator of histone deacetylases) improves R6/2 mice’s motor symptoms and
extends the lifespan [91].

Some researched drugs, such as neflamapimod [92] and minocycline [93], are utilized
to ameliorate glial cells’ functions for preventing neuroinflammation.

Additionally, regardless of a target molecule, there is a type of therapy that solves the
problem of degeneration through invasion. This method mainly concerns the maintenance
of the population of medium spiny neurons. One of the approaches is to use stem cell-based
therapy. Currently, researchers attempt to derive a pure population of a relevant type of
cells not inducing an immune response: mesenchymal stem cells are at the clinical trial
stage (NCT01834053) and induced pluripotent stem cell-derived neural stem cells have
been tested on YAC128 HD mice [94].

Overall, the FDA has approved several drugs for HD. Among them, there are drugs de-
signed to treat core symptoms, e.g., Austedo (deutetrabenazine), Xenazine (tetrabenazine), Val-
ium, Risperdal (risperidone), and Ingrezza (valbenazine) (http://www.fda.gov/drugsatfda,
accessed on 12 November 2023). Behavioral and cognitive abilities possess more complex
mechanisms and regulations and have a variety of therapeutically targeted characteristics.
Accordingly, to improve mental symptoms, drug repurposing is often used. FDA-approved
drugs such as Clozaril (clozapine), Geodon (ziprasidone), Seroquel (quetiapine), Xanax
(alprazolam), and Zyprexa (olanzapine) have originally been created for the treatment of
schizophrenia or other mental disorders [95,96]. Some of these drugs have been approved
for the treatment of HD, others are still at the clinical trial stage, but a search is still under-
way for a drug that could not only temporarily suppress symptoms or partially correct
some molecular pathologies, such as aggregation, but has a long-term impact on multiple
hallmarks of the disease with minimal adverse effects.

3. Drug Repurposing

Drug repurposing is the process of reprofiling existing drugs (which have already
been approved) to treat other diseases. Pharmacological properties of some existing drugs
make them effective in the treatment of various diseases. This approach may lead to
the discovery of new treatments for a range of diseases, aside from saving the time and
resources expended on drug development.

Before starting a search for mHTT interactors, their molecular pathways, and drugs, let
us review the existing approaches to the development of drugs on the basis of knowledge
about molecular pathways. For example, many phenomena that accompany HD are also
characteristic of other neurodegenerative diseases and other types of illnesses. For instance,
oxidative stress is one of the causes of neuronal death in Alzheimer’s, Parkinson’s, and
Huntington’s diseases, but reactive oxygen species also accompany oncological, infectious,
and other pathological processes in the cell. Enhancing antioxidant protection against
reactive oxygen species is therefore an evident therapy aimed at protecting cells from the
oxidative stress caused by any pathological agent [97]. Of course, there are characteristic
mechanisms and pathways that are specific only for a few diseases, and there is a reason to
attempt to modify a pathology precisely through them. In this case, it is possible to address
the problem at the root rather than eliminating consequences such as DNA damage and
altered metabolic pathways, signal transduction, and other phenomena.

There are more narrowly targeted options for drug design where both consequences
and root causes intersect in a disease under consideration. For example, PARP family repair
enzymes (already mentioned above) are a potential target for HD therapy [2].

http://www.fda.gov/drugsatfda
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De novo drug development has many advantages, is aimed at a disease specifically,
and typically relies on a detailed pathogenesis analysis that accompanies drug development
and validation. On the other hand, de novo development takes a lot of time and other
resources: from the stages of target selection, design and optimization of a drug’s structure,
and investigating the methods of drug delivery to preclinical and clinical trials. The whole
process can take up to 10–20 years.

Repurposing or reuse of drugs that have proven effectiveness against other diseases
helps to save time spent on developing the drug itself and on adjusting and optimizing
its design.

Both de novo drug development and retargeting of existing drugs share the same
problem: target selection. Several approaches have been proposed for target identification.
The choice of strategy depends on available initial data. Genomic and proteomic data
such as gene expression patterns or protein abnormalities associated with a disease can
reveal a potential drug target. Analysis of the interaction of proteins with small-molecule
compounds is an affinity-based approach [98]. If we know the molecular mechanism
of the corrected process, then a specific molecule could be the target, and the treatment
outcome can manifest itself in phenotypic changes (at the cellular level: e.g., a decrease in
protein aggregation). The phenotype-based approach involves the testing of new potential
therapeutic substances in parallel with drugs having a known effect [99–101].

In the case that the genes or biomolecules involved in a pathological process are
known, it is possible to take advantage of an analysis of the interactions between involved
molecules and drugs in a database such as DrugBank [102]. Furthermore, it is feasible to
start searching for drugs through molecular pathways by choosing the most significant
ones for the disease of interest by means of such databases as Reactome and ShinyGO
0.77 [103]. Another option is to search through a database with ready-made collections of
descriptions of mechanisms underlying cellular processes where the descriptions connect
them to specific diseases. Text mining and neural network technologies are indispensable
for finding molecular pathways and for collating them with drugs and known disease
characteristics (genes, molecular processes, and molecular phenotypic features) [104]. This
approach derives from the fact that we do not know much about molecular processes of the
disease, which is usual for rare diseases. Then, we turn to a search by clinical similarity of
diseases and collect data to reconstruct mechanisms of the disease and to predict the effects
of drugs.

There are a few areas of drug repurposing reviewed in the literature: drug oriented,
disease oriented, and target oriented [105,106]. The first approach involves collating a
known drug with new target molecules. It includes studies on topics such as off-label
use of drugs, phenotypic screening, targeting 3D structures of a drug, chemical structures
of drugs and ligands, and adverse effects of drugs. Disease-oriented drug reprofiling
is employed for a number of diseases on the basis of a similarity of their characteristics
(phenotypes and gene profiles), disease pathways, disease ‘omics data, genetic data on
a disease, and a protein interaction network. Target-oriented drug repurposing includes
identifying new targets in the pathogenesis of the disease and testing the impact of a
known drug associated with a found target. It is possible to use disease ‘omics data and
information related to treatment strategies, genetics, proteomics, and metabolomics. These
strategies share methods of repurposing such as a blinded search or screening method,
target-based methods, knowledge-based techniques, signature-based methods, pathway-
or network-based procedures, and targeted mechanism-based methods.

A recent publication highlights strategies used in drug development and proposed
for the repurposing of drugs for neurodegenerative diseases [105]. These approaches are
as follows:

1. Activity-based or experimental drug repurposing [107].

Experimental testing of the effects of a drug is considered if there are few data on the
mechanism of action. In addition, a direct response to a therapeutic is usually a consequence
of a similarity between the reference disease and target disease, and the effect is analyzed
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further [108]. The targeted approach is another strategy of activity-based drug repurposing
that involves knowledge of molecular targets [109].

2. Computational drug repurposing.

Computational tools can be classified into the following categories:

• a database with drug data: phases of clinical trials, a mechanism of action, involvement
in diseases, and physicochemical properties;

• a database with disease data: genes, molecular pathways, and mechanisms;
• tools for the analysis of molecular interactions (construction of gene, metabolic, and

protein networks), Gene Ontology, and analysis of transcriptome data;
• tools of molecular dynamics and docking: construction and analysis of structures of

target molecules and of the drug as well as interactions;
• text-mining tools, machine learning (ML), and neural networks.

Structure-based or target-based methods such as molecular docking and similarity-
based approaches are aimed at finding drugs with strong affinity for selected targets. This
approach is good if we have already chosen certain target molecules with known structures
and physicochemical properties, and we are looking for suitable compounds for them,
based on their structure and thermodynamic characteristics.

Ligand-based methods are useful when there is no information about the 3D structures
of potential pathogenesis-related molecules; in this case, we choose a drug on the basis of
information about ligands interacting with the target, thereby obtaining information and
physicochemical properties of target molecules.

Transcriptome-based methods make use of extensive new-generation sequencing data.
Changes in gene expression profiles under the influence of various substances are used
to select potential targets. For example, there are databases such as CMap (Connectivity
Map) [110] and LINCS (the Library of Integrated Network-Based Cellular Signatures) [111]
containing data about effects on a gene expression profile in various tissues and drug-
treated cell lines.

3. Genome-wide association study (GWAS)-based methods. They identify a gene variant–
disease relation, which subsequently helps with the selection of treatment targets.

4. Network-Based Methods. These procedures include system biology approaches for
integrating and analyzing data on relations between various objects: an interaction of
cellular structures with each other and with drugs under various conditions, including
during the progression of a disease.

5. ML-based approaches and literature-based discovery methods. ML offers methods for
regression analysis, clustering and classification, dimensionality reduction, neural net-
works, and other tools helping to analyze biological data and to infer new trends [112].
ML is now actively utilized at various stages of drug design: from investigating dis-
ease mechanisms, target identification, target validation, and compound screening to
finding new markers of drug efficacy.

For identifying genes of potential targets associated with a disease or phenotype,
Costa et al. (2010) invented a decision tree-based meta-classifier trained on network
topologies of PPIs and of metabolic and transcriptional interactions [113]. Another area of
ML applications is the optimization of drug–target compatibility via screening of similar
ligand structures on the basis of a reference. This is achieved through multitask deep
neural networks.

The literature-based approach includes automated processing of the literature, e.g.,
natural language processing methods for text mining of specific information. For instance,
the BeFree tool applies natural language processing techniques to scanning drug–disease,
gene–disease, and target–drug connections in Medline abstracts [114]. Yang et al. (2017)
presented a pattern-based learning method for extracting from the biomedical literature
potential drugs for repositioning [115].

We combined the aforementioned approaches of drug repurposing and devised a
two-step strategy (Figure 2) basically aimed at the database search approach to drug
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repurposing [116,117]. First, we should receive information about molecular participants
and disease processes. This can be achieved via experimental methods and in silico methods
such as text mining and analysis of drug databases, PPI databases, and disease databases.
The mechanism of a disease may not have already been studied. For this purpose, we can
use additional tools to analyze the relations of disease-associated molecules.
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Figure 2. The drug repurposing pipeline. (A) The initial step of drug discovery is disease description:
from phenotype characterization to identification of molecular mechanisms. There are two methods
of target identification: experiments if molecular processes are not clear or a database search in
combination with tools for analyses of connections between molecular or cellular processes. (B) To
select a target, we should reconstruct a disease development map by analyzing known disease data
and filling the gaps and then by determining processes and molecules connections. Even if the data
are known, as a rule, obtaining a full consistent picture of a disease, especially in relation to existing
drugs, is great luck. DEG: differential expression genes.

Next, it is necessary to connect disease genes, proteins, and pathways to known
drugs. The simplest way is to search for a drug that targets certain pathogenesis-inducing
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molecules. Nevertheless, to understand the effect of the drug, molecular pathways of
molecular targets should be analyzed too. In addition, the second method of drug repo-
sitioning is the search for pathway-associated drugs. There is a list of databases helpful
for the search for a drug (Figure 3). Ultimately, an investigator needs to simulate the effect
of the drug. To this end, it is worth knowing the pathogenesis of the disease, not just
individual molecular pathways (Figure 4).
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Figure 4. The drug repositioning algorithm based on a molecular pathway. The information about
mHTT interactors can be obtained via in silico methods such as text mining and a database search.
Identifying molecular pathways is necessary to link disease genes, proteins, and pathways to known
drugs. The search for pathway-associated drugs can be performed in such databases as DrugBank,
gene2drug, and KEGG DRUG.

4. Drug Repurposing for HD Treatment

Numerous articles are devoted to the development of approaches to drug repurposing
for rare orphan diseases, which include HD. In relation to HD, ideas for reuse of approved
drugs appeared in 1997 [118], when clozapine was tested in a double-blind randomized trial
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on patients with HD. In subsequent years, trials of olanzapine [119], memantine [120], tetra-
benazine [121], risperidone [122], tetrabenazine [123–125], cysteamine bitartrate [126–131],
lithium citrate [132–135], laquinimod [136,137], rapamycin [138–141], minoxidil [142],
felodipine [143], nilotinib [144,145], dextromethorphan [146], and INO-1001 [147] have
been conducted. Ref. [148] (2021) provides examples of approved and unapproved drugs
repurposed for the treatment of chorea in HD: tetrabenazine (Xenazine®) [149] and Austedo
(deutetrabenazine), which is a compound with VMAT2 inhibitor activity [150]. Not yet
approved substances include cysteamine bitartrate and lithium citrate tetrahydrate. In
mouse models of HD, cysteamine bitartrate has been found to extend the lifespan and
reduce motor impairment. Nevertheless, when tested on patients with HD, it did not give
positive results [127]. It is thought that the drug slows the progression of the disease in
patients with more severe types of dysmotility. Lithium citrate tetrahydrate in preclinical
trials has helped to reduce the formation of intracellular protein aggregates and improved
motor activity and coordination of movements [132,151]. In short-term clinical trials, the
drug has been shown to improve motor activity and reduce symptoms of chorea [152,153].

Another drug, rapamycin (sirolimus, Rapamune), activates the autophagy system
by inhibiting mTOR [139,141]. Despite the positive effect, rapamycin has other activities;
therefore, research has been carried out to find highly specialized drugs that stimulate
autophagy: clonidine, verapamil, loperamide, nimodipine, and minoxidil have been iden-
tified in this way; all of them inhibit the aggregation of mHTT in neuroblastoma cells
in vitro [143].

In addition to disturbances in the systems of proteolysis of abnormal protein forms, in
HD, there is an abnormal activation (induced by the CNS) of the immune system and a
weakening of the activity of immune cells in the periphery [154]. Thus, it has been decided
to use the drug laquinimod developed for multiple sclerosis. In primary neurons derived
from a mouse model of HD (YAC128), in vitro, this drug reduced the level of apoptosis, and,
when tested in vivo on mice, it improved motor and mental activity and diminished the
level of IL-6 in serum [137]. In second-phase clinical trials, there is a significant reduction
in caudate atrophy in patients with early HD [137,155].

Two other repurposed drugs are in clinical trials. The first one, nilotinib (approved for
the treatment of chronic myeloid leukemia), has earlier been successfully used in the treat-
ment of Parkinson’s disease and is believed to reduce the accumulation of mHTT [144,145].
The second drug, Nuedexta (previously utilized for the treatment of the pseudobulbar
affect), has been shown to significantly alleviate agitation in patients with Alzheimer’s
disease [146].

Another work (2018) generalizes repurposed drugs for a number of neurodegenerative
diseases, including HD [156]. Tetrabenazine, first used as a drug with antipsychotic activity,
acts as a reversible inhibitor of monoamine reuptake by presynaptic neurons. As it turned
out, the drug proved to be successful in the treatment of HD, and, by analogy, other
drugs with dopamine antagonistic activity have been found: tiapride [157] (a D2 receptor
antagonist), clozapine [158] (a dopamine D1 and D4 receptor antagonist, although clinical
trials have yielded conflicting results [118]), olanzapine [119] (which has strong affinity
for serotoninergic receptor and for D2 receptor [159]), risperidone [122] (a D2 receptor
antagonist and a serotonin agonist), quetiapine [153] (which has affinity for serotonin and
dopamine receptors), and memantine [83] (which can prevent calcium influx into neuronal
cells thereby preventing cerebral cell death and can decrease the vulnerability of neurons
to glutamate-mediated excitotoxicity [160]).

FDA-approved drugs for HD in use include tetrabenazine and deutetrabenazine for
symptoms of chorea, risperidone and olanzapine as antipsychotics, citalopram, fluoxetine,
sertraline, lamotrigine, and carbamazepine (the last two as mood stabilizers) [161].

PARP inhibitors are novel potential therapeutic agents for HD. It is known that PARP1
protects neurons from cell death under mild oxidative stress by promoting DNA repair [3].
This repair enzyme is reported to be hyperactivated in neurons of patients with brain
pathologies, and the involvement of repair pathways in the development of HD has
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been demonstrated [162–165]. This enzyme participates in the induction of cell death,
called parthanatos, which is mediated by the AIF protein [166]. The enzymes PARP1 and
PARP2—being participants in DNA strand break repair, chromatin regulation and tran-
scription, cell cycle, metabolic regulation, inflammation, and activating a cell death pathway
called parthanatos—are actively employed as a target for prevention of neurodegenera-
tion [167–169]. DNA repair proteins interact with poly(ADP-ribose), which is important for
loading DNA repair enzymes onto sites of DNA damage [170,171]. Thus, normally, PARP
rescues the cell in the event of DNA strand breaks by recruiting DNA repair proteins (for
example, DNA polymerases and XRCC1) to the damage site. Nevertheless, prolonged dam-
age to DNA integrity, coupled with events accompanying pathological processes, reduces
the ability of PARP to use ATP and NAD+, owing to depletion of their pools and provokes
cell necrosis and PARP hyperactivation inducing parthanatos [3,165–168,172,173]. Drugs
based on PARP1 inhibitors have been created to treat cancer, but, as it turned out, similar
molecular pathways made it possible to expand the scope of their clinical application.

The idea of using PARP inhibitors for the treatment of neurodegenerative diseases
has appeared quite a long time ago [168]. A group of researchers in Ref. [174] revealed a
connection of HTT with the ATM protein of the DNA repair pathway, where ATM plays the
scaffold role, and this connection prevents the repair process. Furthermore, they published
reviews in 2019 and 2021 on the participation and mechanisms of DNA repair and PARP
enzymes in HD [162,175].

The INO-1001 compound has been tested on R6/2 mouse models of HD featuring
expression of an N-terminal part of mHTT and of the full-length protein, which have made
it possible to observe its interaction with poly(ADP-ribose)-tagged proteins [147]. Although
the mechanism behind the involvement of PARP enzymes in the HD pathogenesis is still
not entirely clear, it is known that there is an influence of mHTT on PARP activity. Owing
to a positive effect of inhibitors INO-1001 [147] and Olaparib [176] on mice featuring the
expression of HTT exon 1 with an expanded polyglutamine tract, efforts can be directed to
further investigation into the impact of PARP inhibitors on the progression of HD in more
relevant models such as cell lines derived from HD patients.

5. Drug Repurposing Targeting mHTT Interactome Pathways

The most important and most difficult task in the search for a target is reconstruction
of the disease mechanism in order to optimize the action of the drug. Even when the search
for drugs is based on indirect signs (disease hallmarks), it is necessary to reproduce the
mechanism along the way. After examination of “drug repurposing” in general, the next
step is discovery of protein targets and HD molecular pathways for the reuse of approved
drugs from databases.

We found a set of genes in the mHTT interactome and identified their molecular
pathways, which is necessary to identify associated drugs (Supplementary Materials,
Table S1). For this purpose, we searched different sources related to HD studies and
found 490 genes in the HTT-OMNI database [177], the PANTHER database [178], and
mHTT interaction studies in human cells: 276 genes were discovered in the Podvin (2022)
study [72], and six other genes—CCT2, PRMT6, KMO, JPH1, STIM1, and TFEB—came
from later papers dealing with experimental and bioinformatic research of HD in years
2022–2023 [179–225].

We analyzed the molecular pathways corresponding to the found genes to understand
which processes mHTT targets (Table S2).

In the Reactome database [226], we selected all pathways with a p-value > 10−5

(Table S2) and ranked them in terms of significance. The most significant (at thresh-
old p-value < 10−10) are the following pathways: the cellular response to stress, pro-
grammed cell death, signal transduction, vesicular transport, regulation of the cell cycle,
and transcription.
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As follows from the aforementioned causes of the development of neurodegeneration,
the regulation of transcription requires special attention. Therefore, let us consider in more
detail what can be gleaned from the data on gene expression.

We found that PARP1 is involved in the regulation of transcription factors TP53,
RUNX1, and RUNX3, where it intersects with mHTT. TP53 is a transcription factor that
is a tumor suppressor; mutations in its gene cause malignant transformation of cells. On
the other hand, the facts of its participation in the pathogenesis of neurodegenerative pro-
cesses are also known, in particular, its mutation upregulates reactive oxygen species [227].
Transcription factor RUNX1 takes part in hematopoiesis, angiogenesis, and neuronal de-
velopment. In addition, it is expressed in adults in hippocampal cells and participates
in neurogenesis [228]. Transcription factor RUNX3 is responsible for the development
of proprioceptive sensory neurons that support feedback from the CNS and returning
signals about the state of the motor system [229]. For the above-mentioned processes
associated with these genes, there are the following drugs that have passed clinical trials
and possess known mechanisms of action. Carfilzomib (DB08889) is known for the RUNX1
pathway and is a proteasome inhibitor that is used to suppress the progression of multiple
myeloma [230]. The molecular pathways of the TP53 gene match drugs such as everolimus
(DB01590), temsirolimus (DB06287), and sirolimus (DB00877). These compounds are mTOR
inhibitors and cause decreases in cell proliferation, angiogenesis, and glucose uptake. They
are used as immunosuppressors and tumor suppressors [231]. For instance, temsirolimus
is employed to treat renal cell carcinoma because this substance causes G1 phase arrest in
tumor cells.

Next, we used the KEGG [232] database to generate a process map of HD (map05016)
and compared the proteins of this map with the mHTT interactome by means of the ShinyGO
software for integrating molecular pathway data [103]. We aligned the processes—previously
found by us in the Reactome database for the mHTT interactome—with the processes
for HD on the map (Figure 5). It turned out that the list of processes for mHTT and its
interactors is wider than that for HD.

We can search for a drug target by looking for processes–inducers or processes–
consequences. The former means the direct contacts of mHTT that induce pathological
changes in molecular pathways. By contrast, processes–consequences are associated with
disease hallmarks such as DNA damage and repair, glutamate signaling, cell death, the
antioxidant system, and others. Generally, all of the pathological processes result from a
cascade of events caused directly by mHTT. Our findings represent an attempt to select a
drug among root causes, i.e., initiating events.

We used the list of mHTT interactome genes to search for drugs in the DrugBank
database [102]. Assuming that a specific gene can be targeted by a pharmacological agent
while knowing effects of this gene product on a molecular pathway, we can potentially
utilize it to treat HD. This approach is facilitated by many of the facts discussed above,
which point to a connection of neurodegenerative diseases with many others, in particular,
with cancers, for which a wide variety of drugs have already been tested and approved
(Table S2).

Overall, we identified approved drugs (Table S3) for the mHTT interactome (Figure 6).
We also used the Gene2drug database [233] to find pathways and drugs on the basis of
these pathways by means of the list of mHTT interactor genes. Nonetheless, the found
drugs were too redundant, and we decided to try the algorithm presented earlier.
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Figure 5. mHTT interactome genes (red) on the HD map (KEGG) and mHTT interactome pathways.
The bottom box (G) contains the molecular pathways (in general form) that we found for the
mHTT interactome. We aligned them to the map of HD from the KEGG database, labeled with the
corresponding colors (A–F). Adapted from the KEGG database [232] with permission.
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6. Conclusions

HD as a drug discovery field offers a variety of approaches, among which we focused
on drug repurposing in this paper. This area has stood the test of time and has advantages
over high-cost approaches; moreover, it allows for the use of accumulated knowledge
about disease molecular mechanisms, drugs, and possible targets in conjunction with novel
data-processing technologies, such as ML, neural networks, multifunctional software tools
for integrating and analyzing molecular processes, construction of networks, and molecular
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dynamics simulations. This tool set facilitates reconstruction of cellular events and speeds
up a drug search.

We mentioned one of the ways to use knowledge about a disease for drug discovery:
on the basis of known molecular pathways and associated genes, we can look for the most
appropriate targets among them while being guided by known pathways of the disease
and analyzing the disease course under the action of each drug. Nonetheless, drug effect
prediction must be reinforced by simulation of physicochemical characteristics in silico and
in vivo, i.e., during clinical trials. HD partially simplifies such drug design: we employ the
mHTT interactome for finding drug targets, simultaneously implicating target pathways,
to clarify how a drug fits into the molecular network of the disease.

In this way, we compiled an mHTT interactome by searching databases and studies
dealing with finding HD participants. Next, we found the interactome’s molecular path-
ways and determined genes that are targets of existing drugs. We revealed key pathways
containing the proteins that have drugs targeting them: cellular responses to heat and
chemical stress; transcriptional regulation by TP53, RUNX1, and RUNX3; apoptosis via
activation of BH3-only proteins; and autophagy (mito- and aggrephagy).

DNA repair pathways involving PARP enzymes play a major part in HD pathogenesis.
Comparing molecular processes between the mHTT and PARP interactomes uncovers
novel overlapping pathways that can be considered supplementary therapeutic targets.

At this point, the found drugs are only raw materials for a more detailed study by
computer simulation of their actions (taking into account the physicochemical factors
that accompany HD progression), followed by experimental testing and comprehensive
data analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms242316798/s1.
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